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Abstract—We study a scheduling problem for a base-station
transmitting status information to multiple user-equipments (UE)
with the goal of minimizing the total expected Age-of-Information
(AoI). Such a problem can be formulated as a Restless Multi-
Armed Bandit (RMAB) problem and solved asymptotically-
optimally by a low-complexity Whittle index policy, if each
UE’s sub-problem is Whittle indexable. However, proving Whittle
indexability can be highly non-trivial, especially when the value
function cannot be derived in closed-form. In particular, this
is the case for the AoI minimization problem with stochastic
arrivals and unreliable channels, whose Whittle indexability
remains an open problem. To overcome this difficulty, we develop
a sufficient condition for Whittle indexability based on the
notion of active time (AT). Even though the AT condition shares
considerable similarity to the Partial Conservation Law (PCL)
condition, it is much easier to understand and verify. We then
apply our AT condition to the stochastic-arrival unreliable-
channel AoI minimization problem and, for the first time in the
literature, prove its Whittle indexability. Our proof uses a novel
coupling approach to verify the AT condition, which may also
be of independent interest to other large-scale RMAB problems.

I. INTRODUCTION

Many emerging wireless applications, e.g., Internet-of-
Things (IoT) [1] and Intelligent Transportation Systems [2],
require fresh information updates to be delivered in real-time.
AoI (Age-of-Information), which is defined as the elapsed
time of the latest-received information packet since it was
generated at the source, can be used to capture the freshness of
information. Thus, there have been significant interests in how
to schedule wireless transmissions to minimize AoI [3]–[12].

When information updates for multiple users are transmitted
over an unreliable wireless channel, the resulting AoI min-
imization problem can be modelled as a Markov Decision
Process (MDP), or more specifically a Restless Multi-Arm
Bandit (RMAB) problem [5]–[14]. Unfortunately, such a prob-
lem is known to suffer from the curse-of-dimensionality, i.e.,
the complexity of the problem grows exponentially with the
number of users. Recently, Whittle index has been applied
to decompose such a problem into multiple per-agent MDP.
When each agent’s sub-problem is Whittle indexable, the cor-
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responding Whittle index policy is known to be asymptotically
optimal when the system size is large [15], [16].

However, establishing Whittle indexability is by itself quite
an involved problem. In some cases, the value function of
the per-agent problem can be solved in closed-form, based on
which one can verify Whittle indexability and even derive a
closed-form expression of the Whittle index. This is the case,
e.g., when a “generate-at-will” source transmits information
over a Bernoulli channel [5]. Part of the reason that the value
function can be solved in closed form for this “generate-at-
will” setting is that the state space of the per-agent problem
is one dimensional (i.e., the state includes only the age).
Unfortunately, for slightly more complex settings, the value
function can no longer be derived in closed-form. For example,
when the information arrivals are stochastic, i.e., new update
packets are generated randomly, the state space will be two-
dimensional (i.e., the state includes both the age and the latest
packet-generation time). It then becomes difficult to derive the
value function in closed-form. As pointed out in [11], Whittle
indexability under the stochastic-arrival and unreliable-channel
settings remains an open problem, even though it seems quite
intuitive to be true. (We note that the recent work in [12]
claims to provide a closed-form expression for the value
function for this stochastic-arrival setting, based on which
the authors claim Whittle indexability. However, our own
numerical results based on the value iteration indicate that the
value-function expressions in [12] are imprecise.) Thus, there
is a need to develop new approaches for verifying Whittle
indexability that do not require closed-form expressions of the
value function, but instead are directly based on the problem
structure.

It turns out that in the literature of RMAB and Whittle
index [17]–[20], there have been some sufficient conditions for
Whittle indexability, most notably the General Conservation
Law (GCL) condition in [17] and the Partial Conservation
Law (PCL) condition in [18]. These powerful conditions can
be checked without knowing the value function. Between
them, PCL is more general than GCL, and therefore can
potentially be applied to a larger set of problems. However,
the application of PCL is scarce in the literature. In particular,
to the best of our knowledge, there has been no application of
PCL to the AoI minimization problem with stochastic arrivals
and unreliable channels. When we study PCL, we found two
possible reasons for this lack of application. First, verifying



the PCL condition is also non-trivial (even for simple toy
examples shown in [18]). Second, both the statement of the
PCL condition by itself and its proof of sufficiency are not
easy to understand, and hence it is unclear how to develop
effective approaches to verify the PCL condition.

In this paper, our first contribution is to develop a sufficient
condition based on the notion of active time (AT). While
the AT condition shares considerable similarity to the PCL
condition, there are also a number of crucial differences. For
example, there is no need to check whether the per-stage cost
is admissible by an adaptive greedy algorithm as in [18]. (See
further discussions of their differences in Section 3.) As a
result, the AT condition is both easier to understand (and its
proof of sufficiency is more straight-forward) and easier to
verify. As an example of the power of the AT condition, we
show how easily it can be applied to AoI minimization under
the generate-at-will setting to establish Whittle indexability,
without the need of finding the value function.

Next, we then apply the AT condition to the AoI mini-
mization problem with both stochastic arrivals and unreliable
channels, and for the first time in the literature, affirmatively
establish its Whittle indexability. Due to the 2-dimensional
state-space for the stochastic-arrival setting, even applying the
AT condition is quite involved (as we cannot easily relate to the
recurrent state as in the generate-at-will setting). Nonetheless,
the intuition behind the AT condition allows us to develop a
novel coupling approach, which successfully verifies the AT
condition for this setting. This coupling approach may be of
independent interest to other problems. The structural property
of the AoI minimization problem and the near-optimality of
the Whittle index policy are verified through our numerical
results, where we also introduce an improved version of the
algorithm in [20] and [21] for fast computation of the Whittle
index.

The rest of the paper is structured as follows. In Section
2, we introduce both the AoI minimization problem for the
stochastic-arrival setting and a more general RMAB formula-
tion, and define the Whittle index. In Section 3, we propose our
active-time (AT) condition for proving Whittle indexability for
the general RMAB formulation with finite state-space, which
can potentially be applicable to many problem settings. In
Section 4, we apply our AT condition to the AoI minimization
problem specifically, and use novel coupling approaches to
prove its Whittle indexability, for both the generate-at-will and
the stochastic-arrival settings. Numerical results are presented
in Section 5, and then we conclude.

II. SYSTEM MODEL

Below, we first introduce the system model for the AoI
minimization problem with stochastic arrivals and unreliable
channels, which becomes a special case of a more general
RMAB model that we present afterwards. Some of our key
results, such as the AT condition, apply to the general model.

Consider a base-station (BS) that transmits information
updates to N user-equipments (UEs) in the downlink. Assume
that time is slotted, such that each transmission takes exactly

one unit of time. The BS has channel capacity C, i.e., it can
transmit to at most C UEs at each time slot. We assume that
C < N . Assume that there are N buffers at the BS, each
corresponds to a UE. The information update packets for UE
n arrive to the BS following a Bernoulli process with rate
pg(n) ∈ (0, 1], independently across the UEs. Due to the
uncertainty of the wireless network, each packet transmission
from the BS to UE n succeeds with probability ps(n) ∈ (0, 1],
independently of other transmissions. Let un(t) ∈ {0, 1}
denote the scheduling decision for UE n at time t. That is,
un(t) = 1 denotes that the BS schedules a transmission to UE
n at time t, and un(t) = 0 otherwise. Thus, we must have∑

n un(t) ≤ C for all time t. Define h′
n(t) to be the AoI of

UE n at time t, which is the time elapsed from the generation
time of the last received packet at UE n to the current time t.
Define a′n(t) to be the time elapsed from the arrival time of the
newest packet in the buffer for UE n at the BS to the current
time t. Without loss of generality, we take the convention that,
at each time slot, the scheduled transmission happens before
the new arrival at that time slot. As a consequence, a successful
transmission to UE n at time t will reduce the AoI from h′

n(t)
to a′n(t). Let d′n(t) = h′

n(t)− a′n(t), which can be viewed as
the improvement in AoI if a successful transmission to UE n
takes place. Thus, we can describe the AoI evolution of UE
n by the evolution of a′n(t) and d′n(t) as:

a′n(t+ 1) =

{
1 new arrival to n’s buffer,
a′n(t) + 1 otherwise,

(1)

d′n(t+ 1) =



a′n(t) transmission success
and new arrival,

0 transmission success
and no new arrival,

a′n(t) + d′n(t) new arrival and no
transmission success,

d′n(t) otherwise.

(2)

For technical reasons, our main result on the AT condition
requires a finite state space. Thus, we approximate the true
state-evolution by a state truncation. Specifically, define the
operator ∧ such that x∧y = min{x, y}. Given two arbitrarily
large integers Ka,Kd ∈ N+, we define an(t) = a′n(t) ∧ Ka

and dn(t) = d′n(t)∧Kd. In the rest of the paper, we will take
the tuple sn(t) =

(
an(t), dn(t)

)
∈ {1, ...,Ka}×{0, 1, ...,Kd}

as the state of UE n at time t. Intuitively, when Ka and Kd are
large, the inaccuracy due to this state truncation will vanish.

We can now formulate the AoI minimization problem
for the above system as a Restless Multi-Armed Bandit
(RMAB) problem, where each arm denotes a UE. Let
S̄(t) =

{(
a1(t), d1(t)

)
, ...,

(
aN (t), dN (t)

)}
be the system

state of all arms at time t and denote the action as Ū(t) =
{u1(t), ..., uN (t)} ∈ Ā ≜ {0, 1}N . Let policy π̄ be a function
mapping each state S̄ to an action Ū . Suppose that the
current state

(
an(t), dn(t)

)
for UE n is (a, d). Then, the state

transition probabilities for UE n under the passive action, i.e.,



un(t) = 0, are

Pr{(a, d) →
(
(a+ 1) ∧Ka, d

)
|un(t) = 0} = 1− pg(n)

Pr{(a, d) →
(
1, (a+ d) ∧Kd

)
|un(t) = 0} = pg(n),

(3)

and that under the active action, i.e., un(t) = 1, is

Pr{(a, d) →
(
(a+ 1) ∧Ka, d

)
|un(t) = 1} =(
1− pg(n)

)(
1− ps(n)

)
Pr{(a, d) →

(
1, (a+ d) ∧Kd

)
|un(t) = 1} =

pg(n)
(
1− ps(n)

)
Pr{(a, d) →

(
(a+ 1) ∧Ka, 0

)
|un(t) = 1} =(

1− pg(n)
)
ps(n)

Pr{(a, d) →
(
1, a ∧Kd

)
|un(t) = 1} = pg(n)ps(n).

(4)

Let v(·) : N → R be a strictly increasing function
representing the penalty cost on the AoI value. Let δn(t) = 1 if
the transmission to UE n at time t is successful, and δn(t) = 0
if such a transmission fails (or if there is no such transmission).
Let β ∈ (0, 1) be a discount factor. Our objective is to
minimize the discounted expected total cost of all arms that
starting at an arbitrary initial state S̄0 [12], i.e.,

min
π̄

∞∑
t=0

βt
N∑

n=1

Eπ̄
S̄0

[
v
(
an(t) + dn(t)

×
(
1− un(t)δn(t)

))] (5)

s.t.
N∑

n=1

un(t) ≤ C, for all time t, (5a)

where Eπ̄
S̄0
[·] denote the expectation under policy π̄ starting

from the initial state S̄0.
At this point, it should also be clear that our AoI mini-

mization problem is a special case of a more general RMAB
problem, where we can replace the state

(
an(t), dn(t)

)
by

a general state sn(t), replace the AoI penalty in (5) by a
general per-stage cost c

(
sn(t), un(t)

)
, and replace (3) and (4)

by arbitrary state transition laws P 0 and P 1. The discussion
below and the results of Section 3 will be applicable to this
general RMAB problem.

Unfortunately, such an RMAB problem is known to suffer
from the curse-of-dimensionality, i.e., the complexity grows
exponentially with N . As in [22], we follow Whittle’s ap-
proach and instead study a relaxed problem, where the decision
for each UE can be decomposed. Specifically, we first relax the
hard constraint (5a) to a soft constrain in the discounted-sum
form, i.e.,

min
π̄

∞∑
t=0

βt
N∑

n=1

Eπ̄
S̄0

[
c
(
sn(t), un(t)

)]
(6)

s.t.
∞∑
t=0

βt
N∑

n=1

Eπ̄
S̄0

[
un(t)

]
≤ C

1− β
. (6a)

Since (5a) implies (6a), the solution to (6) becomes a lower
bound to that of (5). Then, we associate a dual variable λ

to (6a) and apply Lagrange relaxation. Minimization of the
corresponding Lagrangian can be decomposed into N per-UE
problems, where the objective of UE n is

min

∞∑
t=0

βtE
[
c
(
sn(t), un(t)

)
+ λun(t)

]
. (7)

If we interpret λ as an activation price of being scheduled, in
(7) each UE n simply minimizes its own per-stage cost plus
the activation cost (both of which are discounted in time). This
per-UE problem can also be viewed as an MDP, but with a
much smaller state space Sn = {1, ...,Ka} × {0, 1, ...,Kd}
and a much smaller action space An = {0, 1}.

We can now define Whittle indexability based on this per-
UE MDP. Let πn be the policy of UE n mapping Sn to An.
Given λ, we call a policy that achieves the minimum in (7) as
the optimal policy, denoted as π∗

nλ. Define the passive set to
be Pn(λ) =

{
sn ∈ Sn

∣∣There exists π∗
nλ such that π∗

nλ(sn) =
0
}

, i.e., the set of states that will take the passive action under
at least one optimal policy. Note that this definition allows the
possibility that the optimal policy might not be unique. The
definition of Whittle indexability [22] is as follows.

Definition 1. The per-UE problem (7) is Whittle indexable if
its MDP satisfies the following properties:

1) Pn(+∞) = Sn and Pn(−∞) = ∅,
2) Pn(λ1) ⊆ Pn(λ2), for all λ1 < λ2.

If Definition 1 holds, we can define the Whittle index as

w(sn) = inf
{
λ|sn ∈ Pn(λ)

}
, (8)

which intuitively is the activation cost λ such that the active
and passive actions break even.

Once the Whittle index for every state is calculated, the
Whittle index policy will simply activate arms with the highest
Whittle indices. Further, such a policy has been shown to be
asymptotically optimal when the system size is large [15],
[16]. However, as we discussed earlier, one of the main
challenges for Whittle index policy is to prove the indexability
of the per-UE problem. This is particularly challenging when
the value function of the per-UE problem (and thus the optimal
policy) cannot be derived in closed form. In the next section,
we will introduce our AT condition, which enables us to
prove Whittle indexability without full knowledge of the value
function and the optimal policy.

III. THE ACTIVE TIME (AT) CONDITION

Recall that at the end of Section 2, we have decoupled a
general RMAB problem into per-UE sub-problems through the
Whittle relaxation (6). In the rest of the paper, we will focus
on this per-UE sub-problem. Thus, for ease of exposition, we
will omit the UE index n when there is no source of confusion.
This per-UE problem then has the state s, the action u and the
policy π in the corresponding state space S, action space A
and policy space Π. Let K = |S| denote the size of state space
S and λ denote the activation cost. The per-stage cost function
is given by c(s, u) : S×A → R and let cλ(s, u) = c(s, u)+λu.
The state transition matrix under action u is denoted as Pu.



Let V π
λ (s) be the value function for state s, under policy π

and given the activation cost λ of the per-UE MDP. Then, we
can write

V π
λ (s) = Cπ

s + λTπ
s , (9)

where

Tπ
s = Eπ

[ ∞∑
t=0

βtuπ
t

∣∣∣s0 = s
]

(10)

is the expected discounted total activation time and

Cπ
s = Eπ

[ ∞∑
t=0

βtc(st, u
π
t )|s0 = s

]
(11)

is the expected discounted total cost under policy π and
starting from state s. Note that uπ

t is the chosen action at
time t by policy π. Similarly, let Qπ

λ(s, u) be the action-value
function for state s and action u, under policy π and given
the activation cost λ of the per-UE MDP. Then, we can also
write

Qπ
λ(s, u) = Cπ

s (u) + λTπ
s (u), (12)

where

Tπ
s (u) = Eπ

[ ∞∑
t=0

βtuπ
t

∣∣∣s0 = s, uπ
0 = u

]
, (13)

Cπ
s (u) = Eπ

[ ∞∑
t=0

βtc(st, u
π
t )|s0 = s, uπ

0 = u
]
.

Obviously, both V π
λ (s) and Qπ

λ(s, u) are linear functions in λ
with slopes Tπ

s and Tπ
s (u), respectively.

Let V ∗
λ (s) be the optimal value function and Q∗

λ(s, u) be
the optimal action-value function. By definition,

V ∗
λ (s) = min

π∈Π
V π
λ (s)

Q∗
λ(s, u) = min

π∈Π
Qπ

λ(s, u)
(14)

Consider a smaller subset of policies Π′ ⊆ Π, such that Π′

contains every possible optimal policy1. Then, (14) becomes

V ∗
λ (s) = min

π∈Π′
V π
λ (s) (15a)

Q∗
λ(s, u) = min

π∈Π′
Qπ

λ(s, u). (15b)

The following lemma has been shown in earlier work, e.g.
[20]. We provide the proof below for the sake of completeness.

Lemma 2. Both V ∗
λ (s) and Q∗

λ(s, u) are continuous, mono-
tonically increasing, concave and piece-wise linear functions
with respect to λ.

Proof. First, being the point-wise minimum of many linear
functions in λ, both V ∗

λ (s) and Q∗
λ(s, u) must be continuous

and concave in λ. Using the fact that Tπ
s ≥ 0 and Tπ

s (u) ≥ 0,
we conclude that both functions are monotonically increasing.
Since the state space is finite, the policy space Π is also finite.

1For example, for the AoI minimization problem that we studied ealier, one
can show that the optimal policy must be a threshold type. Then, Π′ can be
taken to only include such policies.

Thus, the minimum of a finite number of linear functions
produces a piece-wise linear function.

Theorem 3. (The AT condition) The per-UE MDP is Whittle
indexable if it satisfies the following conditions:

1) P(+∞) = S and P(−∞) = ∅.
2) Tπ

s (1) ≥ Tπ
s (0), for all state s ∈ S and for all π ∈

Π′, where Π′ is a subset of Π that contains all possible
optimal policies.

Proof. Define ∆Q∗
s(λ) = Q∗

λ(s, 1)−Q∗
λ(s, 0). By Lemma 2,

∆Q∗
s(λ) is also a continuous and piece-wise linear function.

Since Q∗
λ(s, 1) and Q∗

λ(s, 0) are piece-wise linear, their right
derivatives are always well defined. Specifically, for any given
λ, define D(u, λ) = argminπ∈Π′ Qπ

λ(s, u) and

τ(u, λ) = min{Tπ
s (u) : π ∈ D(u, λ)}. (16)

Then, we have d+∆Q∗
s

dλ+ = τ(1, λ)− τ(0, λ).
To prove the result of the theorem, it suffices to show the

following statement: for all λ, there exists πλ ∈ D(0, λ) ∩
D(1, λ) such that τ(1, λ)−τ(0, λ) = Tπλ

s (1)−Tπλ

s (0). To see
why this statement is sufficient, since D(0, λ)∩D(1, λ) ⊆ Π′,
applying the second condition of the theorem on policy πλ,
we conclude that ∆Q∗

s(λ) must be a monotonically increasing
function at all λ. Now, suppose that s ∈ P(λ1), i.e., some
optimal policy will take the passive decision at state s under
λ1. By the definition of the action-value function, it implies
that Q∗

λ(s, 0) ≤ Q∗
λ(s, 1) and ∆Q∗

s(λ1) ≥ 0. Then, for any
λ2 > λ1, we must have, from the monotonicity, ∆Q∗

s(λ2) ≥ 0.
Hence, we must have s ∈ P(λ2). Combined with the first
condition of the theorem, we have proven Whittle indexability.

It remains to show the statement that, for any λ, there exists
πλ ∈ D(0, λ)∩D(1, λ) such that τ(1, λ)−τ(0, λ) = Tπλ

s (1)−
Tπλ

s (0). First, by the property of MDP, the optimal policy for
an MDP should simultaneously minimize the value function
and the action-value function for all states and actions. Further,
by the piece-wise linearity of V ∗

λ′(s) as a function of λ′, there
must exists a policy π1 that attains the minimum in (15a) for
all states and all λ′ in an interval [λ, λ + δ] for some δ > 0.
The policy π1 will then also minimize Q∗

λ′(s, 0) and Q∗
λ′(s, 1)

for all states and actions, and over all λ′ ∈ [λ, λ + δ]. Thus,
π1 must attain the minimum in (16) at λ for both u = 0 and
u = 1, i.e., Tπ1

s (0) = τ(0, λ) and Tπ1

s (1) = τ(1, λ). The
theorem then follows.

The significance of Theorem 3 is that it provides a much
easier way to verify Whittle indexablity, by simply comparing
the expected total active times at different initial actions. Inter-
estingly, in his original paper [22], Whittle also stated a similar
sufficient condition for indexability that Tπ

s (1) − Tπ
s (0) ≥ 0

for the optimal policy π given λ (see page 296 of [22]). One
could then argue that, since the set Π′ contains all possible
optimal policies, our condition 2 of Theorem 3 (that holds for
all policies in Π′) implies Whittle’s sufficient condition (that
holds for the optimal policy π at λ). However, Whittle did
not provide a rigorous proof for his condition. Specifically,
Whittle started his argument by stating that the derivative of



∆Q∗
s(λ) is equal to Tπ

s (1) − Tπ
s (0) for the optimal policy

π at λ. Unfortunately, this statement is not always true,
especially when there are multiple optimal policies at λ (See
(16)). Instead, our proof of Theorem 3 correctly handles such
cases, by finding the right policy πλ that produces the correct
derivative for ∆Q∗

s(λ). In practice, verifying condition 2 of
the AT condition for all policies in Π′ is also easier since we
do not need to know the exact optimal policy.

Note that Theorem 3 is also closely related to GCL [17]
and PCL [18]; both of which involve conditions on Tπ

s (1)
and Tπ

s (0). When we take Π′ to be the set Π of all possible
policies, our condition then become very similar to GCL. Both
our condition and the PCL condition are more powerful than
GCL because we only need to verify Tπ

s (1) > Tπ
s (0) for a

much smaller set Π′ of policies. However, the AT condition
is even easier and more powerful than PCL for the following
reasons:

1) The PCL condition requires one to verify an additional
admissibility condition [18], which seems non-trivial.
The AT condition does not require this additional step.

2) The PCL condition requires one to pick a class F of state
subsets that satisfies certain properties. Our AT condition
replace it by Π′ that contains all optimal policies, which
is much easier to understand and work with.

3) The PCL condition requires Tπ
s (1) > Tπ

s (0). As we
have shown in Theorem 3, it turns out that Tπ

s (1) ≥
Tπ
s (0) is sufficient according to our AT condition.

Therefore, we expect that our AT condition can potentially be
applied to a larger set of problems.

IV. INDEXABILITY OF THE AOI MINIMIZATION PROBLEM

In this section, we return to the more-specific AoI mini-
mization problem defined at the beginning of Section 2, and
we will show how to apply our AT condition to prove its
Whittle indexability. As in Section 3, since we focus on a
per-UE MDP, we will omit the index n for UE when there is
no source of confusion. Note that when pg = 1, our model
in Section 2 reduces to the generate-at-will model, where the
Whittle indexability has already been shown by deriving an
closed-form expression of the value function [5]. We will first
revisit this generate-at-will setting to illustrate the simplicity of
applying the AT condition, i.e, we will show how to establish
indexability without deriving the value function. Then, we will
move on to the more challenging stochastic-arrival case where
pg < 1, whose indexability has not been established before.

A. The Generate-at-Will Setting

In the generate-at-will setting, the value of a is always 1.
Thus, we can simplify the state into 1-D. Recall the operator
∧ and the state truncation threshold Kd defined in Section 2.
Define hn(t) = h′

n(t) ∧ Kd. We omit the UE index n and
denote the AoI as h(t), which we will use as the 1-D state.
Then, the state evolution can be described by

h(t+ 1) =

{
1 transimission success(
h(t) + 1

)
∧Kd otherwise,

(17)

and the Bellman equation is

V ∗
λ (h) =min

{
Q∗

λ(h, 0), Q
∗
λ(h, 1)

}
,

Q∗
λ(h, 0) =v(h) + βV ∗

λ

(
(h+ 1) ∧Kd

)
,

Q∗
λ(h, 1) =λ+ ps

[
v(0) + βV ∗

λ (1)
]

+ (1− ps)
[
v(h) + βV ∗

λ

(
(h+ 1) ∧Kd

)]
, (18)

where V ∗
λ (h) is the value function for state h and Q∗

λ(h, u) is
the action-value function for state h and action u, as defined
earlier in Section 3. The state space is S = {1, ...,Kd}.

Note that state 1 is the recurrent state: when there is a
successful transmission, every state will return to state 1. We
next show some properties of this per-agent MDP.

Lemma 4. V ∗
λ (h) is monotonically increasing in h.

Lemma 5. For each λ, there exists a threshold Hλ ∈
{1, ...,Kd+1}, such that the passive set, denoted as P(λ), is
given by P(λ) = {h : h < Hλ and h ∈ S}.

Here we omit the proof because similar results have been
developed in earlier work, e.g., [5].

We next show that the MDP satisfies the two conditions in
Theorem 3. Define Π′ to be the set of policies that are of a
threshold type as stated in Lemma 5, i.e., each policy in Π′

will take passive actions on {h : h < H} for some H , and
take active actions otherwise. By varying H , Π′ will include
all possible optimal policies according to Lemma 5.

Theorem 6. Tπ
h (1) ≥ Tπ

h (0), for all π ∈ Π′ and h ∈ S.

Proof. Let us first define two Markov chains, chain 1 and
chain 0. The two chains have exactly the same initial state s0 =
h, activation cost λ and state transition probability. Further,
they both follow the same policy π ∈ Π′ after time 1. However,
the difference is at time 0, where chain 1 uses the active action
u = 1, and chain 0 uses the passive action u = 0. We will then
compare their active times. To ease our analysis, we couple
the two chains in the following way. From time 0 onwards, the
j-th transmission (i.e., active action) of chain 1 will have the
same channel success/failure event as the j-th transmission of
chain 0. Note that this coupling is feasible because it does not
alter the state transition probability, i.e., both chains still have
the same channel success probability ps.

Denote the time of the first successful transmission of chain
1 and chain 0 as τ(1) and τ(0), respectively. To show the
theorem, it suffices to show the following two inequalities:

E
[ τ(1)∑

t=0

βtut
1

]
≥ E

[ τ(0)∑
t=0

βtut
0

]
, (19)

E
[ ∞∑
t=τ(1)+1

βtut
1

]
≥ E

[ ∞∑
t=τ(0)+1

βtut
0

]
, (20)

where ut
1 and ut

0 ∈ {0, 1} are the actions chosen by chain 1
and chain 0, respectively, at time t and β ∈ (0, 1). Indeed, if
we sum up (19) and (20), it exactly gives Tπ

h (1) ≥ Tπ
h (0) by

(13), and the theorem then follows.



We next show (19). Note that π ∈ Π′ satisfies the threshold
structure in Lemma 5. Thus, as long as a chain’s state is
above the threshold H , it will keep transmitting until success.
Suppose that at time t′ ≥ 1, the state of chain 0 reaches the
threshold H . Recall that chain 1 uses the active action at time
0. We then divide into two cases.

Case 1: If chain 1 has a successful transmission at time
t = 0. By our coupling, chain 0 should also have a successful
transmission at the first time that it transmits, which occurs at
time t′ ≥ 1. We then have τ(1) = 0 and τ(0) = t′. Obviously,
the inequality (19) holds.

Case 2: If chain 1 has a failure at time t = 0. By
our coupling, the two chains will then have the same state
evolution until a channel success occurs. In particular, from
time 1 to t′ − 1, both chains will take passive actions. At and
after t′, both chains will take active actions, until each of their
first successful transmission. By our coupling, since chain 1
has an extra attempt at t = 0, it must succeed by exactly 1
time-slot earlier than chain 0, i.e., τ(1) = τ(0) − 1. Since
β0u0

1 = 1 > βτ(0)u
τ(0)
0 , the inequality (19) holds.

In summary, (19) holds in both cases.
We finally show (20). By the above proof of (19), we have

also shown that τ(1) < τ(0). Note that both chains return
to the same state 1 after their first successful transmission.
Further, since they follow the same policy and have the same
channel events by our coupling, the future state-evolution of
the two chains are exactly the same, except for the offset τ(1)
and τ(0) in time. Then, we must have (20) and the result of
the theorem then follows.

By (18), Lemma 4 and Lemma 5, it is easy to verify that
Hλ = Kd + 1 when λ = +∞ and Hλ = 1 when λ = −∞,
where the passive sets are S and ∅, respectively. Combining
with Theorem 6, we conclude that the per-UE MDP is Whittle
indexable. Since our analysis does not depends on Kd, the
indexability holds for arbitrarily large Kd.

B. The Stochastic-Arrival Setting

We now consider the more-challenging stochastic-arrival
setting with packet generation rate pg < 1. In this case, we
have to use (a, d) as the 2-D system state, and the state space
is S = {1, ...,Ka} × {0, ...,Kd}. Using (3) and (4), we can
express the Bellman equation as

V ∗
λ (a, d) =min

{
Q∗

λ(a, d, 0), Q
∗
λ(a, d, 1)

}
,

Q∗
λ(a, d, 0) =v(a+ d) + pgβV

∗
λ

(
1, (a+ d) ∧Kd

)
+ (1− pg)βV

∗
λ

(
(a+ 1) ∧Ka, d

)
,

Q∗
λ(a, d, 1) =(1− ps)

[
v(a+ d) + pgβV

∗
λ

(
1, (a+ d) ∧Kd

)
+ (1− pg)βV

∗
λ

(
(a+ 1) ∧Ka, d

)]
+ ps

[
v(a) + pgβV

∗
λ (1, a ∧Kd)

+ (1− pg)βV
∗
λ

(
(a+ 1) ∧Ka, 0

)]
+ λ. (21)

Compared to the generate-at-will setting, the state evolution
and the Bellman equation become much more complicated.

However, some properties of the optimal policy can also be
found, similar to Lemma 4 and Lemma 5.

Lemma 7. At any fixed state a, V ∗
λ (a, d) is a monotonically

increasing function with respect to d.

Proof. The proof utilizes [23, Prop. 3.1]. Let ξt ∈ Ξ be the
discrete-time random process that represents the random chan-
nel event and packet generation event. Then, we can describe
the state transitions by a deterministic function f taking ξt as
an argument, i.e., (at+1, dt+1) = f

(
(at, dt), ut, ξt

)
. We then

introduce the following partial order on the state space. For
two states with the same values of a, we define (a, d1) >
(a, d2) if d1 > d2. For two states with different values of a,
they are not comparable. Then, for (a, d1), (a, d2) ∈ S with
d1 > d2, we can verify that:

1) f
(
(a, d1), u, ξ

)
≥ f

(
(a, d2), u, ξ

)
, which is a result of

the state transition laws (3) and (4).
2) cλ((a, d1), u) ≥ cλ((a, d2), u), since v(·) is a strictly

increasing function.
3) ξt, which describes the channel event and packet arrival

event, is independent of the current state st.
The author of [23] show that, if these conditions hold, then
the value function must be increasing in the partial order of
the states that we defined, i.e., in the d dimension. The result
of the lemma then follows.

Lemma 8. There exists a threshold Hλ(a) ∈ {0, ...,Kd + 1}
for each a, such that the passive set, denoted as P(λ), satisfies
that P(λ) = {(a, d) : d < Hλ(a) and (a, d) ∈ S}

Proof. We first define µ(a, d) = Q∗
λ(a, d, 1) − Q∗

λ(a, d, 0),
i.e., the difference between the action-value functions with the
active and passive initial actions. By (21), we have

µ(a, d) =λ− ps

{
v(a+ d)− v(a)

+pgβ
[
V ∗
λ

(
1, (a+ d) ∧Kd

)
− V ∗

λ

(
1, a ∧Kd

)]
+(1− pg)β

[
V ∗
λ

(
(a+ 1) ∧Ka, d

)
− V ∗

λ

(
(a+ 1) ∧Ka, 0

)]}
(22)

Since v(·) is a strictly increasing function and V ∗
λ (a, d) is

monotonically increasing in d, we have that µ(a, d) is strictly
decreasing in d. Suppose that (a, d) /∈ P(λ). Then every
optimal policy will take the active action at state (a, d), which
implies that µ(a, d) < 0. Then, by the earlier argument,
for all d+ > d, we must have µ(a, d+) < 0, and hence
(a, d+) /∈ P(λ). The lemma then follows.

Thanks to Lemma 8, we can then choose the set Π′ of
polices as those that satisfy the threshold structure in Lemma
8, i.e., each policy in Π′ will take passive actions over the set
{(a, d) : d < H(a)}, where H(a), a = 1, 2, ...,Ka are the
thresholds. It remains to show that condition 2 of Theorem 3
holds for any policy π in Π′. Unfortunately, the verification of
condition 2 is much more challenging when the state space is



2-D, because the chain does not return to a common state after
each successful transmission. Instead, it returns to multiple
possible states with different values of a. To overcome this
difficulty, below we use a novel coupling analysis.

Similar to the proof of Theorem 6, we define two Markov
chains, chain 1 and chain 0, with exactly the same initial state
s0 = s, activation cost λ and the state transition probability.
They both follow the same policy π ∈ Π′ after time 1, but have
different initial actions at t = 0, where chain 1 takes u0 = 1
and chain 0 takes u0 = 0. We apply the same channel event
coupling as in the proof of Theorem 6: From time 0 onwards,
the j-th transmission (i.e., active action) of chain 1 will have
the same channel success/failure event as the j-th transmission
of chain 0. In addition, we also couple the arrivals of the two
chains in the following way: the arrival event of chain 1 at
time t must be the same as the arrival event of chain 0 at
time t. Note that both of the two couplings do not change the
state transition probability because both chains have the same
channel success probability ps and packet generation rate pg .

Since both chains start with the same state and the evolution
of the a-component of the state is independent of channel
events, our coupling on the arrival events ensures that the a-
component of the states of the two chains must be equal at
all time. Thus, we can focus our attention on the difference in
the d-component. This gives us some hope that we can borrow
from the 1-D analysis in the generate-at-will case. However,
there is still significant difference in how the d-component
evolves when the state space is 2-D.

(1) In the generate-at-will setting, the state h increases by 1
every time slot until a successful transmission, in which case
the state h reduces to 1. In contrast, in the stochastic-arrival
setting, the next state depends on not only the channel success,
but also the packet generation event.

(2) In the generate-at-will setting, the threshold is unique
and fixed since the state space is 1-D. In contrast, the threshold
on d in the stochastic-arrival setting depends on a.

We therefore need new techniques to analyze the evolution
of the d-component after a sequence of channel failures and
successes. Towards this end, define τu(j) to be the occurrence
time of the j-th successful transmission for chain u = 0, 1.
Define du(t) to be the value of the d-component at time t for
chain u.

We next show two simple consequences due to the threshold
policy π ∈ Π′ and the state evolution.

Lemma 9. (Two key properties)
(1) For any time interval [t1, t2), if d1(t) ≥ d0(t) holds for

all t ∈ [t1, t2), then whenever chain 0 has an active action at
time t ∈ [t1, t2), chain 1 must also have an active action at
the same time.

(2) Suppose that chain 0 have a channel success at t1.
Further, after t1, suppose that chain 1 does not have a channel
success until t2. Then, we have d1(t) ≥ d0(t) for t ∈ [t1, t2).

Proof. To prove part (1), recall that through our coupling, the
a-component of the two chains are always the same. If chain
0 have an active action at time t ∈ [t1, t2), then d0(t) must

be above the a-dependent threshold H(a) at that time. Since
d1(t) ≥ d0(t), d1(t) must also be above the threshold H(a),
and hence chain 1 must also take the active action.

To prove part (2), recall again that through our coupling, the
a-component of the two chains are always the same. Suppose
at time t1−1, both chains are at state a. By the state transition
law in (3) and (4), once chain 0 successfully transmits at t1,
we have d0(t1) = 0 (if there is no arrival) or d0(t1) = a∧Kd

(if there is an arrival). If chain 1 also successfully transmits
at t1, then d1(t1) = d0(t1) by our coupling. Otherwise, we
have d1(t1) = d1(t1 − 1) (if there is no arrival) or d1(t1) =
(d1(t1−1)+a)∧Kd (if there is an arrival). In both cases, we
must have d1(t1) ≥ d0(t1) because d1(t1−1) ≥ 0. After time
t1, we must also have d1(t1) ≥ d0(t1) until chain 1 have a
transmission success. Thus, part (2) of the lemma follows.

We now state a key lemma on τ1(j) and τ0(j), which
implies that the successful transmission times of chain 1 are
always ahead of the respective ones of chain 0.

Lemma 10. τ0(j) ≥ τ1(j) holds for all j ∈ N+.

Proof. We prove by induction. First, we check the initial case
where j = 1. Our objective is to show τ0(1) ≥ τ1(1). Recall
that chain 1 uses the active action at time t = 0. Similar to
the proof of Theorem 6, we can then divide into 2 cases.

Case 1: If chain 1 has a successful transmission at time
t = 0. By our channel-event coupling, chain 0 should also
have a successful transmission at the first time it transmits,
which occurs at some time t > 0. Then, τ0(1) > τ1(1) holds.

Case 2: If chain 1 has a failure at time t = 0. The two
chains will then have the same state evolution until a success
occurs in either one of them. However, by our channel-event
coupling, chain 1 must succeed earlier since it has an extra
active action at time t = 0, which implies that τ0(1) > τ1(1).

Now we prove the induction step. We assume that τ0(j −
1) ≥ τ1(j − 1), and we wish to show that τ0(j) ≥ τ1(j).
Again, divide into 2 cases.

Case 1: If τ0(j − 1) ≥ τ1(j), then τ0(j) ≥ τ1(j) trivially
hold because τ0(j) ≥ τ0(j − 1).

Case 2: If τ0(j − 1) < τ1(j). We proceed by contradiction.
Assume in contrary that τ0(j) < τ1(j). By property (2) in
Lemma 9, we have d1(t) ≥ d0(t) for t ∈

[
τ0(j − 1), τ0(j)

)
.

Thus, by property (1) in Lemma 9, for each active action of
chain 0 in the time interval

[
τ0(j−1), τ0(j)

)
, there is an active

action in chain 1 at the same time. Further, chain 1 may take
additional active actions in the interval

[
τ0(j−1), τ0(j)

)
. Thus,

the number of active actions that chain 1 takes from τ1(j−1)
to τ0(j) is always greater than or equal to the number of active
actions that chain 0 takes from τ0(j − 1) to τ0(j). However,
by our channel-event coupling, starting from their respective
(j − 1)-th successful transmission, their sequences of channel
successes and failures are identical. Therefore, since chain 0
succeeds at time τ0(j), chain 1 must have succeeded at or
before time τ0(j). This would have implied τ0(j) ≥ τ1(j),
which contradicts our initial assumption that τ0(j) < τ1(j).
Therefore, we must have τ0(j) ≥ τ1(j).



Figure 1: The ratio of the execution
time of our improved version over the
original algorithm in [20], Ka = Kd.

Figure 2: Threshold Hλ(a) versus λ
for the per-UE stochastic arrival prob-
lem at different a. ps = 0.5, pg = 0.5.

Figure 3: AoI performance of the
Whittle index policy on the stochastic
arrival under different ps and pg .

Now we are ready to verify condition 2 of Theorem 3.

Theorem 11. Tπ
a,d(1) ≥ Tπ

a,d(0), ∀ π ∈ Π′ and (a, d) ∈ S.

Proof. Let τu(0) = −1. By (13), we have

Tπ
a,d(u) =

∞∑
j=1

E
[ τu(j)∑
t=τu(j−1)+1

βtuπ
t

∣∣∣(a0, d0) = (a, d), u0 = u
]
,

We now focus on a given j, and compare the weights
of the active actions during the intervals leading to the j-
th successful transmission for the two chains, i.e., the active
actions in

[
τ0(j − 1) + 1, τ0(j)

]
for chain 0 and that in[

τ1(j−1)+1, τ1(j)
]

for chain 1. We divide the active actions
of chain 0 in

[
τ0(j − 1) + 1, τ0(j)

]
into 2 sets. Recall from

Lemma 10 that τ1(j) ≤ τ0(j). Set A(j, 0) contains the active
actions of chain 0 during the interval

[
τ0(j − 1) + 1, τ1(j)

]
and set B(j, 0) contains the rest of the active actions of chain
0 not in this interval. Note that if τ0(j − 1) + 1 > τ1(j),
then A(j, 0) = ∅. We now do a similar split for the active
actions of chain 1 in the interval

[
τ1(j − 1) + 1, τ1(j)

]
.

Recall we have shown in the proof of Lemma 10 that, for
each active action in A(j, 0), there exists an active action
in chain 1 that happens at the same time (see case 2 of
the induction step there). This allow us to construct the set
A(j, 1), which includes all active actions of chain 1 that have
a corresponding active action in A(j, 0). In other words, the
active actions in A(j, 1) and A(j, 0) occur at exactly the same
set of times, and we must have |A(j, 1)| = |A(j, 0)|. Similarly,
define B(j, 1) to be the rest of the active actions of chain
1 not in A(j, 1). Note that by our channel-event coupling,
|A(j, 1)|+|B(j, 1)| = |A(j, 0)|+|B(j, 0)|, which then implies
|B(j, 1)| = |B(j, 0)|.

Let ω be an active action and tω be the time when ω
happens. We can then write Tπ

a,d(1)− Tπ
a,d(0) as

Tπ
a,d(1)− Tπ

a,d(0) =

∞∑
j=1

{
E
[ ∑
ω∈A(j,1)

βtω −
∑

ω∈A(j,0)

βtω
]

+ E
[ ∑
ω∈B(j,1)

βtω −
∑

ω∈B(j,0)

βtω
]}

. (23)

Clearly, the active actions in A(j, 0) and A(j, 1) have the same
weights and are canceled out during the subtraction. The active
actions in B(j, 0) fall into

[
τ1(j)+ 1, τ0(j)

]
, while the active

actions in B(j, 1) fall into
[
τ1(j − 1) + 1, τ1(j)

]
, which are

strictly ahead in time. Thus, we must have (23) ≥ 0 and the
theorem then follows.

Obviously, when λ = +∞, no state will choose to activate
and when λ = −∞, every state will choose to activate. Thus,
by Theorem 3 and Theorem 11, we conclude that the per-
UE MDP is Whittle indexable. Since our analysis does not
depends on Ka or Kd, the indexability holds for arbitrarily
truncation thresholds Ka and Kd.

V. SIMULATION RESULTS

In this section, we will use numerical result to verify our
theoretical results and evaluate the performance of Whittle
index policy in the stochastic-arrival setting. We first introduce
a fast algorithm that we use for computing the Whittle index.

A. Fast algorithm for computing Whittle indices

The algorithm that we use is based on [20, Algorithm 2]
and [21], which has O(K3) time complexity, where K is
the number of states. The algorithm adds states iteratively to
the passive set. At each iteration, the state with the smallest
Whittle index among those not in the passive set is identified,
and is added to the passive set. Specifically, at a given iteration,
suppose that the current passive set is P . The key idea of [20]
is to first compute the so-called Marginal Productivity Index
(MPI) for every state y ∈ S \ P . It then searches and picks
the one with the smallest MPI to be the next state added to P .
The corresponding MPI value will also be the Whittle index
for this newly-added state y. Due to page limits, please refer
to [20] for the detailed algorithm.

Similar to how AT condition reduces the policy search
space from Π to Π′, we improve this algorithm by reducing
the search space in each iteration. Specifically, instead of
comparing the MPI for every possible y ∈ S \ P , we only
need to focus on a subset of y that can potentially have the
minimum MPI. Note that the new passive set P ∪ y must



Figure 4: AoI performance versus pg of Whittle index policy
compared to baselines.

also corresponds to an optimal policy [20]. For the stochastic-
arrival setting, due to the threshold structure of the optimal
policy, if (a, d) ∈ P and (a, d + 1) /∈ P , then we only need
to check y = (a, d + 1) and we do not need to worry about
(a, d + 2), (a, d + 3), .... Even though this improved version
still have time complexity of O(K3), our simulation result (see
Figure 1) shows significant reduction in execution time of our
improved version compared to the one in [20]. For example,
when both a and d are truncated at Ka = Kd = 30, the state
space is of size 930 and the execution time of our algorithm
is only 0.07 of that of [20].

B. Evaluating the Whittle index policy

Next we will present numerical results evaluating the per-
formance of Whittle index policy.

We first verify Lemma 8 and the Whittle indexability of
the stochastic-arrival setting by simulation. We use β = 0.99,
ps = 0.5, pg = 0.5,Ka = Kd = 50 and use value iteration
to numerically compute the optimal policy and the passive
set. We then verify the threshold property and plot in Figure
2 the threshold Hλ(a) as functions of λ for three different
values of a. As the figure indicates, for each a, the threshold
is monotonically increasing in λ, which confirms both the
threshold structure of the optimal policy and the indexability.

We then study the AoI performance in the stochastic-arrival
setting under the Whittle index policy. The system is set to
have 100 UE and the capacity of the BS is 30. The state
space is truncated at 60 for both a and d. We assume each
UE has identical ps and pg . Note that when pg = 1, the
system is equivalent to the generate-at-will setting. In Figure
3, we choose three different values of ps and plot the total
system time-averaged AoI (i.e., v(h) = h) as pg varies. We can
observe that when pg is large, the AoI performance approaches
that of pg = 1 (i.e., generate-at-will), but the difference is more
prominent when pg is small.

Finally, we compare the AoI performance of the Whittle
index policy with both the lower bound (6) and the perfor-
mance of a number of baseline polices. The first one (labelled

“index in [12]”) is an index policy using the closed-form
expression in [12]. The second one (labelled “index in [11]”) is
an index policy using the closed-form expression in [11]. Both
expressions provide approximations to the Whittle index. The
third one (labelled “Max-weight”) is an index policy where
the index of each UE n is ps(n)

(
an(t) + dn(t)

)
, i.e., AoI

multiplied by the success probability. We note that [11] and
[12] use an average-cost MDP formulation, while we use a
discounted-cost MDP formulation in this paper. It is well-
known that, when β is close to 1 (we use β = 0.99 in
our simulation), the optimal policy for the discounted-cost
MDP will approach that for the average-cost MDP. Therefore,
below we use the time-averaged AoI as the common metric
to compare various policies.

We then simulate the following setting. The number of
UE is 100 and the capacity is 30. The channel success
probability of each UE is uniformly distributed from the set
{0.15, 0.25, 0.35, 0.55, 0.85}. Note that all UE have the same
packet generation rate pg . Figure 4 shows the total time-
averaged system AoI of the various policies as functions of pg .
We can make the following observations. The AoI of our Whit-
tle index policy is close to the lower bound, and is substantially
lower than the one using the index of ps(n)

(
an(t) + dn(t)

)
.

This confirms the asymptotic optimality of the Whittle index
[15] and [16]. Interestingly, the policies using the approximate
indices given in [11] and [12] also attain similar AoI as the one
using our precise Whittle index. A closer examination reveals
that the index policy using our accurately-computed Whittle
index achieves the best performance, the index policy using
the expression in [11] achieves slightly worse performance
and the index policy using the expression in [12] achieves
the worst performance. This is interesting because it shows
that an imprecise index may also be close to optimal. Thus,
one may wish to understand how to quantify the performance
guarantees of such policies using imprecise indices, which we
leave for future work.

VI. CONCLUSION

In this paper, we propose the active-time (AT) condition,
which is a powerful sufficient condition for Whittle indexabil-
ity. By a novel coupling approach, we verify the AT condition
for the AoI minimization problem under the stochastic-arrival
setting, and thus establish its Whittle indexability for the first
time in the literature. We also present an improved version
of a fast-computing algorithm for computing Whittle indices.
Both the AT condition and the coupling approach may be
applied to other large RMAB problems. Note that the results
in this paper assume a finite state-space. For future work, we
will extend our AT condition to infinite state space, and to
the partial index formulation in [24] when there are multiple
heterogeneous resources.
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