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Abstract—There has been significant interest in leveraging
limited look-ahead to achieve low competitive ratios for online
convex optimization (OCO). However, existing online algorithms
(such as Averaging Fixed Horizon Control (AFHC)) that can
leverage look-ahead to reduce the competitive ratios still produce
competitive ratios that grow unbounded as the coefficient ratio
(i.e., the maximum ratio of the switching-cost coefficient and
the service-cost coefficient) increases. On the other hand, the
regularization method can attain a competitive ratio that remains
bounded when the coefficient ratio is large, but it does not benefit
from look-ahead. In this paper, we propose a new algorithm,
called Regularization with Look-Ahead (RLA), that can get
the best of both AFHC and the regularization method, i.e., its
competitive ratio decreases with the look-ahead window size when
the coefficient ratio is small, and remains bounded when the
coefficient ratio is large. We also provide a matching lower bound
for the competitive ratios of all online algorithms with look-ahead,
which differs from the achievable competitive ratio of RLA by
a factor that only depends on the problem size. The competitive
analysis of RLA involves a non-trivial generalization of online
primal-dual analysis to the case with look-ahead.

Index Terms—online convex optimization, competitive analysis,
look-ahead, regularization.

I. INTRODUCTION

Online convex optimization (OCO) problem with switching
costs has many applications in the context of networking [1]–
[5], cloud or edge computing [6]–[11], cyber-physical sys-
tems [12]–[15], machine learning [16]–[19] and beyond [20],
[21]. Typically, a decision maker and the adversary (or envi-
ronment) interact sequentially over time. At each time t, after
receiving the current input, the decision maker must make a
decision. This decision incurs a service cost (that is a function
of the current decision) and a switching cost (that depends on
the difference between the current decision and the previous
decision). In competitive OCO, the goal is to design online
algorithms with low competitive ratios. The competitive ratio
is defined as, over all possible input sequences, the worst-case
ratio between the total cost of an online algorithm and that
of the optimal offline algorithm, who knows the entire input
sequence in advance.

In the literature, many online algorithms with guaranteed
competitive ratios have been provided for OCO. For ex-
ample, [2], [12]–[14] provide online algorithms with con-
stant competitive ratios for some limited settings, e.g., 1-
dimensional OCO problems. However, for more general set-

tings and under no future information, the competitive ratios
of existing online algorithms [21]–[24] depend on problem
parameters and can usually be quite large. This is not surpris-
ing because, when there is absolutely no future information, it
would be difficult to choose one online decision that is good
for all possible future inputs.

To overcome this difficulty, a recent line of work has
focused on how to utilize limited look-ahead information to
improve the competitive ratios of online algorithms [1], [8],
[25]–[27]. Here, look-ahead means that, at each time t, the
decision maker knows not only the current input, but also
the inputs of the immediately following K time-slots (i.e., a
look-ahead window of size K). Intuitively, as K increases, the
competitive ratios of online algorithms should become smaller.
The Averaging Fixed Horizon Control (AFHC) algorithm,
which was proposed in [1], achieves exactly that. Specifically,
assume that the service cost for each decision variable xn(t)
is linear, i.e., cn(t)xn(t), and the switching cost for xn(t) is
in the form of wn|xn(t)−xn(t−1)|, where cn(t) and wn are
the service-cost and switching-cost coefficients, respectively.
Then, the competitive ratio of AFHC is 1 + max

{n,t}
wn

cn(t)(K+1) .

In the rest of this paper, we define the “coefficient ratio” rco
to be the maximum ratio of the switching-cost and service-
cost coefficients, i.e., rco , max

{n,t}
wn
cn(t) . Thus, for any fixed

coefficient ratio, the competitive ratio of AFHC decreases with
the look-ahead window size K.

However, what remains unsatisfactory is that the compet-
itive ratio of AFHC still grows with the coefficient ratio.
In other words, regardless of the size K of the look-ahead
window, as the coefficient ratio increases (e.g., some service-
cost coefficients cn(t) may be very close to 0), the competitive
ratio of AFHC will go to infinity. In a similar manner, the
competitive ratio of a related algorithm in [27] could also be
arbitrarily large when the coefficient ratio increases.

The above performance degradation when the coefficient
ratio is large leaves much to be desired. Indeed, even with
no look-ahead information, the regularization method [21]
can achieve a competitive ratio that is independent of the
coefficient ratio rco. Of course, the downside of the regu-
larization method of [21] is that it cannot leverage look-
ahead. Therefore, it would be much more desirable if we
can get the best of both worlds, i.e., achieve a competitive



ratio that both decreases with K when rco is small (similar
to AFHC), and remains bounded when rco is large (similar to
the regularization method). Our previous work [28] claimed
to achieve this by providing a

(
1 + 1

K

)
-competitive online

algorithm. Unfortunately, there appears to be an error in the
proof so that the claimed competitive ratio does not hold [29].
(Indeed, as we show in Sec. III in this paper, no algorithms
can achieve a competitive ratio that low.) To the best of our
knowledge, it remains an open question how to combine the
strengths of both AFHC and the regularization method.

In this paper, we present new results that answer this open
question. We first focus on a more restrictive setting, where the
service cost is linear in the decision variables and the feasible
decisions are chosen from a convex set formed by fractional
covering constraints (see (1) for the specific form). While we
begin with this model for simplicity and ease of exposition,
it still captures the key features of practical problems [11],
[20]–[23], [30]–[32] (i.e., the allocated resources must meet
the incoming demand).

Under this simplified model, our first contribution is to
provide a lower bound on the competitive ratio for all online
algorithms. Specifically, we show that, there exists instances
such that the competitive ratio cannot be lower than 1 +

log2N

2[1+ 1
rco

((K+1) log2N+1)]
, where N is the total number of the

decision variables. To the best of our knowledge, this is the
first such lower bound in the literature for OCO problems
with look-ahead. This lower bound reveals several important
insights. First, it is larger than 1 + 1

K when rco is large,
indicating that the competitive results reported in [28] were
incorrect. Second, it reveals how the coefficient ratio rco affects
the fundamental limit that online decisions can benefit from
look-ahead. Specifically, if the size of the look-ahead window
K is much larger than the coefficient ratio rco, the lower bound
will be driven to 1 as K increases (similar to AFHC). On the
other hand, if the size of the look-ahead window is much
smaller than the coefficient ratio, the lower bound will not be
close to 1. However, unlike AFHC, even when rco approaches
infinity, the lower bound remains at 1+ 1

2 log2N . This suggests
that one may indeed design online algorithms that can get the
best of both AFHC and the regularization method.

Inspired by the lower bound, our second important contribu-
tion is to provide a new online algorithm, called Regularization
with Look-Ahead (RLA), whose competitive ratio matches
with the lower bound up to a factor that only depends on the
problem size N and is independent of the coefficient ratio
rco. Specifically, let η , ln

(
N+ε
ε

)
, where ε is a positive

value chosen by RLA. We show that, when drcoe < K + 1,
the competitive ratio of RLA is 1 + 3η(1+ε)drcoe

K+1 , which
approaches 1 as the look-ahead window size K decreases.
When drcoe ≥ K + 1, the competitive ratio of RLA is
1 + 2η(1 + ε), which remains upper-bounded even when the
coefficient ratio rco increases to infinity. We can show that
the competitive ratio of RLA differs from the lower bound
by a factor max

{
36η(1 + ε),

4η(1+ε)[ 32 +log2N ]

log2N

}
. To the best

of our knowledge, RLA is the first such online algorithm in

the literature that can get the best of both AFHC and the
regularization method, i.e., achieve a competitive ratio that
both decreases with K when the coefficient ratio is small, and
remains upper-bounded when the coefficient ratio is large.

Such an improved competitive ratio of RLA is achieved by
carefully modifying the objective function that RLA optimizes
in each episode of K + 1 time-slots (see Section IV). Note
that within each such episode, AFHC [1] directly optimizes the
total cost. However, as shown in the counterexample in [28],
simply optimizing the total cost may produce poor decisions
at the end of the episode, leading to poor competitive ratios.
Instead, RLA replaces the switching cost in the first time-
slot of each episode by two specially-chosen regularization
terms at the beginning and the end of the episode. These
two regularization terms avoid poor decisions at the boundary
between episodes, so that the switching costs will not be
excessively high. These regularization terms were inspired by
that of [21], but are different because we need to leverage
look-ahead. To the best of our knowledge, this way of adding
regularization terms for problems with look-ahead is also new.

The competitive ratio of RLA is shown via an online primal-
dual analysis [22]. However, there arise two new technical
difficulties. First, we need to verify that the online dual vari-
ables from different episodes are feasible for the offline dual
optimization problem. Second, we need to carefully bound the
gap between the online primal cost and the online dual cost
induced by the two regularization terms. We resolve these
difficulties by providing a new competitive analysis, which
extends the primal-dual analysis [22] to the case with look-
ahead. This analysis is also a key contribution of this paper
and of independent interest.

Furthermore, while the above results are stated for OCO
problems with fractional covering constraints, we show in
Sec. VI that these results can be extended to more general
demand-supply balance constraints and capacity constraints,
which are more useful for computing and networking appli-
cations.

Our work is also related to regret minimization for OCO
problems with constraints [33], [34]. In particular, [33] shows
that one cannot simultaneously obtain sublinear regret in
both the objective and the constraint violation. However, our
study of competitive OCO is different as the competitive ratio
focuses on the relative ratio to the cost of the best offline
dynamic decision, while [33], [34] focus on the absolute
difference from the cost of the best static decision. Thus, even
if sublinear regret is not attainable, it is still possible to attain
a low competitive ratio.

II. PROBLEM FORMULATION

A. OCO with Switching Costs

The decision maker and the adversary (or environment)
interact in T time-slots. At each time t = 1, ..., T , first a
feasible convex set X(t) and service-cost coefficients ~C(t) =
[cn(t), n = 1, ..., N ]T ∈ RN×1

+ are revealed, where [·]T denotes
the transpose of a vector, R+ represents the set of non-
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negative real numbers. For now, we restrict the set X(t) to be
a polyhedron formed by fractional covering constraints, i.e.,∑

n∈Sm(t)

xn(t) ≥ 1, for all m = 1, ...,M(t), (1)

where Sm(t) is a subset of {1, 2, ..., N} and could change
over time. The number M(t) of such constraints at each
time t could also change over time. The fractional covering
constraints have been widely used to model many important
practical problems [20], [30]–[32], [35], [36]. Although the
right-hand-side of (1) must be 1, which simplifies our exposi-
tion, such constraints capture the essential feature of practical
constraints that the amount of resource allocated must be no
smaller than the incoming demand. Further, note that there
is no upper-bound constraint on the decision variable xn(t).
In Sec. VI, we will extend our results to the case with more
general constraints.

After receiving the input X(t) and ~C(t), the decision maker
must choose a decision ~X(t) = [xn(t), n = 1, ..., N ]T ∈
RN×1

+ from the convex set X(t). Then, it incurs a service cost
〈~C(t), ~X(t)〉 for the current decision ~X(t) and a switching
cost 〈 ~W, [ ~X(t)− ~X(t−1)]+〉 for the increment1 of ~X(t) from
the last decision ~X(t− 1), where ~W = [wn, n = 1, ..., N ]T ∈
RN×1

+ is the switching-cost coefficient. We assume that the
coefficient ratio rco , max

{n,t}
wn
cn(t) satisfies rco ≥ 1.

In an offline setting, at time t = 1, the current and all the
future inputs X(1 : T ) and ~C(1 : T ) are known. Thus, the
optimal offline solution can be obtained by solving a standard
convex optimization problem as follows,

min
~X(1:T )

T∑
t=1

{
~CT(t) ~X(t) + ~W T

[
~X(t)− ~X(t− 1)

]+}
(2a)

sub. to: ~X(t) ≥ 0, for all t ∈ [1, T ], (2b)∑
n∈Sm(t)

xn(t) ≥ 1, for all m ∈ [1,M(t)], t ∈ [1, T ], (2c)

where [a, b] denotes the set {a, a + 1, ..., b}. As typically in
many OCO problems [1], [4], [9], [21], we assume ~X(0) = 0.
For ease of exposition, we use ~X(t1 : t2) to collect ~X(t)
from time t = t1 to t2, i.e., ~X(t1 : t2) ,

{
~X(t), for all t ∈

[t1, t2]
}

. Define ~C(t1 : t2) and X(t1 : t2) similarly.

B. Look-Ahead Model and Performance Metric

A recent line of work has focused on how to use look-
ahead to improve competitive online algorithms [1], [8], [26],
[27], [37]. Let the size of the look-ahead window be K ≥ 1.
Then, at each time t, the decision maker not only knows the
exact input (X(t), ~C(t)) of time t, but also knows the near-
term future (X(t+ 1 : t+K), ~C(t+ 1 : t+K)). Note that at
time t the decision maker still does not know the future inputs
beyond time t+K.

1Note that, as shown in [23], our results assuming this type of the switching
cost also imply a competitive ratio for the case when the switching cost
penalizes the absolute difference | ~X(t)− ~X(t− 1)| [4], [13].

For an online algorithm π, let ~Xπ(t) be the decision at time
t. Then, its cost from time t = t1 to t2 is given as follows,

Costπ(t1 : t2) ,
t2∑
t=t1

~CT(t) ~Xπ(t)

+

t2∑
t=t1

~W T
[
~Xπ(t)− ~Xπ(t− 1)

]+
. (3)

Let ~XOPT(1:T ) be the optimal offline solution to the optimiza-
tion problem (2), whose total cost is CostOPT(1 : T ). Different
from the offline setting, in an online setting, the decision maker
only knows the current input (X(t), ~C(t)) and the look-ahead
information (X(t + 1 : t + K), ~C(t + 1 : t + K)). Moreover,
the decision ~X(t) made at each time is irrevocable. Then, the
competitive ratio of the online algorithm π is defined as,

CRπ , max{
all possible (X(1:T ), ~C(1:T ))

} Costπ(1 : T )

CostOPT(1 : T )
, (4)

i.e., the worst-case ratio of its total cost to that of the optimal
offline solution, over all possible inputs.

III. A LOWER BOUND

Although OCO with look-ahead has been extensively stud-
ied, e.g., in [1], [8], [37], most existing results in the literature
focus on achievable competitive ratios, but do not provide
lower bounds on the competitive ratio. Such lower bounds
are important because they can reveal the fundamental limit
that one can hope to reach with online decisions. Note that the
lower bounds in [22] and [37] are for different settings (`2-
norm switching costs and online packing problems). Further,
they do not consider look-ahead. Next, we provide a new
lower bound for our OCO formulation, which reveals how
the relationship between the coefficient ratio rco and the size
K of the look-ahead window will affect the competitive ratio.

Theorem 1. Consider the OCO problem in Sec. II-A. With a
look-ahead window of size K ≥ 1, the competitive ratio of
any online algorithm is lower-bounded by

CRLB = 1 +
log2N

2
[
1 + 1

rco
((K + 1) log2N + 1)

] . (5)

Please see Appendix A for the proof. Theorem 1 reveals
important insights on how the competitive ratio is impacted
by the look-ahead window size K relative to the coefficient
ratio rco.

(i) The lower bound CRLB in (5) is always increasing in
rco and decreasing in K. Further, we have,

CRLB ≤ 1 +
rco

2(K + 1)
. (6)

Note that the right-hand-side is close to the competitive ratio
of AFHC [1].

(ii) When the look-ahead window size K is large, in
particular when K + 1 > rco, CRLB will not be far away
from (6) and the competitive ratio of AFHC. Indeed, we have,

CRLB > 1 +
log2N

6 1
rco

(K + 1) log2N
= 1 +

rco

6(K + 1)
, (7)
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Fig. 1: Compare the lower bound of the competitive ratio
(CRLB) and the competitive ratio of AFHC (CRAFHC), the
regularization method (CRREG) and RLA (CRRLA).

where the first inequality is because (K + 1) log2N ≥ 1 and
1
rco

(K+1) log2N ≥ 1. This behavior is illustrated by the two
solid curves in Fig. 1 (for two coefficient ratios rco,1 < rco,2),
which decrease to 1 as K increases beyond rco,1 and rco,2.
Notice that this is also the range where AFHC [1] will produce
a low competitive ratio (see the dashed curves in Fig. 1). In
contrast, the competitive ratio of the regularization method
(REG) of [21] does not decrease with K (see the dotted line
in Fig. 1).

(iii) When the look-ahead window size K is small, e.g.,
when K + 1 ≤ rco, (5) could be quite far away from (6)
and the competitive ratio of AFHC. Specifically, for small K,
the competitive ratio of AFHC increases to infinity when the
coefficient ratio increases, which can be seen in Fig. 1 by
comparing the two dashed curves at small K. In contrast,
the lower bound CRLB and the competitive ratio of the
regularization method CRREG are upper-bounded by a function
of the problem size N . Indeed, even when rco increases to
infinity, the lower bound in (5) still satisfies,

CRLB ≤ 1 +
1

2
log2N, (8)

which suggests room for improvement for AFHC.

IV. REGULARIZATION WITH LOOK-AHEAD (RLA)

Inspired by Fig. 1, a nature question is then: can we
develop an online algorithm that gets the best of both AFHC
and the regularization method? In this section, we present a
new online algorithm, called Regularization with Look-Ahead
(RLA), which achieves exactly that, i.e., a competitive ratio
that not only remains upper-bounded when rco is large, but
also decreases with K when rco is small.

Specifically, let τ be an integer from 0 to K. RLA runs K+1
versions of a subroutine, called Regularization-Fixed Horizon
Control (R-FHC), indexed by τ . We denote the τ -th version of
R-FHC by R-FHC(τ). R-FHC(τ) divides the time horizon into
episodes. Each episode starts from time t(τ) to t(τ)+K, where
t(τ) = τ + (K+ 1)u and u = −1, 0, ...,

⌈
T

K+1

⌉
. Recall that at

time t(τ), the inputs
(
X(t(τ) : t(τ) +K), ~C(t(τ) : t(τ) +K)

)

at the current time and in the look-ahead window have
been revealed. R-FHC(τ) then computes the solution to the
following problem,

min
~X(t(τ):t(τ)+K)

{
t(τ)+K∑
s=t(τ)

N∑
n=1

cn(s)xn(s) (9a)

+

N∑
n=1

wn
η
xn(t(τ)) ln

(
1 + ε

N

xR-FHC(τ)

n (t(τ) − 1) + ε
N

)
(9b)

+

t(τ)+K∑
s=t(τ)+1

N∑
n=1

wn [xn(s)− xn(s− 1)]
+ (9c)

+

N∑
n=1

wn
η

[(
xn(t(τ) +K) +

ε

N

)
· ln

(
xn(t(τ) +K) + ε

N

1 + ε
N

)
− xn(t(τ) +K)

]}
(9d)

sub. to:
∑

n∈Sm(s)

xn(s) ≥ 1, for all m ∈ [1,M(s)],

s ∈ [t(τ), t(τ) +K], (9e)

xn(s) ≥ 0, for all n ∈ [1, N ], s ∈ [t(τ), t(τ) +K], (9f)

where η = ln
(
N+ε
ε

)
, ε > 0 and the decision xR-FHC(τ)

n (t(τ) −
1) were given by the solution of the previous episode of
R-FHC(τ) from time t(τ) −K − 1 to t(τ) − 1.

According to (9), in each episode from time t(τ) to t(τ)+K,
RLA does not simply optimize the corresponding service
costs and switching costs. Instead, it replaces the switching
cost in the first time-slot t(τ) of the current episode by the
regularization term (9b), and adds another regularization term
(9d) for the decision variables in the last time-slot t(τ) + K
of the current episode. Similar to [21], the regularization
term (9d) makes the objective function strictly convex in
xn(t(τ) + K), and thus discourages it from taking extreme
values. More specifically, without (9d), it is possible that
the decision in the last time-slot goes down to zero if the
associated service-cost coefficient is high or if there is no
constraint. However, if the next input at time t(τ) + K + 1
requires the next decision to be high, the algorithm will incur a
high switching cost. In contrast, (9d) is decreasing and strictly
convex in xn(t(τ) + K), so it discourages the decision in
the last time-slot t(τ) + K to be too low. When combined
with the regularization term (9b), they together ensure that
the switching cost at the boundary between two episodes is
not too high (see details in our analysis in Sec. V). Thus,
unlike AFHC, the competitive ratio of RLA can be upper-
bounded even if rco is large. Readers familiar with [21]
will recognize that, when the size of the look-ahead window
K = 0, these two regularization terms combined reduce to the
original regularization term in [21]. However, our formulation
of the regularization terms for K ≥ 1 is new and has not been
reported in the literature.

Finally, at each time t ∈ [1, T ], RLA takes the average of
~XR-FHC(τ)

(t) for all τ as the final decision ~XRLA(t) at time

4



Algorithm 1 Regularization with Look-Ahead (RLA)

Parameters: ε > 0 and η = ln
(
N+ε
ε

)
.

FOR t = −K + 1 : T
Step 1: τ ← t mod (K + 1) and t(τ) ← t.
Step 2: Based on

(
X(t(τ) : t(τ) +K), ~C(t(τ) : t(τ) +K)

)
at current time and in the look-ahead window, solve (9) to
get ~XR-FHC(τ)

(t(τ) : t(τ) +K). (If t(τ) ≤ 0, remove (9b). If
t(τ) ≥ T −K, remove (9d).)
Step 3: if 1 ≤ t ≤ T , then let

~XRLA(t) =
1

K + 1

K∑
τ=0

~XR-FHC(τ)

(t). (10)

end if
END

t. As K increases, since R-FHC(τ) optimizes the real service
costs and switching costs in the middle of each episode, more
and more decision variables are close to optimal. Thus, by tak-
ing the average of all versions of R-FHC(τ), the performance
of RLA should improve with K. The details of RLA are given
in Algorithm 1. Note that for any version of R-FHC(τ) whose
first episode starts at time t(τ) ≤ 0, (9b) can be removed.
Similarly, for any version of R-FHC(τ) whose last episode
ends at time t(τ) +K ≥ T , (9d) can be removed.

V. COMPETITIVE ANALYSIS

Theorem 2 below provides the theoretical competitive ratio
of RLA. Recall that η = ln

(
N+ε
ε

)
and rco ≥ 1.

Theorem 2. Consider the OCO problem introduced in
Sec. II-A. With a look-ahead window of size K ≥ 1, the
competitive ratio of RLA is,

CRRLA = 1 +
3η(1 + ε) drcoe

K + 1
, if drcoe < K + 1; (11a)

CRRLA = 1 + 2η(1 + ε), if drcoe ≥ K + 1. (11b)

It is easy to see that the competitive ratio of RLA in (11)
matches the lower bound (5) within a factor that only depends
on the problem size N (see the two dash-dot curves in Fig. 1).
Specifically,
(i) when rco ≤ K + 1, then drcoe ≤ K + 1. If drcoe < K + 1,
then (11a) differs from (7) (and thus (5)) by at most 18η(1 +

ε) drcoe
rco
≤ 36η(1+ε) (recall that we assume rco ≥ 1). If drcoe =

K + 1, then (11b) is less than (11a). The above factor also
applies. Note that CRRLA decreases to 1 as K increases.
(ii) When rco ≥ K + 1, we have that K+1

rco
≤ 1 and rco ≥ 2.

Then, the lower bound (5) is larger than 1+ log2N

2[1+log2N+ 1
rco ]
≥

1 + log2N

2[ 3
2 +log2N]

. Thus, the gap between (11b) and (5) is at

most 4η(1+ε)[ 32 +log2N ]

log2N
. Further, when rco ≥ (K + 1) log2N ,

we have that (K+1) log2N
rco

≤ 1 and rco ≥ 2. Then, the lower
bound (5) is larger than 1 + log2N

2[1+1+ 1
rco ]
≥ 1 + log2N

5 . Thus,

the gap between (11b) and (5) is at most 10η(1+ε)
log2N

, which is

upper-bounded by a constant 10(1+ε) ln
(

2+ε
ε

)
, for all N ≥ 2.

Moreover, note that in all cases (even when rco increases to
infinity), CRRLA is upper-bounded. Therefore, RLA gets the
best of both AFHC and the regularization method. To the best
of our knowledge, RLA is the first algorithm in the literature
that can utilize look-ahead to attain a competitive ratio that
matches the lower bound (5).

The rest of this section is devoted to the proof of Theorem 2.
We first give the high-level idea, starting from a typical online
primal-dual analysis [22]. For the offline problem (2), by
introducing an auxiliary variable yn(t) for the switching term
[xn(t)− xn(t− 1)]+, together with a new constraint

yn(t) ≥ xn(t)− xn(t− 1), for all n ∈ [1, N ], (12)

we can get an equivalent formulation of the offline optimiza-
tion problem (2). Then, let ~β(t) = [βm(t),m = 1, ...,M(t)]T

and ~θ(t) = [θn(t), n = 1, ..., N ]T be the Lagrange multipliers
for constraints (2c) and (12), respectively. We have the offline
dual optimization problem as follows,

max
{~β(1:T ),~θ(1:T )}

T∑
t=1

M(t)∑
m=1

βm(t) (13a)

sub. to: cn(t)−
∑

m:n∈Sm(t)

βm(t) + θn(t)− θn(t+ 1) ≥ 0,

for all n ∈ [1, N ], t ∈ [1, T ], (13b)
wn − θn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ], (13c)
βm(t) ≥ 0, for all m ∈ [1,M(t)], t ∈ [1, T ], (13d)
θn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ]. (13e)

Let βOPT
m (t) and θOPT

n (t) be the optimal solution to (13). Then,
the optimal offline dual cost is,

DOPT(1 : T ) ,
T∑
t=1

M(t)∑
m=1

βOPT
m (t). (14)

Let DRLA(1 : T ) be the total dual cost of RLA. Then, we can
prove the competitive performance of RLA by establishing the
following inequalities,

CostRLA(1 : T )
(a)

≤ CR ·DRLA(1 : T )

(b)

≤ CR ·DOPT(1 : T )
(c)

≤ CR · CostOPT(1 : T ). (15)

In (185), step (c) simply follows from standard duality [38,
p. 225]. Step (b) is established by showing that RLA produces
a set of online dual variables that are also feasible for
the offline dual optimization problem (13). Since (13) is a
maximization problem, step (b) then holds. Finally, step (a)
is related to the regularization terms (9b) and (9d) added to the
objective function of R-FHC, which leads to a gap between
CostRLA(1:T ) and DRLA(1:T ). This gap needs to be carefully
bounded to establish step (a). Below, we will address step (b)
and step (a).

Step-1 (Checking the dual feasibility): We now focus on
one version τ of R-FHC. For simplicity, in the rest of this
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section, we use (τ) instead of R-FHC(τ) in the superscript,
e.g., use ~X(τ)(t) to denote ~XR-FHC(τ)

(t). We now show
that the decisions produced by all episodes of R-FHC(τ)

generate a feasible set of dual variables for the offline dual
optimization problem (13). Focus on one episode from time
t(τ) to t(τ) + K. As in (13), we introduce the variable yn(t)
and the constraint (12) to (9). We can then form the dual
problem of the equivalent form of (9). As in (13), we let
β

(τ)
m (t) and θ(τ)

n (t) be the corresponding online dual solution
of (9). However, note that the objective function of (9) does
not contain the switching cost of the first time-slot t(τ),
i.e., wn

[
xn(t(τ))− xn(t(τ) − 1)

]+
. Therefore, we are still

missing the dual variables θ(τ)
n (t(τ)). To remediate this, for

all n ∈ [1, N ], we let

θ(τ)
n (t(τ)) ,

wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
. (16)

Lemma 3 below shows that we have constructed a feasible
dual solution for the offline dual optimization problem (13).

Lemma 3. The ~β(τ)(1 : T ) and ~θ(τ)(1 : T ) constructed
above from (16) and the online dual solution of R-FHC(τ)

are feasible for the offline dual optimization problem (13).

Lemma 3 can be proved by verifying that the Karush-Kuhn-
Tucker (KKT) conditions [38, p. 243] of (9) satisfies the dual
constraints (13b)-(13e). (13c) to (13e) are easy to verify, so
is (13b) for t = t(τ) + 1 to t(τ) + K − 1, because the KKT
conditions for (9) in those time-slots are exactly the same as
that of (13). Thus, it only remains to verify (13b) at time
t = t(τ) and t = t(τ) + K. At time t(τ), by examining the
KKT conditions for (9), we have,

cn(t(τ))−
∑

m:n∈Sm(t(τ))

β(τ)
m (t(τ))

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
− θ(τ)

n (t(τ) + 1) ≥ 0.

Using (16), (13b) at time t = t(τ) is verified. We can verify
(13b) at time t(τ)+K similarly. Lemma 3 then follows. Please
see Appendix C for the complete proof of Lemma 3.

Step-2 (Quantifying the gap between the online primal
cost and the online dual cost): As before, we focus on one
episode (from time t(τ) to t(τ) +K) of version τ of R-FHC.
We define the primal cost Cost(τ)(t(τ) : t(τ)+K) of R-FHC(τ)

as in (3) and the online dual cost

D(τ)(t(τ) : t(τ) +K) ,
t(τ)+K∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t). (17)

However, note that (9) contains additional terms (9b) and (9d)
in the primal objective function. Thus, there will be some gap
between Cost(τ)(t(τ) : t(τ) + K) and D(τ)(t(τ) : t(τ) + K).
Lemma 4 below captures this gap. Define the tail-terms as

Ω(τ)
n (t(τ)) , wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+
, (18)

φ(τ)
n (t(τ)) , −wn

η
x(τ)
n (t(τ)) ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
,

(19)

ψ(τ)
n (t(τ)) ,

wn
η
x(τ)
n (t(τ) +K) ln

(
1 + ε

N

xn(t(τ) +K) + ε
N

)
.

(20)

Lemma 4. For each version τ of R-FHC, we have,

Cost(τ)(t(τ) : t(τ) +K) ≤ D(τ)(t(τ) : t(τ) +K)

+

N∑
n=1

Ω(τ)
n (t(τ)) +

N∑
n=1

φ(τ)
n (t(τ)) +

N∑
n=1

ψ(τ)
n (t(τ)). (21)

Lemma 4 captures the gap between the online pri-
mal cost and the online dual cost of each version τ of
R-FHC. In (21), the first tail-term Ω

(τ)
n (t(τ)) is because

R-FHC(τ) does not optimize over the real switching cost
wn
[
xn(t(τ))− xn(t(τ) − 1)

]+
in the first time-slot. The sec-

ond and third tail-terms, φ(τ)
n (t(τ)) and ψ(τ)

n (t(τ)), are because
of the regularization terms (9b) and (9d) added to the primal
objective function in the first time-slot and the last time-slot.
Lemma 4 can be shown via standard duality [38, p.225]. Please
see Appendix D for the complete proof of Lemma 4. Recall
that, to establish step (a) in (185), the main difficulty is to
bound this gap, which we divide into the following two sub-
steps.

Step 2-1 (Bounding the tail-terms): Next, we show in
Lemma 5 that, with a factor that will appear in the final com-
petitive ratio, the tail-terms (18)-(20) from the same version τ
of R-FHC are actually bounded by a carefully-chosen portion
of the online dual costs. We let ∆ = min{K, drcoe − 1}.

Lemma 5. For each version τ of R-FHC, the following holds,

(i)

d T
K+1e∑
u=0

∑
t(τ)=τ+(K+1)u

N∑
n=1

Ω(τ)
n (t(τ)) ≤ η(1 + ε)

×
d T
K+1e∑
u=0

∑
t(τ)=τ+(K+1)u

D(τ)(t(τ) : t(τ) + ∆), (22)

(ii)

d T
K+1e∑
u=−1

∑
t(τ)=τ+(K+1)u

N∑
n=1

[
φ(τ)
n (t(τ)) + ψ(τ)

n (t(τ))
]

≤ η(1+ε)

d T
K+1e∑
u=−1

∑
t(τ)=τ

+(K+1)u

D(τ)(t(τ)+K −∆ : t(τ) +K),

(23)

where D(τ)(t) = 0 for all t ≤ 0 and t > T .

To interpret (22), the tail-term Ω
(τ)
n (t(τ)) are bounded by

the right-hand-side of (22), which corresponds to a partial sum
of online dual costs over sub-intervals of length ∆ + 1 at the
beginning of each episode. (Note that when drcoe is large, ∆ =
K and thus this sub-interval will contain the whole episode.)
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Expression (23) has a similar interpretation, while the partial
sum is over sub-intervals at the end of each episode.

Sketch of Proof of Lemma 5: For ease of reading, here we
provide a short sketch of the proof of Lemma 5 first. Please
see Appendix E for the complete proof. In this sketch, we
focus on the proof of (22), and (23) follows along a similar
line. Consider any t(τ) and n such that Ω

(τ)
n (t(τ)) > 0, i.e.,

x
(τ)
n (t(τ)) > x

(τ)
n (t(τ)−1). First, since a−b ≤ a ln

(
a
b

)
for all

a, b > 0 and xn(t) ≤ 1, we can show that each Ω
(τ)
n (t(τ))/η

is upper-bounded by

wn
η

[x(τ)
n (t(τ)) +

ε

N
] ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
. (24)

Let β̂(τ)
n (t) =

∑
m:n∈Sm(t) β

(τ)
m (t). Consider any t′ > t(τ)

such that x(τ)
n (t) > 0 for all t ∈ [t(τ), t′]. Using KKT

conditions of (9), we can show that (24) is equal to

t′∑
t=t(τ)

[x(τ)
n (t) +

ε

N
]β̂(τ)
n (t) + [x(τ)

n (t′) +
ε

N
]θ(τ)
n (t′ + 1)

−
t′∑

t=t(τ)

cn(t)[x(τ)
n (t) +

ε

N
]−

t′∑
t=t(τ)+1

wny
(τ)
n (t). (25)

Next, we show that

Ω
(τ)
n (t(τ))

η
≤ (25) ≤

t(τ)+∆∑
t=t(τ)

[x(τ)
n (t) +

ε

N
]β̂(τ)
n (t) (26)

by considering the following two cases. (i) If there exists a
time-slot t < t(τ) + ∆, such that x(τ)

n (t + 1) < x
(τ)
n (t),

we take t′ as the first such t after t(τ). Then, we must
have θ

(τ)
n (t′ + 1) = 0 (from complementary slackness)

and (26) follows. (ii) If no such time-slot t exists, we let
t′ = t(τ) + ∆. There are two sub-cases. (ii-a) If drcoe − 1 <
K, then we consider the last three terms in (25). Since
x

(τ)
n (t′) −

∑t′

t=t(τ)+1 y
(τ)
n (t) = x

(τ)
n (t(τ)) (because x

(τ)
n (t)

does not decrease before time t′) and θ
(τ)
n (t′ + 1) ≤ wn,

the second and fourth term in (25) can be upper-bounded by
wn[x

(τ)
n (t(τ)) + ε

N ]. Then, since x(τ)
n (t) ≥ x

(τ)
n (t(τ)) for all

t ∈ [t(τ), t′] and
∑t′

t=t(τ) cn(t) ≥ wn
rco

(∆ + 1) ≥ wn, the last
three terms in (25) are upper-bounded by 0, and (26) then
follows. (ii-b) If drcoe − 1 ≥ K, we can show that,

Ω
(τ)
n (t(τ))

η
≤ wn

η
[x(τ)
n (t(τ)) +

ε

N
] ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)

− wn
η

[x(τ)
n (t(τ)) +

ε

N
] ln

(
1 + ε

N

x
(τ)
n (t(τ)) + ε

N

)
. (27)

(26) can then be verified similarly by combining (25) and (27).
Finally, (22) follows by taking the sum of (26) over all n

and all episodes, and applying complementary slackness (i.e.,
N∑
n=1

x
(τ)
n (t)

∑
m:n∈Sm(t) β

(τ)
m (t) =

M(t)∑
m=1

β
(τ)
m (t)).

Step 2-2 (Bounding the portions of the online dual costs):
Lemma 6 below connects the online dual cost on the right-
hand-side of (22) and (23) to the optimal offline dual cost,
which follows from standard duality [38, p. 225].

Lemma 6. In any interval from time t = t0 to t1, we have

D(τ)(t0 : t1) ≤ DOPT(t0 : t1)−
N∑
n=1

θOPT
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θOPT
n (t1 + 1)xOPT

n (t1) +

N∑
n=1

θ(τ)
n (t0)xOPT

n (t0 − 1)

−
N∑
n=1

θ(τ)
n (t1 + 1)xOPT

n (t1), (28)

where xOPT
n (t) and θOPT

n (t) are optimal offline primal and
dual solutions, respectively, and x(τ)

n (t) and θ(τ)
n (t) are online

primal and dual solutions, respectively.

Please see Appendix I for the complete proof of Lemma 6.
Finally, by applying Lemma 3–6, we can prove Theorem 2.
For ease of reading, here we provide a sketch of the proof of
Theorem 2 first. Please see Appendix J for the complete proof
of Theorem 2.

Sketch of Proof of Theorem 2: The total cost of RLA can be
calculated as in (3), where the decision ~XRLA(t) is calculated
as in (10). Then, applying Jensen’s Inequality, we have that,

CostRLA(1 : T ) ≤ 1

K + 1

K∑
τ=0

Cost(τ)(1 : T ). (29)

Then, applying Lemma 4 to (167), we have that the total cost
of RLA is upper-bounded by,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

d T
K+1e∑
u=−1

∑
t(τ)=τ+(K+1)u

{
D(τ)(t(τ) : t(τ) +K)

+

N∑
n=1

Ω(τ)
n (t(τ)) +

N∑
n=1

φ(τ)
n (t(τ)) +

N∑
n=1

ψ(τ)
n (t(τ))

}
. (30)

According to Lemma 3, the online dual costs in (168) add up

to 1
K+1

K∑
τ=0

D(τ)(1 : T ) ≤ DOPT(1 : T ). It only remains to

bound the three tail-terms in (168). We divide into two cases,
i.e., drcoe < K + 1 and drcoe ≥ K + 1.

i. When drcoe < K+ 1, we have ∆ = drcoe− 1. According
to Lemma 5, the sum of the tail-terms in (168) can be upper-
bounded by

K∑
τ=0

d T
K+1e∑
u=−1

∑
t(τ)=τ+(K+1)u

{
D(τ)(t(τ) : t(τ) + drcoe − 1)

+D(τ)(t(τ) +K − drcoe+ 1 : t(τ) +K)

}
· η(1 + ε). (31)
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Applying Lemma 6 to (170), we can replace D(τ) by DOPT,
with additional tail-terms as shown in (28). When we sum
these tail-terms over τ and t(τ), note that the sum of the tail-

terms−
N∑
n=1

θOPT
n (t0)xOPT

n (t0−1) and
N∑
n=1

θOPT
n (t1+1)xOPT

n (t1)

get cancelled across all versions and episodes, and thus

can be upper-bounded by 0. The tail-term −
N∑
n=1

θ
(τ)
n (t1 +

1)xOPT
n (t1) is upper-bounded by 0. Moreover, since the tail-

term θ
(τ)
n (t0)xOPT

n (t0 − 1) ≤ wnx
OPT
n (t0 − 1), the sum of

the tail-terms
N∑
n=1

θ
(τ)
n (t0)xOPT

n (t0 − 1) over all versions and

episodes can be upper-bounded by max
{n,t}

wn
cn(t) · CostOPT(1 :

T ) ≤ drcoeCostOPT(1 : T ). Together, the total cost of RLA is
upper-bounded by,

CostRLA(1 : T ) ≤ DOPT(1 : T ) +
η(1 + ε)

K + 1

·
{

2 drcoeDOPT(1 : T ) + drcoeCostOPT(1 : T )
}

≤
{

1 +
3η(1 + ε) drcoe

K + 1

}
CostOPT(1 : T ). (32)

This shows (11a).
ii. When drcoe ≥ K + 1, we have ∆ = K. Similar to the

first case, by applying Lemma 5 and Lemma 6, we can show
that the total cost of RLA is upper-bounded by,

CostRLA(1 : T ) ≤ DOPT(1 : T ) +
η(1 + ε)

K + 1

·
K∑
τ=0

d T
K+1e∑
u=−1

∑
t(τ)=τ+(K+1)u

2D(τ)(t(τ) : t(τ) +K)

≤ {1 + 2η(1 + ε)}CostOPT(1 : T ). (33)

(11b) then follows.

VI. GENERALIZATION

The fractional covering constraint in (1) corresponds to
a demand am(t) that is either 1 (when the constraint is
present) or 0 (when the constraint is not present). Further, the
coefficients on the left-hand-side of (1) must always be 1. Both
are restrictive in practice. In this section, we will extend our
results to the more general case, where the decision variables
must meet constraints of the type,∑
n∈Sm(t)

bmn(t)xn(t) ≥ am(t), for all m ∈ [1,M(t)], (34)

where bmn(t) and am(t) can be any positive integers as
in [11], [21], [39]. Moreover, we allow capacity constraints
that each decision variable must be upper-bounded, i.e.,

xn(t) ≤ Xcap
n , for all n ∈ [1, N ], (35)

where Xcap
n are positive integers. (We do not consider con-

straints such that the sum of some decision variables needs to
be upper-bounded, which will be a subject for future work.)

For this type of OCO problem, with minor modifications,
the Regularization with Look-Ahead (RLA) algorithm still

works. Specifically, we only need to change 1 + ε
N term in

the two regularization terms (9b) and (9d) to Xcap
n + ε

N , and
change η to be ηn , ln

(
Xcap
n + ε

N
ε
N

)
for each n. Thus, at each

time t(τ) ∈ [−K+1, T ], R-FHC(τ) now calculates the solution
to the following problem,

min
~X(t(τ):t(τ)+K)

{
t(τ)+K∑
t=t(τ)

N∑
n=1

cn(t)xn(t)

+

N∑
n=1

wn
ηn
xn(t(τ)) ln

(
Xcap
n + ε

N

xR-FHC(τ)

n (t(τ) − 1) + ε
N

)

+

t(τ)+K∑
t=t(τ)+1

N∑
n=1

wn [xn(t)− xn(t− 1)]
+

+

N∑
n=1

wn
ηn

[(
xn(t(τ) +K) +

ε

N

)
· ln

(
xn(t(τ) +K) + ε

N

Xcap
n + ε

N

)
− xn(t(τ) +K)

]}
(36a)

sub. to: (34), (35), for all t ∈ [t(τ), t(τ) +K]. (36b)

xn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [t(τ), t(τ) +K]. (36c)

In the analysis, we similarly change θ
(τ)
n (t(τ)) in (16) to

wn
ηn

ln

(
Xcap
n + ε

N

x
(τ)
n (t(τ)−1)+ ε

N

)
, which ensures that the online dual

variables satisfy the dual constraints. The rest of the analysis
then follows the same line, by changing 1+ ε

N to Xcap
n + ε

N and
by using the knapsack cover (KC) inequalities [40]. Finally,
in Theorem 7, we provide the competitive ratio of RLA for
this case.

Theorem 7. Given a look-ahead window of size K ≥ 1,
for the OCO problem with constraints (34) and (35), the
competitive ratio of Regularization with Look-Ahead (RLA)
is, (with η , max

n
ηn and B̄ , max

{m,n,t}
bmn(t))

CRRLA =

{
1 + 3η(1+εB̄)drcoe

K+1 , if drcoe < K + 1;

1 + 2η(1 + εB̄), if drcoe ≥ K + 1.
(37)

Please see Appendix K for the complete proof of Theo-
rem 7.

VII. NUMERICAL RESULTS

A. Data and Settings

We generate a synthetic setting using demand from the
Google cluster-usage traces [41]. We focus on 100 machines
in the trace with the lowest machine-ids. Each machine cor-
responds to a decision variable in our OCO problem (and
thus N = 100). We then generate the synthetic constraints
as follows. Suppose the m-th lowest machine-ids is i. Then,
the m-th constraint corresponds to a set Sm(t) in (1) that
contains all machines with machine-ids in [i, 3i]. Thus, such a
constraint models the situation where any one of the machines
in Sm(t) can be used to meet a certain aggregate demand to
the group.
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Fig. 2: Compare the ECRs for OCO introduced in Sec. II-A.

We consider one week of the trace, and sample the values
of CPU usages in the instance-event table every 1 hour to
generate the synthetic demand as follows. First, for OCO
problem with fractional covering constraints (1), the constraint
corresponding to Sm(t) is present if there exists any CPU
usage to the machines in Sm(t). Second, for OCO problems
with demand-supply balance constraint (34) and capacity con-
straint (35), the demand am(t) for the constraint corresponds
to Sm(t) is the sum of CPU usage over all machines in Sm(t),
multiplied by 1000 and rounded to the nearest integers (so
that am(t) is an integer). We take the value of bmn(t) as the
maximum CPU speed on the n-th machine in Sm(t). We take
the capacity Xcap

n as the value of capacity of the n-th machine
in the machine-event table.

Finally, the service-cost coefficient cn(t) is randomly gen-
erated in [1, 10]. For Fig. 2a and Fig. 3a, we fix K = 10
hours and vary rco. To simulate the setting with each value of
rco, we generate the switching-cost coefficient wn randomly
in [0.7rco, rco]. For Fig. 2b and Fig. 3b, we fix rco = 15
and vary K. Correspondingly, we generate the switching-cost
coefficient wn randomly in [5, 15], which produces rco = 15.

Similar to the notation of the competitive ratio, we use
ECRRLA, ECRAFHC and ECRREG to denote the “empirical com-
petitive ratios” (ECRs) of RLA, AFHC and the regularization
method (REG), respectively.

B. Evaluation Results

In Fig. 2a and Fig. 2b, we compare the empirical com-
petitive ratios (ECRs) of RLA, AFHC and REG for the OCO
problem with fractional covering constraints (1). Fig. 2a shows
that, as the coefficient ratio increases, the ECR of AFHC
increases to be very large. In contrast, the ECRs of RLA and
the regularization method remain at a low value even for large
coefficient ratio rco. In particular, the ECR of RLA is 1.891
even when rco = 400. Furthermore, Fig. 2b shows that, as the
look-ahead window size K increases, the ECRs of RLA and
AFHC decrease quickly to a value close to 1. In particular,
when K = 50, the ECR of RLA is about 1.032, which is
much smaller than the ECR of the regularization method.

In Fig. 3a and Fig. 3b, we compare the empirical compet-
itive ratios (ECRs) of RLA, AFHC and REG for the OCO
problem (in Sec. VI) with general demand-supply balance
constraints (34) and capacity constraints (35). The conclusions
are similar to that from Fig. 2a and Fig. 2b. Specifically,
Fig. 3a shows that, as rco increases, the ECR of AFHC
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Fig. 3: Compare the ECRs for OCO introduced in Sec. VI.

increases to be very large. In contrast, the ECRs of RLA and
the regularization method remain at a low value even for large
rco. Furthermore, Fig. 3b shows that, as K increases, the ECRs
of RLA and AFHC decrease quickly to a value close to 1
and become much smaller than the ECR of the regularization
method.

VIII. CONCLUSION

In this paper, we study competitive online convex optimiza-
tion (OCO) with look-ahead. We develop a new online algo-
rithm RLA that can utilize look-ahead to achieve a competitive
ratio that not only remains bounded when the coefficient ratio
is large, but also decreases with the size of the look-ahead
window when the coefficient ratio is small. In this way, the
new online algorithm gets the best of both AFHC [1] and the
regularization method [21]. To prove the competitive ratio of
RLA, we extend the online primal-dual method analysis [22]
to the case with look-ahead, which is of independent interest.
We also provide a lower bound of the competitive ratio, which
matches with the competitive ratio of RLA up to a factor that
only depends on the problem size N . Finally, we generalize
RLA to OCO problems with more general constraints.

There are several directions of future work. First, from
additional experiment results (not reported), we observe that
the actual competitive ratio of RLA is only a constant factor
away from the lower bound, independent of the problem size.
Thus, we will study ways to tighten the competitive ratio of
RLA. Second, we have not allowed constraints of the form that
the sum of some decision variables is upper-bounded. We note
that the regularization method in [21] has a similar limitation.
We will study how to generalize our results in this direction.
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APPENDIX A
PROOF OF THEOREM 1

Proof. Lower bound instance: We first present the problem
instance leading to the lower bound in (5). Let cn(t) = c > 0
and wn = w > 0 for all n and t. Moreover, let the total number
of decision variables be N = 2α, where α is a positive integer.
Consider a total of T = (K + 1)α + 1 time-slots, which is
divided into α+ 1 episodes, each of length K + 1.

Our key idea of the proof is to let the adversary reveal
new inputs based on the decisions of the online algorithm, so
that the online algorithm has to switch at least once in each
episode. Specifically, there is only one constraint for every
episode. In the first episode, the constraint is

∑N
n=1 xn(t) ≥ 1,

i.e., S1(t) = [1, N ], for all t ∈ [1,K + 1].
The constraint in the second episode is based on the decision

~X(1). (Note that the decision maker must choose ~Xπ(1)
without knowing the constraint in the second episode.) (i)
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If
∑N/2
n=1 x

π
n(1) ≤

∑N
n=N/2+1 x

π
n(1), the adversary chooses

S1(t) = [1, N2 ] and
∑N/2
n=1 xn(t) ≥ 1 in the second episode.

(ii) Otherwise, the adversary chooses S1(t) = [N2 + 1, N ] and∑N
n=N/2+1 xn(t) ≥ 1 in the second episode.
In a similar way, the constraint in the i-th episode (i ≥ 2)

will always be on the half of the previous constraint set, for
which the decision variables at the beginning of the (i− 1)-th
episode add up to a smaller sum. Following these steps, at the
last time t = (K + 1)α + 1, the constraint set will reduce to
a singleton S1(t) = {ñ} for some ñ ∈ {1, ..., N}.

Total cost of the optimal offline solution: The offline
solution can simply choose, for all time-slots, xOFF

n (1 : T ) = 1
for n = ñ, and xOFF

n (1 : T ) = 0 for n 6= ñ. It only incurs a
switching cost of w at time t = 1. Thus, the optimal offline
cost is upper-bounded by

CostOPT(1 : T ) ≤ w + c ((K + 1)α+ 1) . (38)

Total cost of any online algorithm π: First, at each time
t ∈ [1, T ], to satisfy the constraint, at least a service cost of c
is incurred. Next, we show that the total switching cost of any
online algorithm π is at least 1

2wα+w. To see this, consider
any decision variable xn that last saw a constraint in episode
in ≤ α, whose first time-slot is t′(in) , (K + 1)(in− 1) + 1.
It must be because the decision variable xn is one of those
that are in the constraint in episode in, but are excluded
from the constraint in episode in + 1. Let S′(in) be set
of all such decision variables in episode in. Because (i) in
episode in the constraint must be met, and (ii) the adversary
chooses the half of the decision variables whose sum are
smaller to form the constraint in episode in + 1, we must
have

∑
n∈S′(in) x

π
n(t′(in)) ≥ 1

2 . Across α episodes, there are
α such sets S′(in), which are non-overlapping. Finally, in the
last time-slot, the decision xπñ(T ) ≥ 1. Together, we have∑N
n=1 x

π
n(t′(in)) ≥ α

2 +1. Finally, note that the total switching
cost associated with xn(·) is at least wnxn(t′(in)). Therefore,
the total cost of any online algorithm π is lower-bounded by,

Costπ(1 : T ) ≥ c((K + 1)α+ 1) + w +
αw

2
. (39)

The result then follows by dividing the right-hand-side of
(39) by the right-hand-side of (38).

APPENDIX B
PRELIMINARY RESULTS FROM CONVEX OPTIMIZATION

In this section, we provide two conclusions that will be used
in the following appendices (for the proofs of the lemmas and
theorems).

Lemma 8. For any positive value x > 0 and y > 0, we have

x− y ≤ x ln

(
x

y

)
. (40)

Proof. (Proof of Lemma 8)

Let function f(x, y) = x ln
(
x
y

)
− x+ y, where x > 0 and

y > 0. Then, the first partial derivatives of the function f(x, y)
are,

∂f

∂x
= ln

(
x

y

)
,

∂f

∂y
= −x

y
+ 1.

These two derivatives are equal to 0 when x = y. Moreover,
the second partial derivatives of the function f(x, y) are,

∂2f

∂2x
=

1

x
> 0, for all x > 0, y > 0

∂2f

∂2y
=

x

y2
> 0, for all x > 0, y > 0

∂2f

∂x∂y
= −1

y
, for all x > 0, y > 0.

Thus, we have

∂2f

∂2x

∂2f

∂2y
−
(
∂2f

∂x∂y

)2

= 0.

Thus, f(x, y) is a convex function in the domain x > 0, y > 0.
Therefore, f(x, y) takes the minimum value when x = y.

Thus,

f(x, y) ≥ f(x = t, y = t) = 0.

Hence, for any x > 0 and y > 0, we have

x− y ≤ x ln

(
x

y

)
. (41)

Lemma 9. Consider the function f(x) = y ln
(
x+y
y

)
− x,

where y is any positive constant. Then, we have

f(x) ≤ 0, for all x ≥ 0. (42)

Proof. (Proof of Lemma 9)
The first derivative of the function f(x) is

df

dx
=

y

x+ y
− 1 ≤ 0, for all x ≥ 0.

Thus, the function f(x) is monotonically decreasing in the
domain x ≥ 0. Hence,

f(x) ≤ f(0) = 0, for all x ≥ 0. (43)

APPENDIX C
PROOF OF LEMMA 3

Proof. To prove Lemma 3, we need to prove, together with
the dual variables ~θ(τ)(t(τ)) constructed in (16), the online
dual variables ~β(τ)(t) and ~θ(τ)(t) from each version τ of
R-FHC satisfy the constraints (13b)-(13e). We consider one
episode from time t(τ) to t(τ) +K. The proof is similar in all
other episodes.
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First, according to Karush-Kuhn-Tucker (KKT) condi-
tions [38, p. 243], from (9), we have the following inequalities,

cn(t(τ))−
∑

m:n∈Sm(t)

β(τ)
m (t(τ))

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
− θ(τ)

n (t(τ) + 1) ≥ 0,

for all n ∈ [1, N ], (44)

cn(t)−
∑

m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)− θ(τ)
n (t+ 1) ≥ 0,

for all n ∈ [1, N ], t ∈ [t(τ) + 1, t(τ) +K − 1], (45)

cn(t(τ) +K)−
∑

m:n∈Sm(t)

β(τ)
m (t(τ) +K) + θ(τ)

n (t(τ) +K)

− wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) +K) + ε

N

)
≥ 0,

for all n ∈ [1, N ], (46)

wn − θ(τ)
n (t) ≥ 0,

for all n ∈ [1, N ], t ∈ [t(τ) + 1, t(τ) +K], (47)

β(τ)
m (t) ≥ 0, for all m ∈ [1, Sm(t)], t ∈ [t(τ), t(τ) +K],

(48)

θ(τ)
n (t) ≥ 0, for all n ∈ [1, N ], t ∈ [t(τ) + 1, t(τ) +K].

(49)

Thus, constraint (13b) from time t(τ) + 1 to t(τ) + K − 1,
constraint (13c) from time t(τ) + 1 to t(τ) + K, constraint
(13d) from time t(τ) to t(τ) + K, and constraint (13e) from
time t(τ) + 1 to t(τ) +K are satisfied.

Moreover, according to (16), we know θ
(τ)
n (t(τ)) =

wn
η ln

(
1+ ε

N

x
(τ)
n (t(τ)−1)+ ε

N

)
and θ

(τ)
n (t(τ) + K + 1) =

wn
η ln

(
1+ ε

N

x
(τ)
n (t(τ)+K)+ ε

N

)
. Thus, according to (44) and (46),

we have that constraint (13b) at time t(τ) and t(τ) + K,
constraint (13c) at time t(τ), and constraint (13e) at time t(τ)

are satisfied.
Hence, together with the dual variables ~θ(τ)(t(τ)) con-

structed in (16), the online dual variables ~β(τ)(t) and ~θ(τ)(t)
from each version τ of R-FHC satisfy the constraints (13b)-
(13e). Lemma 3 then follows.

APPENDIX D
PROOF OF LEMMA 4

Recall that (in Algorithm 1), if t(τ) ≤ 0, we remove the
term (9b) from the objective function of R-FHC. If t(τ) ≥
T −K, we remove the term (9d) from the objective function
of R-FHC. In Lemma 10 below, we re-state Lemma 4 in a
clearer way, by considering the gap between the online primal
cost and the online dual cost for the time t(τ)

beg ∈ [−K + 1, 0],
t
(τ)
mid ∈ [1, T −K − 1] and t(τ)

end ∈ [T −K, T ] separately.

Lemma 10. For each version τ ∈ [0,K] of R-FHC, we have,

Cost(τ)(1 : t
(τ)
beg +K) = D(τ)(1 : t

(τ)
beg +K)

+

N∑
n=1

ψ(τ)
n (t

(τ)
beg ), (50)

Cost(τ)(t
(τ)
mid : t

(τ)
mid +K) = D(τ)(t

(τ)
mid : t

(τ)
mid +K)

+

N∑
n=1

Ω(τ)
n (t

(τ)
mid) +

N∑
n=1

φ(τ)
n (t

(τ)
mid) +

N∑
n=1

ψ(τ)
n (t

(τ)
mid), (51)

Cost(τ)(t
(τ)
end : T ) = D(τ)(t

(τ)
end : T )

+

N∑
n=1

Ω(τ)
n (t

(τ)
end ) +

N∑
n=1

φ(τ)
n (t

(τ)
end ), (52)

where,

t
(τ)
beg , t

(τ)
mid, t

(τ)
end = τ + (K + 1)u, u = −1, 0, ...,

⌈
T

K + 1

⌉
,

such that,−K + 1 ≤ t(τ)
beg ≤ 0, 1 ≤ t(τ)

mid ≤ T −K − 1,

T −K ≤ t(τ)
end ≤ T . (53)

Note that Lemma 10 directly implies Lemma 4. To see
this, note that when we compare (21) with (50)-(52), all the
additional terms that appear in (21) are greater than or equal
to 0. Specifically, first we note that any primal cost and dual
cost before time t = 1 or after time t = T are equal to 0.
Then,
(i) for the time t

(τ)
beg ∈ [−K + 1, 0], the additional

terms in (21) (compared with (50)) are
N∑
n=1

Ω
(τ)
n (t(τ)) and

N∑
n=1

φ
(τ)
n (t(τ)). Since t

(τ)
beg ≤ 0, by our assumption the de-

cision variable satisfies x(τ)(t
(τ)
beg ) = 0. Thus, Ω

(τ)
n (t

(τ)
beg ) =

wn

[
x

(τ)
n (t

(τ)
beg )− x(τ)

n (t
(τ)
beg − 1)

]+
= 0 and φ

(τ)
n (t

(τ)
beg ) =

−wnη x
(τ)
n (t

(τ)
beg ) ln

(
1+ ε

N

x
(τ)
n (t

(τ)
beg −1)+ ε

N

)
= 0.

(ii) For the time t
(τ)
mid ∈ [1, T − K − 1], (21) and (51) are

exactly the same.
(iii) For the time t(τ)

end ∈ [T − K, T ], the additional terms in

(21) (compared with (52)) is
N∑
n=1

ψ
(τ)
n (t

(τ)
end ). Since the decision

variable satisfies 0 ≤ x(τ)(t
(τ)
end ) ≤ 1 for all t(τ)

end , we thus have

that ψ(τ)
n (t

(τ)
end ) = wn

η x
(τ)
n (t

(τ)
end +K) ln

(
1+ ε

N

xn(t
(τ)
end +K)+ ε

N

)
≥ 0.

In summary, all the additional terms mentioned above are non-
negative, and thus Lemma 10 implies Lemma 4.

Below, we focus on proving Lemma 10. In the following
proof, we first focus on the episodes starting from time t(τ)

mid ∈
[1, T − K − 1]. For the special episodes starting from time
t
(τ)
beg ∈ [−K + 1, 0] and t

(τ)
end ∈ [T − K, T ], we can prove

Lemma 10 similarly, which will be shown at the end of this
appendix. Moreover, for simplicity, in the rest of this section,
we use (τ) instead of R-FHC(τ) in the superscript, e.g., use
~X(τ)(t) to denote ~XR-FHC(τ)

(t).
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Proof. (i) The episodes starting from time t
(τ)
mid ∈ [1, T −

K − 1].
First of all, as in (13), together with constraints yn(t) ≥

xn(t) − xn(t − 1) and yn(t) ≥ 0, we can add an auxiliary
variable yn(t) for the switching term [xn(t) − xn(t − 1)]+.
Thus, (54) below is an equivalent formulation of (9).

min
{ ~X(t

(τ)
mid :t

(τ)
mid +K),

~Y (t
(τ)
mid +1:t

(τ)
mid +K)}

{ t
(τ)
mid +K∑
t=t

(τ)
mid

N∑
n=1

cn(t)xn(t)

+

N∑
n=1

wn
η
xn(t

(τ)
mid) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid − 1) + ε

N

)

+

t
(τ)
mid +K∑

t=t
(τ)
mid +1

N∑
n=1

wnyn(t)

+

N∑
n=1

wn
η

[(
xn(t

(τ)
mid +K) +

ε

N

)
· ln

(
xn(t

(τ)
mid +K) + ε

N

1 + ε
N

)
− xn(t

(τ)
mid +K)

]}
(54a)

sub. to:
∑

n∈Sm(t)

xn(t) ≥ 1, for all m ∈ [1,M(t)],

t ∈ [t
(τ)
mid, t

(τ)
mid +K], (54b)

yn(t) ≥ xn(t)− xn(t− 1),

for all m ∈ [1,M(t)], t ∈ [t
(τ)
mid + 1, t

(τ)
mid +K],

(54c)

xn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [t
(τ)
mid, t

(τ)
mid +K],

(54d)

yn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [t
(τ)
mid + 1, t

(τ)
mid +K],

(54e)

where η = ln
(
N+ε
ε

)
, ε > 0 and the decision x

(τ)
n (t

(τ)
mid −

1) were given by the solution of the previous episode of
R-FHC(τ) from time t(τ)

mid −K − 1 to t(τ)
mid − 1.

Second, by applying Karush-Kuhn-Tucker (KKT) condi-
tions [38, p. 243] to (54), we have the following equations,

Complementary slackness:

β(τ)
m (t)

1−
∑

n∈Sm(t)

x(τ)
n (t)

 = 0,

for all m ∈ [1,M(t)], t ∈ [t
(τ)
mid, t

(τ)
mid +K], (55)

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
= 0,

for all n ∈ [1, N ], t ∈ [t
(τ)
mid + 1, t

(τ)
mid +K], (56)

Stationarity/Optimality:

x(τ)
n (t

(τ)
mid)

[
cn(t

(τ)
mid)−

∑
m:n∈Sm(t(τ))

β(τ)
m (t

(τ)
mid)

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid − 1) + ε

N

)
− θ(τ)

n (t
(τ)
mid + 1)

]
= 0,

for all n ∈ [1, N ], (57)

x(τ)
n (t)

cn(t)−
∑

m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)− θ(τ)
n (t+ 1)


= 0, for all n ∈ [1, N ], t ∈ [t

(τ)
mid + 1, t

(τ)
mid +K − 1], (58)

x(τ)
n (t

(τ)
mid +K)

[
cn(t

(τ)
mid +K)−

∑
m:n∈

Sm(t(τ)+K)

β(τ)
m (t

(τ)
mid +K)

+ θ(τ)
n (t

(τ)
mid +K)− wn

η
ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid +K) + ε

N

)]
= 0, for all n ∈ [1, N ], (59)

y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

= 0,

for all n ∈ [1, N ], t ∈ [t
(τ)
mid + 1, t

(τ)
mid +K]. (60)

Third, for each version τ of R-FHC, the total cost from time
t
(τ)
mid to t(τ)

mid +K is,

Cost(τ)(t
(τ)
mid : t

(τ)
mid +K)

=

t
(τ)
mid +K∑
t=t

(τ)
mid

N∑
n=1

cn(t)x(τ)
n (t) +

t
(τ)
mid +K∑

t=t
(τ)
mid +1

N∑
n=1

wny
(τ)
n (t)

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
mid)− x(τ)

n (t
(τ)
mid − 1)

]+
. (61)

Then, by adding the left-hand-sides of (55) and (56) to the
right-hand-side of (61), we have that the total cost,

Cost(τ)(t
(τ)
mid : t

(τ)
mid +K)

=

t
(τ)
mid +K∑
t=t

(τ)
mid

N∑
n=1

cn(t)x(τ)
n (t) +

t
(τ)
mid +K∑

t=t
(τ)
mid +1

N∑
n=1

wny
(τ)
n (t)

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
mid)− x(τ)

n (t
(τ)
mid − 1)

]+

+

t
(τ)
mid +K∑
t=t

(τ)
mid

M(t)∑
m=1

β(τ)
m (t)

1−
∑

n∈Sm(t)

x(τ)
n (t)


+

t
(τ)
mid +K∑

t=t
(τ)
mid +1

N∑
n=1

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
.

(62)

By rearranging the terms on the right-hand-side of (62), we
have that the total cost,

Cost(τ)(t
(τ)
mid : t

(τ)
mid +K)

=

t
(τ)
mid +K∑
t=t

(τ)
mid

M(t)∑
m=1

β(τ)
m (t)
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+

N∑
n=1

x(τ)
n (t

(τ)
mid)

[
cn(t

(τ)
mid)−

∑
m:n∈Sm(t(τ))

β(τ)
m (t

(τ)
mid)

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid − 1) + ε

N

)
− θ(τ)

n (t
(τ)
mid + 1)

]

+

t
(τ)
mid +K−1∑
t=t

(τ)
mid +1

N∑
n=1

x(τ)
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t)

+ θ(τ)
n (t)− θ(τ)

n (t+ 1)

]

+

N∑
n=1

x(τ)
n (t

(τ)
mid +K)

[
cn(t

(τ)
mid +K)

−
∑

m:n∈Sm(t(τ)+K)

β(τ)
m (t

(τ)
mid +K)

+ θ(τ)
n (t

(τ)
mid +K)− wn

η
ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid +K) + ε

N

)]

+

t
(τ)
mid +K∑

t=t
(τ)
mid +1

N∑
n=1

y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
mid)− x(τ)

n (t
(τ)
mid − 1)

]+
−

N∑
n=1

wn
η
x(τ)
n (t

(τ)
mid) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid − 1) + ε

N

)

+

N∑
n=1

wn
η
x(τ)
n (t

(τ)
mid +K) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid +K) + ε

N

)
.

(63)

Next, by applying the optimality condition in (57)-(60) to (63),
we have that the total cost,

Cost(τ)(t
(τ)
mid : t

(τ)
mid +K)

=

t
(τ)
mid +K∑
t=t

(τ)
mid

M(t)∑
m=1

β(τ)
m (t)

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
mid)− x(τ)

n (t
(τ)
mid − 1)

]+
−

N∑
n=1

wn
η
x(τ)
n (t(τ)) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid − 1) + ε

N

)

+

N∑
n=1

wn
η
x(τ)
n (t

(τ)
mid +K) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
mid +K) + ε

N

)
.

(64)

Hence, Lemma 10 is true for the episodes starting from time
t
(τ)
mid ∈ [1, T −K − 1].

For the episodes starting from time t(τ)
beg ∈ [−K + 1, 0] and

t
(τ)
end ∈ [T − K, T ], we can prove Lemma 10 similarly. For

completeness, we provide the proof in the following.

(ii) The episodes starting from time t(τ)
beg ∈ [−K + 1, 0].

Recall that if t(τ)
beg ≤ 0, we remove the term (9b) from the

objective function of R-FHC. Then, as in (54), together with
constraints yn(t) ≥ xn(t)− xn(t− 1) and yn(t) ≥ 0, we can
add an auxiliary variable yn(t) for the switching term [xn(t)−
xn(t− 1)]+. Thus, (65) below is an equivalent formulation of
the objective function of R-FHC.

min
{ ~X(1:t

(τ)
beg +K),

~Y (1:t
(τ)
beg +K)}

{ t
(τ)
beg +K∑
t=1

N∑
n=1

cn(t)xn(t) +

t
(τ)
beg +K∑
t=1

N∑
n=1

wnyn(t)

+

N∑
n=1

wn
η

[(
xn(t

(τ)
beg +K) +

ε

N

)
· ln

(
xn(t

(τ)
beg +K) + ε

N

1 + ε
N

)
− xn(t

(τ)
beg +K)

]}
(65a)

sub. to:
∑

n∈Sm(t)

xn(t) ≥ 1, for all m ∈ [1,M(t)],

t ∈ [1, t
(τ)
beg +K], (65b)

yn(t) ≥ xn(t)− xn(t− 1),

for all m ∈ [1,M(t)], t ∈ [1, t
(τ)
beg +K],

(65c)
xn(t), yn(t) ≥ 0,

for all n ∈ [1, N ], t ∈ [1, t
(τ)
beg +K].

(65d)

Second, by applying Karush-Kuhn-Tucker (KKT) condi-
tions [38, p. 243] to (65), we have the following equations,

Complementary slackness:

β(τ)
m (t)

1−
∑

n∈Sm(t)

x(τ)
n (t)

 = 0,

for all m ∈ [1,M(t)], t ∈ [1, t
(τ)
beg +K], (66)

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
= 0,

for all n ∈ [1, N ], t ∈ [1, t
(τ)
beg +K], (67)

Stationarity/Optimality:

x(τ)
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)− θ(τ)
n (t+ 1)

]
= 0, for all n ∈ [1, N ], t ∈ [1, t

(τ)
beg +K − 1], (68)

x(τ)
n (t

(τ)
beg +K)

[
cn(t

(τ)
beg +K)−

∑
m:n∈

Sm(t(τ)+K)

β(τ)
m (t

(τ)
beg +K)

+ θ(τ)
n (t

(τ)
beg +K)− wn

η
ln

(
1 + ε

N

x
(τ)
n (t

(τ)
beg +K) + ε

N

)]
= 0, for all n ∈ [1, N ], (69)
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y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

= 0,

for all n ∈ [1, N ], t ∈ [1, t
(τ)
beg +K]. (70)

Third, for each version τ of R-FHC, the total cost from time
1 to t(τ)

beg +K,

Cost(τ)(1 : t
(τ)
beg +K)

=

t
(τ)
beg +K∑
t=1

N∑
n=1

cn(t)x(τ)
n (t) +

t
(τ)
beg +K∑
t=1

N∑
n=1

wny
(τ)
n (t). (71)

Then, by adding the left-hand-sides of (66) and (67) to the
right-hand-side of (71), we have that the total cost,

Cost(τ)(1 : t
(τ)
beg +K)

=

t
(τ)
beg +K∑
t=1

N∑
n=1

cn(t)x(τ)
n (t) +

t
(τ)
beg +K∑
t=1

N∑
n=1

wny
(τ)
n (t)

+

t
(τ)
beg +K∑
t=1

M(t)∑
m=1

β(τ)
m (t)

1−
∑

n∈Sm(t)

x(τ)
n (t)


+

t
(τ)
beg +K∑
t=1

N∑
n=1

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
.

(72)

By rearranging the terms in (72), we have that the total cost,

Cost(τ)(1 : t
(τ)
beg +K)

=

t
(τ)
beg +K∑
t=1

M(t)∑
m=1

β(τ)
m (t)

+

t
(τ)
beg +K−1∑
t=1

N∑
n=1

x(τ)
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t)

+ θ(τ)
n (t)− θ(τ)

n (t+ 1)

]

+

N∑
n=1

x(τ)
n (t

(τ)
beg +K)

[
cn(t

(τ)
beg +K)

−
∑

m:n∈Sm(t
(τ)
beg +K)

β(τ)
m (t

(τ)
beg +K)

+ θ(τ)
n (t

(τ)
beg +K)− wn

η
ln

(
1 + ε

N

x
(τ)
n (t

(τ)
beg +K) + ε

N

)]

+

t
(τ)
beg +K∑
t=1

N∑
n=1

y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

+

N∑
n=1

wn
η
x(τ)
n (t

(τ)
beg +K) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
beg +K) + ε

N

)
.

(73)

Next, by applying the optimality condition in (68)-(70) to (73),
we have that the total cost,

Cost(τ)(1 : t
(τ)
beg +K)

=

t(τ)+K∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t)

+

N∑
n=1

wn
η
x(τ)
n (t

(τ)
beg +K) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
beg +K) + ε

N

)
.

(74)

Hence, Lemma 10 is true for the episodes starting from time
t
(τ)
beg ∈ [−K + 1, 0].

(iii) The episodes starting from time t(τ)
end ∈ [T −K, T ].

Recall that if t(τ)
end ≥ T −K, we remove the term (9d) from

the objective function of R-FHC. Then, as in (54), together
with constraints yn(t) ≥ xn(t) − xn(t − 1) and yn(t) ≥ 0,
we can add an auxiliary variable yn(t) for the switching
term [xn(t)− xn(t− 1)]+. Thus, (75) below is an equivalent
formulation of the objective function of R-FHC.

min
{ ~X(t

(τ)
end :T ),

~Y (t
(τ)
end +1:T )}

{ T∑
t=t

(τ)
end

N∑
n=1

cn(t)xn(t) +

T∑
t=t

(τ)
end +1

N∑
n=1

wnyn(t)

+

N∑
n=1

wn
η
xn(t

(τ)
end ) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
end − 1) + ε

N

)}
(75a)

sub. to:
∑

n∈Sm(t)

xn(t) ≥ 1, for all m ∈ [1,M(t)],

t ∈ [t
(τ)
end , T ], (75b)

yn(t) ≥ xn(t)− xn(t− 1),

for all m ∈ [1,M(t)], t ∈ [t
(τ)
end + 1, T ], (75c)

xn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [t
(τ)
end , T ], (75d)

yn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [t
(τ)
end + 1, T ].

(75e)

Second, by applying Karush-Kuhn-Tucker (KKT) condi-
tions [38, p. 243] to (75), we have the following equations,

Complementary slackness:

β(τ)
m (t)

1−
∑

n∈Sm(t)

x(τ)
n (t)

 = 0,

for all m ∈ [1,M(t)], t ∈ [t
(τ)
end , T ], (76)

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
= 0,

for all n ∈ [1, N ], t ∈ [t
(τ)
end + 1, T ], (77)

Stationarity/Optimality:

x(τ)
n (t

(τ)
end )

[
cn(t

(τ)
end )−

∑
m:n∈Sm(t

(τ)
end )

β(τ)
m (t

(τ)
end )

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t

(τ)
end − 1) + ε

N

)
− θ(τ)

n (t
(τ)
end + 1)

]
= 0,
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for all n ∈ [1, N ], (78)

x(τ)
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)− θ(τ)
n (t+ 1)

]
= 0, for all n ∈ [1, N ], t ∈ [t

(τ)
end + 1, T − 1],

(79)

x(τ)
n (T )

[
cn(T )−

∑
m:n∈Sm(t)

β(τ)
m (T ) + θ(τ)

n (T )

]
= 0, for all n ∈ [1, N ], (80)

y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

= 0,

for all n ∈ [1, N ], t ∈ [t
(τ)
end + 1, T ]. (81)

Third, for each version τ of R-FHC, the total cost from time
t
(τ)
end to T is,

Cost(τ)(t
(τ)
end : T )

=

T∑
t=t

(τ)
end

N∑
n=1

cn(t)x(τ)
n (t) +

T∑
t=t

(τ)
end +1

N∑
n=1

wny
(τ)
n (t)

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
end )− x(τ)

n (t
(τ)
end − 1)

]+
. (82)

Then, by adding the left-hand-sides of (76) and (77) to the
right-hand-side of (82), we have that the total cost,

Cost(τ)(t
(τ)
end : T )

=

T∑
t=t

(τ)
end

N∑
n=1

cn(t)x(τ)
n (t) +

T∑
t=t

(τ)
end +1

N∑
n=1

wny
(τ)
n (t)

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
end )− x(τ)

n (t
(τ)
end − 1)

]+
+

T∑
t=t

(τ)
end

M(t)∑
m=1

β(τ)
m (t)

1−
∑

n∈Sm(t)

x(τ)
n (t)


+

T∑
t=t

(τ)
end +1

N∑
n=1

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
.

(83)

By rearranging the terms in (83), we have that the total cost,

Cost(τ)(t
(τ)
end : T )

=

T∑
t=t

(τ)
end

M(t)∑
m=1

β(τ)
m (t)

+

N∑
n=1

x(τ)
n (t

(τ)
end )

[
cn(t

(τ)
end )−

∑
m:n∈Sm(t(τ))

β(τ)
m (t

(τ)
end )

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t

(τ)
end − 1) + ε

N

)
− θ(τ)

n (t
(τ)
end + 1)

]

+

T −1∑
t=t

(τ)
end +1

N∑
n=1

x(τ)
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t)

+ θ(τ)
n (t)− θ(τ)

n (t+ 1)

]

+

N∑
n=1

x(τ)
n (T )

[
cn(T )−

∑
m:n∈Sm(t)

β(τ)
m (T ) + θ(τ)

n (T )

]

+

T∑
t=t

(τ)
end +1

N∑
n=1

y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
end )− x(τ)

n (t
(τ)
end − 1)

]+
−

N∑
n=1

wn
η
x(τ)
n (t

(τ)
end ) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
end − 1) + ε

N

)
. (84)

Next, by applying the optimality condition in (78)-(81) to (84),
we have that the total cost,

Cost(τ)(t
(τ)
end : T )

=

T∑
t=t

(τ)
end

M(t)∑
m=1

β(τ)
m (t)

+

N∑
n=1

wn

[
x(τ)
n (t

(τ)
end )− x(τ)

n (t
(τ)
end − 1)

]+
−

N∑
n=1

wn
η
xn(t

(τ)
end ) ln

(
1 + ε

N

x
(τ)
n (t

(τ)
end − 1) + ε

N

)
. (85)

Hence, Lemma 10 is true for the episodes starting from time
t
(τ)
end ∈ [T −K, T ].

APPENDIX E
PROOF OF LEMMA 5

Here we provide the complete proof for Lemma 5, including
the missing details in our sketch in the main body of the paper.
To prove Lemma 5, we prove (22) and (23) one-by-one.

A. Proof of (22)

First of all, let t(τ)
n↓ + 1 be the first time-slot when the n-th

decision variable x(τ)
n decreases, i.e.,

t
(τ)
n↓ , min

{
t | x(τ)

n (t) > x(τ)
n (t+ 1), t(τ) ≤ t ≤ t(τ) +K

}
.

(86)

If there is no decreasing of the decision variable x(τ)
n (t) after

time t(τ), we let

t
(τ)
n↓ , t(τ) +K. (87)

Moreover, let

t
(τ)
n,0 , min

{
t
(τ)
n↓ , t

(τ) + drcoe − 1, t(τ) +K
}
, (88)
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where, as defined before, drcoe = max
{n,t}

⌈
wn
cn(t)

⌉
.

Proof. Note that to prove (22), we need to prove, for each
t(τ),

wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ η
t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+ wn

[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t

(τ)
n,0) + ε

N

)

− wn
[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ)) + ε

N

)

≤ η
t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t).

(i) If x
(τ)
n (t(τ)) − x

(τ)
n (t(τ) − 1) ≤ 0, then[

x
(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

= 0. Since the right-hand-side
of (22) is greater or equal to 0, (22) is true.

(ii) If x(τ)
n (t(τ)) − x

(τ)
n (t(τ) − 1) > 0, then x

(τ)
n (t(τ)) >

x
(τ)
n (t(τ) − 1). Since x(τ)

n (t(τ) − 1) ≥ 0, we have,

x(τ)
n (t(τ)) > 0. (89)

First, the definition of t(τ)
n↓ in (86) implies that t(τ)

n↓ + 1 is the
first time-slot that the n-th decision variable x(τ)

n decreases.
Moreover, the definition of t(τ)

n,0 in (88) implies that t(τ)
n,0 ≤ t

(τ)
n↓ .

Thus, the decision x(τ)
n never decreases before time t(τ)

n,0, i.e.,

x(τ)
n (t) ≥ x(τ)

n (t(τ)), for all t ∈ [t(τ) + 1, t
(τ)
n,0]. (90)

According to (89) and (90), we have,

x(τ)
n (t) > 0, for all t ∈ [t(τ), t

(τ)
n,0]. (91)

Second, according to (91) and the optimality condition in (57)-
(59), (68)-(69) and (78)-(80) we have,

cn(t)−
∑

m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)− θ(τ)
n (t+ 1) = 0,

for all t ∈ [t(τ), t
(τ)
n,0], (92)

where, as defined in (16), θ
(τ)
n (t(τ)) =

wn
η ln

(
1+ ε

N

x
(τ)
n (t(τ)−1)+ ε

N

)
. Then, according to (92),

complementary slackness (56) and the optimality condition
(60), we have,

t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

]
+

t
(τ)
n,0∑

t=t(τ)+1

wny
(τ)
n (t)

+
wn
η

[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)

=

t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

]
+

t
(τ)
n,0∑

t=t(τ)+1

wny
(τ)
n (t)

+
wn
η

[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)

−
[
x(τ)
n (t(τ)) +

ε

N

] [
cn(t(τ))−

∑
m:n∈Sm(t(τ))

β(τ)
m (t(τ))

+
wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
− θ(τ)

n (t(τ) + 1)

]

−
t
(τ)
n,0∑

t=t(τ)+1

[
x(τ)
n (t) +

ε

N

] [
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t)

+ θ(τ)
n (t)− θ(τ)

n (t+ 1)

]

−
t
(τ)
n,0∑

t=t(τ)+1

y(τ)
n (t)

[
wn − θ(τ)

n (t)
]

+

t
(τ)
n,0∑

t=t(τ)+1

θ(τ)
n (t)

[
x(τ)
n (t)− x(τ)

n (t− 1)− y(τ)
n (t)

]
.

(93)

By rearranging and cancelling the terms on the right-hand-side
of (93), we have that the left-hand-side of (93),

t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

]
+

t
(τ)
n,0∑

t=t(τ)+1

wny
(τ)
n (t)

+
wn
η

[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)

=

t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+
[
x(τ)
n (t

(τ)
n,0) +

ε

N

]
θ(τ)
n (t

(τ)
n,0 + 1). (94)

By moving the first two terms on the left-hand-side of (94) to
the right-hand-side, we have that,

wn
η

[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)

=

t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+
[
x(τ)
n (t

(τ)
n,0) +

ε

N

]
θ(τ)
n (t

(τ)
n,0 + 1)

−
t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

]
−

t
(τ)
n,0∑

t=t(τ)+1

wny
(τ)
n (t). (95)
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Third, we prove the final result (22) by considering three
cases of the value of t(τ)

n,0, i.e., t(τ)
n,0 = t

(τ)
n↓ , t(τ)

n,0 = t(τ)+drcoe−
1 and t(τ)

n,0 = t(τ) +K.
(ii.a) If t(τ)

n↓ ≤ t(τ) + drcoe − 1 and t
(τ)
n↓ ≤ t(τ) + K, then

t
(τ)
n,0 = t

(τ)
n↓ . Thus, the definition of t(τ)

n↓ in (86) implies that
x

(τ)
n (t

(τ)
n,0) > x

(τ)
n (t

(τ)
n,0 + 1). Thus, y(τ)

n (t
(τ)
n,0 + 1) = 0. Thus,

x
(τ)
n (t

(τ)
n,0+1)−x(τ)

n (t
(τ)
n,0)−y(τ)

n (t
(τ)
n,0+1) < 0. Then, according

to complementary slackness (56), we have,

θ(τ)
n (t

(τ)
n,0 + 1) = 0. (96)

Then, according to Lemma 8 in Appendix B and x(τ)
n (t(τ)) ≤

1, we have,

wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ wn
[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
. (97)

(95) and (97) implies that,

wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ η

[ t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+
[
x(τ)
n (t

(τ)
n,0) +

ε

N

]
θ(τ)
n (t

(τ)
n,0 + 1)

−
t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

]
−

t
(τ)
n,0∑

t=t(τ)+1

wny
(τ)
n (t)

]
(98)

≤ η
t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t). (99)

The last inequality is because of (96) and all cost coefficients
and decision variables are non-negative.

(ii.b) If t(τ)+drcoe−1 ≤ t(τ)
n↓ and t(τ)+drcoe−1 ≤ t(τ)+K,

then,

t
(τ)
n,0 = t(τ) + drcoe − 1, (100)

x(τ)
n (t) ≥ x(τ)

n (t− 1), for all t ∈ [t(τ) + 1, t
(τ)
n,0]. (101)

From (100), we have,

t
(τ)
n,0∑

t=t(τ)

cn(t) =

t(τ)+drcoe−1∑
t=t(τ)

cn(t)

≥
t(τ)+drcoe−1∑

t=t(τ)

min
t∈[t(τ),t(τ)+drcoe−1]

cn(t)

= drcoe min
t∈[t(τ),t(τ)+drcoe−1]

cn(t)

≥ wn. (102)

From (101), we have,

x(τ)
n (t) ≥ x(τ)

n (t(τ)), for all t ∈ [t(τ) + 1, t
(τ)
n,0], (103)

x(τ)
n (t

(τ)
n,0)−

t
(τ)
n,0∑

t=t(τ)+1

y(τ)
n (t) = x(τ)

n (t(τ)). (104)

Since θ(τ)
n (t

(τ)
n,0 + 1) ≤ wn, from (98), we have,
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[
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n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ η
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(τ)
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t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+
[
x(τ)
n (t

(τ)
n,0) +

ε

N

]
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t
(τ)
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(τ)
n (t)

−
t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

] ]
. (105)

Thus, we have,

wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ η

[ t
(τ)
n,0∑

t=t(τ)

[
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n (t) +

ε

N

] ∑
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β(τ)
m (t)

+
[
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ε

N

]
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−
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ε

N

] t
(τ)
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t=t(τ)

cn(t)

]

≤ η
t
(τ)
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t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t), (106)

where the first inequality is because of (103) and (104), the
second inequality is because of (102).

(ii.c) If t(τ) +K ≤ t(τ)
n↓ and t(τ) +K ≤ t(τ) +drcoe−1, then

we have t(τ)
n,0 = t(τ) +K. Thus, according to the construction

of θ(τ)
n (t(τ)) in (16), we have,

θ(τ)
n (t

(τ)
n,0 + 1) =

wn
η

ln

(
1 + ε

N

x
(τ)
n (t

(τ)
n,0) + ε

N

)
. (107)

Thus, we have,

wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

= wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]

≤ wn
[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
x

(τ)
n (t(τ)) + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)

= wn

[
x(τ)
n (t(τ)) +

ε
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]
ln

(
1 + ε
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(τ)
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N

)

− wn
[
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n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ)) + ε

N

)
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= η

[ t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+
[
x(τ)
n (t

(τ)
n,0) +

ε

N

]
θ(τ)
n (t

(τ)
n,0 + 1)

−
t
(τ)
n,0∑

t=t(τ)

cn(t)
[
x(τ)
n (t) +

ε

N

]
−

t
(τ)
n,0∑

t=t(τ)+1

wny
(τ)
n (t)

]

− wn
[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ)) + ε

N

)
, (108)

where the inequality is because of Lemma 8, the last equality
is because of (95). Next, since the service-cost coefficients and
the decision variables are non-negative, according to (107) and
(108), we have,

wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ η

[ t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

+
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x(τ)
n (t

(τ)
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ε

N
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η
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N

x
(τ)
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(τ)
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N

)
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t
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]
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[
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ε

N

]
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(
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N

x
(τ)
n (t(τ)) + ε

N

)
, (109)

Since x(τ)
n (t

(τ)
n,0) ≥ 0 and η = ln

(
N+ε
ε

)
, we have that η ≥

ln

(
1+ ε

N

x
(τ)
n (t

(τ)
n,0)+ ε

N

)
. Thus, from (109), we have,
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[
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N

] ∑
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+
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(τ)
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(
1 + ε

N
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(τ)
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N

)

−
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(
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N

x
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N
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− wn
[
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ε
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]
ln

(
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x
(τ)
n (t(τ)) + ε

N

)
, (110)

Finally, since (103) and (104) still hold in this case, from
(110), we have,

wn

[
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n (t(τ))− x(τ)

n (t(τ) − 1)
]+

≤ η
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[
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ε
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] ∑
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[
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ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t

(τ)
n,0) + ε

N

)

− wn
[
x(τ)
n (t(τ)) +

ε

N

]
ln

(
1 + ε

N

x
(τ)
n (t(τ)) + ε

N

)

≤ η
t
(τ)
n,0∑

t=t(τ)

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t). (111)

Then by complementary slackness (55) and (76), and
N∑
n=1

ε
N

∑
m:n∈Sm(t)

β
(τ)
m (t) ≤ ε

M(t)∑
m=1

β
(τ)
m (t), (22) is true.

B. Proof of (23)

To prove (23), we use the conclusion from Lemma 11 below.
Lemma 11 bounds the left-hand-side of (23) by a term, which
serves as a preliminary upper-bound and can be more easily
upper-bounded by the right-hand-side of (23).

Lemma 11. (Preliminary upper-bound of the left-hand-side
of (23)) For each version τ of R-FHC, the sum of the left-
hand-side of (23) can be upper-bounded as following,

N∑
n=1

ψ(τ)
n (t

(τ)
beg ) +

∑
0≤t(τ)mid
≤T −K−1

N∑
n=1

[
φ(τ)
n (t

(τ)
mid) + ψ(τ)

n (t
(τ)
mid)
]

+

N∑
n=1

φ(τ)
n (t

(τ)
end )

≤
∑

t(τ)∈{t(τ)beg , all t(τ)mid ,t
(τ)
end }

N∑
n=1

[
x(τ)
n (t(τ) +K)− x(τ)

n (t(τ))
]

· wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
, (112)

where t(τ)
beg , t(τ)

mid and t(τ)
end are defined in (53).

Please see Appendix F for the complete proof of Lemma 11.
Moreover, we denote the right-hand-side of (112) by
Φ

(τ)
n (t(τ)), i.e.,

Φ(τ)
n (t(τ)) =

[
x(τ)
n (t(τ) +K)− x(τ)

n (t(τ))
]

· wn
η

ln

(
1 + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
. (113)

Further, let t(τ)
n↑ be the last time-slot when the n-th decision

variable x(τ)
n increases, i.e.,

t
(τ)
n↑ , max

{
t|x(τ)

n (t) > x(τ)
n (t− 1), t(τ) < t ≤ t(τ) +K

}
.

(114)

If there is no increasing of the decision variable x(τ)
n (t) from

time t(τ) + 1 to t(τ) +K, we let

t
(τ)
n↑ , t(τ). (115)
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Let

t
(τ)
n,1 , max

{
t
(τ)
n↑ , t

(τ) +K − drcoe+ 1
}
. (116)

Now, we provide the complete proof for (23).

Proof. Lemma 11 implies that the left-hand-side of (23) can
be first upper-bounded by the right-hand-side of (112). Then,
to prove (23), we need to prove that, for each t(τ),

Φ(τ)
n (t(τ)) ≤ η

t(τ)+K∑
t=t

(τ)
n,1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t).

(117)

(i) If x(τ)
n (t(τ) +K)− x(τ)

n (t(τ)) ≤ 0, then Φ
(τ)
n (t(τ)) ≤ 0.

Since the right-hand-side of (23) is greater than or equal to 0,
(23) is true.

(ii) If x(τ)
n (t(τ)+K)−x(τ)

n (t(τ)) > 0, then x(τ)
n (t(τ)+K) >

x
(τ)
n (t(τ)). Since x(τ)

n (t(τ)) ≥ 0, we have,

x(τ)
n (t(τ) +K) > 0. (118)

First, since x(τ)
n (t(τ) − 1) ≥ 0 and η = ln

(
N+ε
ε

)
, we have

that η ≥ ln

(
1+ ε

N

x
(τ)
n (t(τ)−1)+ ε

N

)
. Thus,

Φ(τ)
n (t(τ)) ≤ wn

[
x(τ)
n (t(τ) +K)− x(τ)

n (t(τ))
]

≤ wnx(τ)
n (t(τ) +K). (119)

Second, the definition of t(τ)
n↑ in (114) implies that t(τ)

n↑ is the
last time-slot that the n-th decision variable x

(τ)
n increases.

Moreover, the definition of t(τ)
n,1 in (116) implies that t(τ)

n,1 ≥
t
(τ)
n↑ . Thus, the decision x

(τ)
n never increases after time t(τ)

n,1,
i.e.,

x(τ)
n (t) ≥ x(τ)

n (t(τ) +K), for all t ∈ [t
(τ)
n,1, t

(τ) +K − 1].
(120)

According to (118) and (120), we have,

x(τ)
n (t) > 0, for all t ∈ [t

(τ)
n,1, t

(τ) +K]. (121)

Third, according to (121) and the optimality condition in (57)-
(59), (68)-(69) and (78)-(80), we have,

cn(t)−
∑

m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)− θ(τ)
n (t+ 1) = 0,

for all t ∈ [t
(τ)
n,1, t

(τ) +K], (122)

where, as defined in (16), θ
(τ)
n (t(τ) + K + 1) =

wn
η ln
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1+ ε

N

x
(τ)
n (t(τ)+K)+ ε

N

)
. By taking the sum of the equations

in (122) from time t(τ)
n,1 to t(τ) +K, and then by rearranging

the terms, we have,

t(τ)+K∑
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)
. (123)

Next, according to (120) and (123), we have,

η
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ε

N

] ∑
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≥ η
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ε
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n (t(τ) +K) + ε

N

)]
, (124)

where the first inequality is because of (120) and the second
equality is because of (123). Then

Fourth, we use the conclusion from Lemma 12 below
(please see Appendix G for the complete proof of Lemma 12).

Lemma 12. For each version τ of R-FHC, we have,

t(τ)+K∑
t=t

(τ)
n,1

cn(t) + θ(τ)
n (t

(τ)
n,1) ≥ wn. (125)

By applying Lemma 12 to (124), we have,
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·
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·
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]
ln

(
x

(τ)
n (t(τ) +K) + ε

N
ε
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,

(126)

where the inequality is because of Lemma 12.
Finally, we use the conclusion from Lemma 13 below

(please see Appendix H for the complete proof of Lemma 13).

Lemma 13. Let the function f(x) = (x + y) ln
(
x+y
y

)
− x,

where y is any strictly positive constant. Then, we have,

f(x) ≥ 0, for all x ≥ 0. (127)
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By applying Lemma 13 to (126), we have,

η

t(τ)+K∑
t=t

(τ)
n,1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

≥ wnx(τ)
n (t(τ) +K). (128)

Hence, (119) and (128) implies that (117) is true.
Then by complementary slackness (55) and (76), and
N∑
n=1

ε
N

∑
m:n∈Sm(t)

β
(τ)
m (t) ≤ ε

M(t)∑
m=1

β
(τ)
m (t), (23) is true.

APPENDIX F
PROOF OF LEMMA 11 IN APPENDIX E-B

For clarity, we re-state Lemma 11 below.
Lemma 11. (Preliminary upper-bound of the left-hand-

side of (23)) For each version τ of R-FHC, the sum of the
left-hand-side of (23) can be upper-bounded as following,

N∑
n=1

ψ(τ)
n (t

(τ)
beg ) +

∑
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≤T −K−1

N∑
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n (t
(τ)
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end )

≤
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N∑
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η

ln

(
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N

x
(τ)
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N

)
, (129)

where t(τ)
beg , t(τ)

mid and t(τ)
end are defined in (53).

Proof. First, the definition of Ω
(τ)
n (t(τ)), φ

(τ)
n (t(τ)) and

ψ
(τ)
n (t(τ)) in (18)-(20) implies that the left-hand-side of (129),
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. (130)

Since t(τ)
beg ≤ 0, we have

x(τ)
n (t

(τ)
beg ) = 0. (131)

Thus,
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beg ) ln

(
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= 0. (132)

Moreover, since 0 ≤ x(τ)
n (t

(τ)
end +K) ≤ 1, we have,
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≥ 0. (133)

By applying (132) and (133) to (130), we have,
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(134)

Second, for each term in (134), by adding a term of ε
N

times the corresponding ln(·) term, and reducing this term,
the whole value will not change. Thus, we have,
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Next, by combining the terms ε
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Third, since
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from (136), we have,
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By rearranging and combining the terms in (137), we have,
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Fourth, by applying Lemma 8 in Appendix B to (138), we
have,
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The law of telescoping sums implies that,∑
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Moreover, according to (131) and Lemma 8 in Appendix B,
we have,
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where the first equality is because of (131), the inequality is
because of Lemma 8.

Finally, by applying (140) and (141) to (139), we have,
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APPENDIX G
PROOF OF LEMMA 12 IN APPENDIX E-B

For clarity, we re-state Lemma 12 below.
Lemma 12. For each version τ of R-FHC, we have,

t(τ)+K∑
t=t

(τ)
n,1

cn(t) + θ(τ)
n (t

(τ)
n,1) ≥ wn. (143)

Proof. We proof Lemma 12 by considering two different cases
of the value of t(τ)

n,1.
(i) If t(τ)

n↑ ≥ t(τ) + K − drcoe + 1, then t
(τ)
n,1 = t

(τ)
n↑ . If

there is no increasing of the decision variable x
(τ)
n (t) from

time t(τ) + 1 to t(τ) + K, then x
(τ)
n (t(τ) + K) ≤ x

(τ)
n (t(τ)).

Thus, Φ
(τ)
n (t(τ)) ≤ 0. Since the right-hand-side of (23) is

greater than or equal to 0, (23) is true. Therefore, we only
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need to consider the case that t(τ)
n↑ is the last tim-slot the n-

th decision variable x(τ)
n increases. This means x(τ)

n (t
(τ)
n↑ ) >

x
(τ)
n (t

(τ)
n↑ − 1). Thus, y(τ)
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(τ)
n↑ ) > 0. Then, according to the

optimality condition (60), we know,
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n (t
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n↑ ) = wn. (144)

Since cn(t) ≥ 0 for all t ∈ [t
(τ)
n,1, t

(τ) + K], from (144), we
have,
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cn(t) + θ(τ)
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n,1) ≥ wn. (145)

(ii) If t(τ)
n↑ < t(τ) +K − drcoe+ 1, then t(τ)

n,1 = t(τ) +K −
drcoe+ 1. Then, we have,
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Since θ(τ)
n (t

(τ)
n,1) ≥ 0, from (146), we have,
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APPENDIX H
PROOF OF LEMMA 13 IN APPENDIX E-B

For clarity, we re-state Lemma 13 below.
Lemma 13. Let the function f(x) = (x+ y) ln

(
x+y
y

)
−x,

where y is any strictly positive constant. Then, we have,

f(x) ≥ 0, for all x ≥ 0. (148)

Proof. Taking the first derivative of the function f(x), we
have,

df(x)

dx
= ln

(
x+ y

y

)
≥ 0, for all x ≥ 0.

Hence, f(x) ≥ f(0) = 0 for all x ≥ 0.

APPENDIX I
PROOF OF LEMMA 6

Proof. We prove Lemma 6 by considering the relation of the
optimal offline primal cost and each side of (28). First of
all, for any time from t0 to t1, applying Karush-Kuhn-Tucker
(KKT) conditions [38, p. 243] to (13), we have the following
equations,

Complementary slackness:

βOPT
m (t)

1−
∑

n∈Sm(t)

xOPT
n (t)

 = 0,

for all m ∈ [1,M(t)], t ∈ [t0, t1], (149)

θOPT
n (t)

[
xOPT
n (t)− xOPT

n (t− 1)− yOPT
n (t)

]
= 0,

for all n ∈ [1, N ], t ∈ [t0, t1], (150)
Stationarity/Optimality:

xOPT
n (t)

[
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∑
m:n∈Sm(t)

βOPT
m (t) + θOPT

n (t)

− θOPT
n (t+ 1)

]
= 0, for all n ∈ [1, N ], t ∈ [t0, t1],

(151)

yOPT
n (t)

[
wn − θOPT

n (t)
]

= 0,

for all n ∈ [1, N ], t ∈ [t0, t1]. (152)

Next, according to complementary slackness (149) and
(150), we have that the optimal offline cost from time t0 to
t1,

CostOPT(t0 : t1)

=

t1∑
t=t0

N∑
n=1

cn(t)xOPT
n (t) +

t1∑
t=t0

N∑
n=1

wny
OPT
n (t)

=

t1∑
t=t0

N∑
n=1

cn(t)xOPT
n (t) +

t1∑
t=t0

N∑
n=1

wny
OPT
n (t)

+

t1∑
t=t0

M(t)∑
m=1

βOPT
m (t)

1−
∑

n∈Sm(t)

xOPT
n (t)


+

t1∑
t=t0

N∑
n=1

θOPT
n (t)

[
xOPT
n (t)− xOPT

n (t− 1)− yOPT
n (t)

]
.

(153)

By rearranging the terms in (153), we have,

CostOPT(t0 : t1)

=

t1∑
t=t0

M(t)∑
m=1

βOPT
m (t)−

N∑
n=1

θOPT
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θOPT
n (t1 + 1)xOPT

n (t1)

+

t1∑
t=t0

N∑
n=1

xOPT
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

βOPT
m (t) + θOPT

n (t)

− θOPT
n (t+ 1)

]
+

t1∑
t=t0

N∑
n=1

yOPT
n (t)

[
wn − θOPT

n (t)
]
.

(154)

Then, by applying the optimality condition (151) and (152) to
(154), we have,

CostOPT(t0 : t1)
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=

t1∑
t=t0

M(t)∑
m=1

βOPT
m (t)−

N∑
n=1

θOPT
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θOPT
n (t1 + 1)xOPT

n (t1). (155)

On the other hand, notice that the online dual variables
β

(τ)
m (t) and θ

(τ)
n (t) are non-negative. Thus, according to the

primal constraints (2c) and (12) of the offline optimization
problem, we have,

CostOPT(t0 : t1)

≥
t1∑
t=t0

N∑
n=1

cn(t)xOPT
n (t) +

t1∑
t=t0

N∑
n=1

wny
OPT
n (t)

+

t1∑
t=t0

M(t)∑
m=1

β(τ)
m (t)

1−
∑

n∈Sm(t)

xOPT
n (t)


+

t1∑
t=t0

N∑
n=1

θ(τ)
n (t)

[
xOPT
n (t)− xOPT

n (t− 1)− yOPT
n (t)

]
.

(156)

By rearranging the terms in (156), we have,

CostOPT(t0 : t1)

≥
t1∑
t=t0

M(t)∑
m=1

β(τ)
m (t)−

N∑
n=1

θ(τ)
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θ(τ)
n (t1 + 1)xOPT

n (t1)

+

t1∑
t=t0

N∑
n=1

xOPT
n (t)

[
cn(t)−

∑
m:n∈Sm(t)

β(τ)
m (t) + θ(τ)

n (t)

− θ(τ)
n (t+ 1)

]
+

t1∑
t=t0

N∑
n=1

yOPT
n (t)

[
wn − θ(τ)

n (t)
]
.

(157)

Notice that the optimal offline primal variables xOPT
n (t) and

yOPT
n (t) are non-negative. Moreover, the optimality condition

in (57)-(60), (68)-(70) and (78)-(81) of the online optimization
problem of R-FHC implies that, to guarantee that the online
dual is not −∞, cn(t)−

∑
m:n∈Sm(t)

β
(τ)
m (t)+θ

(τ)
n (t)−θ(τ)

n (t+

1) ≥ 0 and wn − θ(τ)
n (t) ≥ 0. Thus, from (157), we have,

CostOPT(t0 : t1)

≥
t1∑
t=t0

M(t)∑
m=1

β(τ)
m (t)−

N∑
n=1

θ(τ)
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θ(τ)
n (t1 + 1)xOPT

n (t1). (158)

Finally, according to (155) and (158), we have,

t1∑
t=t0

M(t)∑
m=1

β(τ)
m (t)−

N∑
n=1

θ(τ)
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θ(τ)
n (t1 + 1)xOPT

n (t1)

≤
t1∑
t=t0

M(t)∑
m=1

βOPT
m (t)−

N∑
n=1

θOPT
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θOPT
n (t1 + 1)xOPT

n (t1). (159)

Hence,

D(τ)(t0 : t1) ≤ DOPT(t0 : t1)−
N∑
n=1

θOPT
n (t0)xOPT

n (t0 − 1)

+

N∑
n=1

θOPT
n (t1 + 1)xOPT

n (t1) +

N∑
n=1

θ(τ)
n (t0)xOPT

n (t0 − 1)

−
N∑
n=1

θ(τ)
n (t1 + 1)xOPT

n (t1).

APPENDIX J
PROOF OF THEOREM 2

Proof. Here we provide the complete proof for Theorem 2,
including the missing details in our sketch in the main body
of the paper.

(Preliminary results from Lemma 5). We consider two
important conclusions resulting from Lemma 5. First, from
(22), we have the following conclusions (see (160), (161) and
(162)).

(i) If drcoe < K+1, then t(τ)
n,0 = min{t(τ)

n↓ , t
(τ) +drcoe−1}.

Therefore,
(i.a) consider the episodes starting from time t(τ) ∈ [1, T −
drcoe]. Since t(τ)

n,0 ≤ t(τ) + drcoe − 1, for all n, according to
(22), we have,

N∑
n=1

Ω(τ)
n (t(τ))

≤ η
t(τ)+drcoe−1∑

t=t(τ)

N∑
n=1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

= η

t(τ)+drcoe−1∑
t=t(τ)

N∑
n=1

[
x(τ)
n (t)

∑
m:n∈Sm(t)

β(τ)
m (t)

+
ε

N

∑
m:n∈Sm(t)

β(τ)
m (t)

]

≤ η(1 + ε)

t(τ)+drcoe−1∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t). (160)

The last inequality is because of complementary slackness (55)

and (76), and
N∑
n=1

ε
N

∑
m:n∈Sm(t)

β
(τ)
m (t) ≤ ε

M(t)∑
m=1

β
(τ)
m (t).
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(i.b) Consider the episodes starting from time t(τ) ∈ [T −
drcoe+ 1, T ]. Since t(τ)

n↓ ≤ T , we have that t(τ)
n,0 ≤ T , for all

n. Thus, according to (22), we have,

N∑
n=1

Ω(τ)
n (t(τ))

≤ η
T∑

t=t(τ)

N∑
n=1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

≤ η(1 + ε)

T∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t). (161)

(ii) If drcoe ≥ K + 1, then t
(τ)
n,0 = min{t(τ)

n↓ , t
(τ) + K}.

Therefore,
(ii.a) consider the episodes starting from time t(τ) ∈ [1, T −

K − 1]. Since t(τ)
n,0 ≤ t(τ) + K, for all n, according to (22),

we have,

N∑
n=1

Ω(τ)
n (t(τ))

≤ η
t(τ)+K∑
t=t(τ)

N∑
n=1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

≤ η(1 + ε)

t(τ)+K∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t). (162)

(ii.b) Consider the episodes starting from time t(τ) ∈ [T −
K, T ]. Since t(τ)

n↓ ≤ T , we have that t(τ)
n,0 ≤ T , for all n. Thus,

according to (22), (161) is still true.
Second, from (23), we have the following conclusions (see

(163), (164) and (165)).
(i) If drcoe < K + 1, then t

(τ)
n,1 = max{t(τ)

n↑ , t
(τ) + K −

drcoe+ 1}. Therefore,
(i.a) consider the episodes starting from time t(τ) ∈ [−K+

drcoe+ 1, T −K]. Since t(τ)
n,1 ≥ t(τ) +K − drcoe+ 1, for all

n, according to (23), we have,

N∑
n=1

Φ(τ)
n (t(τ))

≤ η
t(τ)+K∑
t=t(τ)+K
−drcoe+1

N∑
n=1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

≤ η(1 + ε)

t(τ)+K∑
t=t(τ)+K−drcoe+1

M(t)∑
m=1

β(τ)
m (t). (163)

(i.b) Consider the episodes starting from time t(τ) ∈ [−K+

1,−K + drcoe]. Since t(τ)
n↑ ≥ 1, we have that t(τ)

n,1 ≥ 1, for all
n. Thus, according to (23), we have,

N∑
n=1

Φ(τ)
n (t(τ))

≤ η
t(τ)+K∑
t=1

N∑
n=1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

≤ η(1 + ε)

t(τ)+K∑
t=1

M(t)∑
m=1

β(τ)
m (t). (164)

(ii) If drcoe ≥ K + 1, then t(τ)
n,1 = t

(τ)
n↑ . Therefore,

(ii.a) Consider the episodes starting from time t(τ) ∈ [1, T −
K]. Since t(τ)

n↑ ≥ t(τ), for all n, according to (23), we have,

N∑
n=1

Φ(τ)
n (t(τ))

≤ η
t(τ)+K∑
t=t(τ)

N∑
n=1

[
x(τ)
n (t) +

ε

N

] ∑
m:n∈Sm(t)

β(τ)
m (t)

≤ η(1 + ε)

t(τ)+K∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t). (165)

(ii.b) Consider the episodes starting from time t(τ) ∈ [−K+

1, 0]. Since t(τ)
n↑ ≥ 1, we have that t(τ)

n,1 ≥ 1, for all n. Thus,
according to (23), (164) is still true.

(Proof of Theorem 2). Note that the total cost of RLA,

CostRLA(1 : T ) =

T∑
t=1

N∑
n=1

cn(t)xRLA
n (t)

+

T∑
t=1

N∑
n=1

wn
[
xRLA
n (t)− xRLA

n (t− 1)
]
, (166)

where the decision xRLA
n (t) is calculated as in (10). Then,

applying Jensen’s Inequality to (166), we have that the total
cost of RLA,

CostRLA(1 : T ) ≤ 1

K + 1

K∑
τ=0

Cost(τ)(1 : T ). (167)

In the following, we consider two different cases of the value
of drcoe one-by-one.

Case 1. If drcoe < K + 1, according to Lemma 4 and
applying (160)–(165) to (22) and (23) in Lemma 5, we have
that the total cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{ T −drcoe∑
t(τ)=1

D(τ)(t(τ) : t(τ) + drcoe − 1)

+

T∑
t(τ)=T −drcoe+1

D(τ)(t(τ) : T )

+

−K+drcoe∑
t(τ)=−K+1

D(τ)(1 : t(τ) +K)
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+

T −K∑
t(τ)=−K
+drcoe+1

D(τ)(t(τ) +K − drcoe+ 1 : t(τ) +K)

}
. (168)

Since the online dual value D(τ)(t) at any time t is non-
negative, from (168), we have that the total cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{ drcoe−1∑
t(τ)=1

D(τ)(1 : t(τ))

+

T −drcoe∑
t(τ)=1

D(τ)(t(τ) : t(τ) + drcoe − 1)

+

T∑
t(τ)=T −drcoe+1

D(τ)(t(τ) : T )

+

−K+drcoe∑
t(τ)=−K+1

D(τ)(1 : t(τ) +K)

+

T −K∑
t(τ)=−K
+drcoe+1

D(τ)(t(τ) +K − drcoe+ 1 : t(τ) +K)

+

T∑
t(τ)=T −drcoe+2

D(τ)(t(τ) : T )

}
. (169)

Next, by applying Lemma 6 to (169), we have that the total
cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{ drcoe−1∑
t(τ)=1

DOPT(1 : t(τ))

+

drcoe−1∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ) + 1)xOPT

n (t(τ))

−
drcoe−1∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) + 1)xOPT

n (t(τ))

+

T −drcoe∑
t(τ)=1

DOPT(t(τ) : t(τ) + drcoe − 1)

−
T −drcoe∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T −drcoe∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ) + drcoe)xOPT

n (t(τ) + drcoe − 1)

+

T −drcoe∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

−
T −drcoe∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) + drcoe)xOPT

n (t(τ) + drcoe − 1)

+

T∑
t(τ)=T −drcoe+1

DOPT(t(τ) : T )

−
T∑

t(τ)=T −drcoe+1

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −drcoe+1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

−K+drcoe∑
t(τ)=−K+1

DOPT(1 : t(τ) +K)

+

−K+drcoe∑
t(τ)=−K+1

N∑
n=1

θOPT
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
−K+drcoe∑
t(τ)=−K+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T −K∑
t(τ)=

−K+drcoe+1

DOPT(t(τ) +K − drcoe+ 1 : t(τ) +K)

−
T −K∑

t(τ)=−K+drcoe+1

N∑
n=1

θOPT
n (t(τ) +K − drcoe+ 1)

· xOPT
n (t(τ) +K − drcoe)

+

T −K∑
t(τ)=−K+drcoe+1

N∑
n=1

θOPT
n (t(τ) +K + 1)

· xOPT
n (t(τ) +K)

+

T −K∑
t(τ)=−K+drcoe+1

N∑
n=1

θ(τ)
n (t(τ) +K − drcoe+ 1)

· xOPT
n (t(τ) +K − drcoe)

−
T −K∑
t(τ)=

−K+drcoe+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T∑
t(τ)=T −drcoe+2

D(τ)(t(τ) : T )

−
T∑

t(τ)=T −drcoe+2

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −drcoe+2

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

}
. (170)

By rearranging and combining the terms in (170), we have
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that the total cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{
2 drcoeDOPT(1 : T )

+

T −drcoe∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −drcoe+1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

T −K∑
t(τ)=−K+drcoe+1

N∑
n=1

θ(τ)
n (t(τ) +K − drcoe+ 1)

· xOPT
n (t(τ) +K − drcoe)

+

T∑
t(τ)=T −drcoe+2

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

−
drcoe−1∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) + 1)xOPT

n (t(τ))

−
T −drcoe∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ)+ drcoe)xOPT

n (t(τ)+ drcoe − 1)

−
−K+drcoe∑
t(τ)=−K+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
T −K∑

t(τ)=−K
+drcoe+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

}
.

(171)

Since 0 ≤ θ
(τ)
n (t) ≤ wn, from (171), we have that the total

cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{
2 drcoeDOPT(1 : T )

+

T∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

T −drcoe∑
t(τ)=1

N∑
n=1

wnx
OPT
n (t(τ))

+

T −1∑
t(τ)=T −drcoe+1

N∑
n=1

wnx
OPT
n (t(τ))

−
drcoe+1∑
t(τ)=2

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

−
T∑

t(τ)=drcoe+2

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

}
. (172)

Since x(τ)
n (0) = 0 and xOPT

n (T ) ≥ 0, from (172), we have that
the total cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{
2 drcoeDOPT(1 : T )

+

T∑
t=1

N∑
n=1

wnx
OPT
n (t)

}
. (173)

Notice that wnx
OPT
n (t) = cn(t) wn

cn(t)x
OPT
n (t(τ)) ≤

drcoe cn(t)xOPT
n (t(τ)). Finally, according to Lemma 3

and duality [38, p. 215], from (173), we have that the total
cost of RLA,

CostRLA(1 : T )

≤ CostOPT(1 : T ) +
1

K + 1
η(1 + ε)

·
{

2 drcoeCostOPT(1 : T ) + drcoeCostOPT(1 : T )
}

=

{
1 +

3η(1 + ε) drcoe
K + 1

}
CostOPT(1 : T ). (174)

Case 2. If drcoe ≥ K + 1, (11b) can be proved similarly
as in case 1. Specifically, according to Lemma 4 and applying
(160)–(165) to (22) and (23) in Lemma 5, we have that the
total cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{ T −K−1∑
t(τ)=1

D(τ)(t(τ) : t(τ) +K)

+

T∑
t(τ)=T −K

D(τ)(t(τ) : T )

+

0∑
t(τ)=−K+1

D(τ)(1 : t(τ) +K)

+

T −K∑
t(τ)=1

D(τ)(t(τ) : t(τ) +K)

}
. (175)

Since the online dual value D(τ)(t) at any time t is non-
negative, from (175), we have,

CostRLA(1 : T )
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≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{
0∑

t(τ)=K+1

D(τ)(1 : t(τ) +K)

+

T −K−1∑
t(τ)=1

D(τ)(t(τ) : t(τ) +K)

+

T∑
t(τ)=T −K

D(τ)(t(τ) : T )

+

0∑
t(τ)=−K+1

D(τ)(1 : t(τ) +K)

+

T −K∑
t(τ)=1

D(τ)(t(τ) : t(τ) +K)

+

T∑
t(τ)=T −K+1

D(τ)(t(τ) : T )

}
. (176)

Next, by applying Lemma 6 to (176), we have that the total
cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{
0∑

t(τ)=−K+1

DOPT(1 : t(τ) +K)

+

0∑
t(τ)=K+1

N∑
n=1

θOPT
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
0∑

t(τ)=−K+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T −drcoe−1∑
t(τ)=1

DOPT(t(τ) : t(τ) +K)

−
T −K−1∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T −K−1∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T −K−1∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

−
T −K−1∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T∑
t(τ)=T −K

DOPT(t(τ) : T )

−
T∑

t(τ)=T −K

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −K

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

0∑
t(τ)=−K+1

DOPT(1 : t(τ) +K)

+

0∑
t(τ)=−K+1

N∑
n=1

θOPT
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
0∑

t(τ)=−K+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T −K∑
t(τ)=1

DOPT(t(τ) : t(τ) +K)

−
T −K∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T −K∑
t(τ)=1

N∑
n=1

θOPT
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T −K∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

−
T −K∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

+

T∑
t(τ)=T −K+1

D(τ)(t(τ) : T )

−
T∑

t(τ)=T −K+1

N∑
n=1

θOPT
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −K+1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

}
. (177)

By rearranging and combining the terms in (177), we have
that the total cost of RLA,

CostRLA(1 : T )

≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T ) +
1

K + 1
η(1 + ε)

·

{
2(K + 1)DOPT(1 : T )

+

T −K−1∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −K

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)
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+

T −K∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

+

T∑
t(τ)=T −K+1

N∑
n=1

θ(τ)
n (t(τ))xOPT

n (t(τ) − 1)

−
0∑

t(τ)=−K+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
T −K−1∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
0∑

t(τ)=−K+1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

−
T −K∑
t(τ)=1

N∑
n=1

θ(τ)
n (t(τ) +K + 1)xOPT

n (t(τ) +K)

}
. (178)

Since x(τ)
n (0) = 0, by cancelling the same terms with different

signs (+ or −) in (178), we have that the total cost of RLA,

CostRLA(1 : T ) ≤ 1

K + 1

K∑
τ=0

D(τ)(1 : T )

+
1

K + 1
η(1 + ε)2(K + 1)DOPT(1 : T )

≤ [1 + 2η(1 + ε)] CostOPT(1 : T ). (179)

The last inequality is because of Lemma 3 and duality [38,
p. 215].

In conclusion, the competitive ratio of the Regularized with
Look-Ahead (RLA) algorithm is

CRRLA =

{
1 + 3η(1+ε)drcoe

K+1 , if drcoe < K + 1;

1 + 2η(1 + ε), if drcoe ≥ K + 1.
(180)

APPENDIX K
PROOF OF THEOREM 7

Proof. To prove Theorem 7, we first provide an equivalent
formulation of the problem. Then, by focusing on this equiv-
alent formulation, the previous lemmas will all hold. Hence,
the final results in Theorem 7 can be finally shown follow the
same line in Appendix J, by changing 1 + ε

N to Xcap
n + ε

N .
First of all, the offline optimization problem in Sec. VI is,

min
~X(1:T )

{ T∑
t=1

N∑
n=1

cn(t)xn(t)

+

T∑
t=1

N∑
n=1

wn [xn(t)− xn(t− 1)]
+

}
(181a)

sub. to:
∑

n∈Sm(t)

bmn(t)xn(t) ≥ am(t),

for all m ∈ [1,M(t)], t ∈ [1, T ],
(181b)

xn(t) ≤ Xcap
n , for all n ∈ [1, N ], t ∈ [1, T ],

(181c)

xn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ]. (181d)

Then, (i) by introducing an auxiliary variable yn(t) for the
switching term [xn(t) − xn(t − 1)]+, together with the new
constraint yn(t) ≥ xn(t) − xn(t − 1), for all n ∈ [1, N ]; (ii)
by applying knapsack cover (KC) inequalities [40], we can
get an equivalent formulation of the offline problem (181) as
following.

min
~X(1:T )

{ T∑
t=1

N∑
n=1

cn(t)xn(t)

+

T∑
t=1

N∑
n=1

wnyn(t)

}
(182a)

sub. to:
∑

n∈Sm(t)

bmn(t)xn(t) ≥ am(t),

for all m ∈ [1,M(t)], t ∈ [1, T ],
(182b)∑

n∈Sm(t)/S′
m(t)

bmn(t)xn(t) ≥ am(t)−
∑

n∈S′
m(t)

bmn(t)Xcap
n ,

for all m ∈ [1,M ], t ∈ [1, T ],

and all S
′

m(t) =

n | am(t)−
∑

n∈S′
m(t)

bmn(t)Xcap
n ≥ 0

 ,

(182c)
yn(t) ≥ xn(t)− xn(t− 1), for all n ∈ [1, N ], t ∈ [1, T ],

(182d)
xn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ]. (182e)

Then, let ~β(t) = [βm(t),m = 1, ...,M(t)]T, ~α(t) =
[αm,S′

m(t)(t),m = 1, ...,M(t), all S
′

m(t)]T and ~θ(t) =

[θn(t), n = 1, ..., N ]T be the Lagrange multipliers for con-
straints (182b), (182c) and (182d), respectively. We have the
offline dual optimization problem as follows,

max
{~β(1:T ),~α(1:T ),~θ(1:T )}

T∑
t=1

M(t)∑
m=1

βm(t)am(t)

+

T∑
t=1

M(t)∑
m=1

∑
all S′

m(t)

αm,S′
m(t)(t)

·

am(t)−
∑

n∈S′
m(t)

bmn(t)Xcap
n


(183a)

sub. to: cn(t)−
∑

m:n∈Sm(t)

bmn(t)βm(t)

−
M(t)∑
m=1

∑
m:n∈Sm(t)/S′

m(t)

∑
all S′

m(t)

bmn(t)αm,S′
m(t)(t)

+ θn(t)− θn(t+ 1) ≥ 0,

for all n ∈ [1, N ], t ∈ [1, T ], (183b)
wn − θn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ], (183c)
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βm(t) ≥ 0, for all m ∈ [1,M(t)], t ∈ [1, T ], (183d)

αm,S′
m(t)(t) ≥ 0, for all m ∈ [1,M(t)], t ∈ [1, T ], S

′

m(t),

(183e)
θn(t) ≥ 0, for all n ∈ [1, N ], t ∈ [1, T ]. (183f)

Let βOPT
m (t), αOPT

m,S′
m(t)

(t) and θOPT
n (t) be the optimal solution

to (183). Then, the optimal offline dual cost is,

DOPT(1 : T ) ,
T∑
t=1

M(t)∑
m=1

βOPT
m (t)am(t)

+

T∑
t=1

M(t)∑
m=1

∑
all S′

m(t)

αOPT
m,S′

m(t)
(t)

·

am(t)−
∑

n∈S′
m(t)

bmn(t)Xcap
n

 (184)

Similarly, we can get an equivalent formulation of (36) and
the corresponding online dual. Let DRLA(1 : T ) be the total
dual cost of RLA. As in the proof of Theorem 2, in this case,
we can still prove the competitive performance of RLA by
establishing the following inequalities,

CostRLA(1 : T )
(a)

≤ CR ·DRLA(1 : T )

(b)

≤ CR ·DOPT(1 : T )
(c)

≤ CR · CostOPT(1 : T ). (185)

Step-1 (Checking the dual feasibility): By changing 1+ ε
N

to Xcap
n + ε

N in (16), we let

θ(τ)
n (t(τ)) ,

wn
ηn

ln

(
Xcap
n + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
. (186)

where ηn , ln
(
Xcap
n + ε

N
ε
N

)
. Then, Lemma 3 still holds. The

proof follows the same line in Appendix C, by changing 1+ ε
N

to Xcap
n + ε

N .
Step-2 (Quantifying the gap between the online primal

cost and the online dual cost): For each version τ of R-FHC,
we define the primal cost Cost(τ)(t(τ) : t(τ) + K) as in (3)
and the online dual cost

D(τ)(t(τ) : t(τ) +K) ,
t(τ)+K∑
t=t(τ)

M(t)∑
m=1

β(τ)
m (t)am(t)

+

T∑
t=1

M(t)∑
m=1

∑
all S′

m(t)

α
(τ)

m,S′
m(t)

(t)

·

am(t)−
∑

n∈S′
m(t)

bmn(t)Xcap
n

 .
(187)

By changing 1 + ε
N to Xcap

n + ε
N in (18)–(20), we define the

tail-terms in this case as

Ω(τ)
n (t(τ)) , wn

[
x(τ)
n (t(τ))− x(τ)

n (t(τ) − 1)
]+

, (188)

φ(τ)
n (t(τ)) , −wn

ηn
x(τ)
n (t(τ)) ln

(
Xcap
n + ε

N

x
(τ)
n (t(τ) − 1) + ε

N

)
,

(189)

ψ(τ)
n (t(τ)) ,

wn
ηn
x(τ)
n (t(τ) +K) ln

(
Xcap
n + ε

N

xn(t(τ) +K) + ε
N

)
.

(190)

Then, Lemma 4 and Lemma 6 still hold. The proofs follow the
same line in Appendix D and Appendix I, by changing 1 + ε

N
to Xcap

n + ε
N . However, there is one difference in Lemma 5.

This difference will also appear in the final the competitive
ratio of RLA (see Theorem 7). For clarity, we provide the
new relation between the tail-terms and the online dual costs
(new version of Lemma 5) below.

Lemma 14. For each version τ of R-FHC, the following holds,

(i)

d T
K+1e∑
u=0

∑
t(τ)=τ+(K+1)u

N∑
n=1

Ω(τ)
n (t(τ)) ≤ η(1 + εB̄)

×
d T
K+1e∑
u=0

∑
t(τ)=τ+(K+1)u

D(τ)(t(τ) : t(τ) + ∆), (191)

(ii)

d T
K+1e∑
u=−1

∑
t(τ)=τ+(K+1)u

N∑
n=1

[
φ(τ)
n (t(τ)) + ψ(τ)

n (t(τ))
]

≤ η(1 + εB̄)

d T
K+1e∑
u=−1

∑
t(τ)=τ

+(K+1)u

D(τ)(t(τ) +K −∆ : t(τ) +K),

(192)

where B̄ , max
{m,n,t}

bmn(t), η , max
n

ηn, D(τ)(t) = 0 for all

t ≤ 0 and t > T .

Note that the difference between Theorem 14 and Theo-
rem 5 is B̄. This is because of the more general demand-
supply-balance constraint (34) and the capacity constraint (35).
Due to these two constraints, the complementary slackness
(see (55)) becomes,

β(τ)
m (t)

am(t)−
∑

n∈Sm(t)

bmn(t)x(τ)
n (t)

 = 0,

for all m ∈ [1,M(t)], t ∈ [t(τ), t(τ) +K], (193)

Then, in the final step of proving (22) and prov-
ing (23) of Lemma 5, (see the last paragraph in Ap-
pendix E-A and Appendix E-B, respectively), we do not have
N∑
n=1

ε
N

∑
m:n∈Sm(t)

β
(τ)
m (t) ≤ ε

M(t)∑
m=1

β
(τ)
m (t). Instead, from the

new complementary slackness (193) above, we have,

N∑
n=1

ε

N

∑
m:n∈Sm(t)

bmn(t)β(τ)
m (t)
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≤ ε max
{m,n,t}

bm,n(t)

M(t)∑
m=1

β(τ)
m (t)am(t). (194)

This is exactly where the additional factor B̄ comes from.
Finally, following the same line in Appendix J, by changing

1+ ε
N to Xcap

n + ε
N , we can prove the final results in Theorem 7.
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