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Abstract—Opportunistic scheduling of delay-tolerant traffic has
been shown to substantially improve spectrum efficiency. To
encourage users to adopt delay-tolerant scheduling for capacity-
improvement, it is critical to provide guarantees in terms of
completion time. In this paper, we study application-level schedul-
ing with deadline constraints, where the deadline is pre-specified
by users/applications and is associated with a deadline violation
probability. To address the exponentially-high complexity due to
temporally-varying channel conditions and deadline constraints,
we develop a novel asymptotic approach that exploits the largeness
of the network to our advantage. Specifically, we identify a
lower bound on the deadline violation probability, and propose
simple policies that achieve the lower bound in the large-system
regime. The results in this paper thus provide a rigorous analyt-
ical framework to develop and analyze policies for application-
level scheduling under very general settings of channel models
and deadline requirements. Further, based on the asymptotic
approach, we propose the notion of Application-Level Effective
Capacity region, i.e., the throughput region that can be supported
subject to deadline constraints, which allows us to quantify the
potential gain of application-level scheduling.

I. INTRODUCTION

Today’s mobile Internet is facing a grand challenge to meet
the exponentially increasing demand for mobile broadband
services. However, not all traffic is created equal. While some
applications require instant access, many other applications may
be willing to tolerate delay from minutes to hours [1, 2]. By
opportunistically scheduling delay-tolerant transmission when
the network condition is more favorable, we can significantly
improve network utilization.

In this context, delay is a key performance metric that
is directly tied to the users’ overall experience. Unless the
network can set a clear expectation for the completion time,
users may fear that their traffic could be delayed for too long.
Therefore, providing predictable completion time is critical
for encouraging users to adopt delay-tolerant scheduling for
capacity improvement. In this paper, we consider a model
where each transmission task is associated with a pre-specified
deadline, which is the maximum delay that the application can
tolerate and ranges from minutes to hours depending on the
applications. The goal of the network is then to schedule as
many users as possible before their deadlines. We refer to this
problem as the application-level scheduling problem.

When there is a single base-station, the above problem can
be mapped to a single-server job scheduling problem with
deadlines. When there is no channel variation, it is well-
known that simple policies such as Earliest-Deadline-First

(EDF) are optimal in underloaded systems [3]. Unfortunately,
such a deadline-constrained scheduling problem is known to be
extremely difficult when there are channel variations because
of the difficult trade-off between serving more urgent users and
serving users with better channel conditions. In the special case
with two-state channels, variants of EDF have been proposed
to deal with this trade-off, e.g., the Feasible-Earlier-Due-Date
(FEDD) policy in [4] and the Earliest Positive-Debt Deadline
First (EPDF) policy in [5]. For multi-state channels, when the
arrivals and deadlines follow a periodic structure, the work
in [6] provides a framework for optimization under deadline
constraints. However, for more general systems with multi-state
channels and without a periodic structure, we are not aware
of a tractable methodology to find optimal scheduling policies
subject to strict deadline constraints.

Under such multi-state channels and general arrival models,
although recently-developed optimization-based approaches to
wireless control have been very successful for maximizing
long-term throughput and stability [7–9], they are of limited ca-
pability in maximizing capacity subject to deadline constraints.
For instance, the Delay-driven MaxWeight [9] policy is shown
to be throughput optimal for flow-level scheduling, but may
perform poorly in the case with deadline constraints. Similarly,
even though the Lyapunov-function based method developed
in [10] can produce order-optimal capacity-delay tradeoffs, the
attainable capacity at a finite deadline constraint could still
be far from optimum [1]. Finally, stochastic decision theory
such as Markov Decision Process (MDP) can be used to solve
the optimal decision subject to deadline constraints. However,
as the number of users increases, such a stochastic decision
problem is known to incur exponentially-high complexity.

In this paper, we develop a novel approach to this open
problem. Our key idea is that when the system is large,
significant simplicity will arise, which will enable us to develop
simple policies that are close-to-optimal. In other words, instead
of suffering from the curse-of-dimensionality when the problem
size is large, we exploit the largeness of the system to our ad-
vantage. Specially, we consider the large-system regime where
both the arrival rate and the capacity increase proportionally
to infinity. We show that when the system size is large, the
interactions between users can be captured by the resource
constraints and the deadline violation probability of each user
is mainly determined by its own channel conditions. Based on
such insights, we can then decouple the system and design
policies that are not only provably optimal in the large-system
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regime, but also perform very well for medium-sized systems.
For readers familiar with the large-system asymptotics [11],

the intuition that the competition between users becomes less
dominant in large-system regime may seem somewhat natural.
However, as we will elaborate later, when there is channel
variation, it is non-trivial to design scheduling policies that
correctly exploit this intuition. Specifically, if one simply
generalizes policies from the case of no channel variations
(e.g., EDF), these policies may in fact perform poorly even
if the system size is large. In contrast, the results in this paper
provide a rigorous analytical framework to develop and analyze
the correct scheduling policies in such settings.

In summary, the main contributions of this paper are:

• We first present a lower bound on the deadline violation
probability for application-level scheduling with deadline
constraints under a given network capacity (Section III-A).
Moreover, we show that this lower bound is tight in the
large-system regime as it can be achieved by appropriately
designed scheduling schemes. We note that this result
holds under very general channel models that may have
multiple transmission rates and even temporal correlation
patterns.

• We then develop new scheduling policies, called
Maximum-Total-On-users (MTO) and its work-conserving
enhancement (MTO-WCE) (Sections III-B to III-C).
They are not only asymptotically optimal in the large-
system regime, but also achieve superior performance for
medium-sized systems. We demonstrate that it is non-
trivial to design good policies, e.g., the variants of EDF
and Delay-driven MaxWeight in fact perform poorly even
when the system size is large.

• We generalize these results from single-class systems
(Section III) to multi-class systems (Section IV), where
the performance requirements of different classes can
differ significantly. Further, based on the above asymp-
totic approach, we study the Application-Level Effective
Capacity (ALEC), i.e., the maximum throughput that can
be supported by the system with given requirements on the
deadline violation probability (Section IV). We show that
our proposed policies asymptotically achieve the optimal
ALEC region. By evaluating the ALEC, we demonstrate
the significant potential for capacity improvement thanks
to application-level opportunistic control.

II. SYSTEM MODEL

We consider a wireless network with a single base-station
(BS) serving a sequence of mobile users. The system operates
in a time-slotted fashion, i.e., t ∈ {0, 1, 2, . . .}. The time-slot
length considered throughout this paper is typically much larger
than that in the conventional opportunistic-scheduling schemes
that leverage small-time-scale fading [12, 13]. There, each time-
slot is on the order of milliseconds. In contrast, since the
deadlines for application-level scheduling usually range from
minutes to hours [14], we will use time-slot length of tens of
seconds to a few minutes.

A. Traffic Model
We focus on the downlink of the network in this paper,

although the uplink can be studied similarly. The BS serves K

classes of users that enter the network sequentially and request
to download files from the BS. We assume that the arrival
processes are stationary and ergodic, and are independent
across classes. Let Ak(t) (k = 1, 2, . . . ,K) represent the
number of class-k users that arrive during time-slot t. For ease
of exposition, we focus on the case where for each class k,
the number Ak(t) is a Poisson random variable with mean
λk = E{Ak(t)}. Denote λ as the aggregated arrival rate, i.e,

λ =
∑K

k=1 λk, and let αk be the ratio of the load contributed
by class-k users, i.e, αk = λk/λ.

Let I = {1, 2, . . .} be the index set of all users that enter the
system. Each user i ∈ I requests to download a file of size Fi.
We assume that the file size Fi is known as soon as the task
is created. For ease of exposition, we present the theoretical
results assuming unit-size files, i.e., Fi = 1. However, we note
that the results in this paper can be easily extended to the
scenario where users from the same class request files with i.i.d.
random size, provided that the file sizes are independent of the
channel processes. Further, all simulation results in Section V
are based on random file sizes.

Associated with each class-k user is a (relative) deadline Dk,
which is the maximum delay that a class-k user can tolerate.
For example, for a class-k user arriving in time-slot t, its
transmission task should be completed before t+Dk (absolute
deadline). Otherwise, user i will give up the task and depart
the system.

B. Channel Model
For each i ∈ I, let the channel state Si(t) represent the

transmission rate (in units of bits/slot per unit of radio resource)
available to user i in time-slot t. We model Si(t) as a Markov
chain over a finite set of the possible transmission rates, i.e.,
Si(t) ∈ {r1, r2, . . . , rJ}, where J is the number of possible
rates, and 0 = r1 < r2 < . . . < rJ .

We assume that users from the same class have the same
transition probability matrix, which is given by

P (k) =
[
p
(k)
j1j2

]
J×J

, k = 1, 2, . . . ,K,

where p
(k)
j1j2

∈ [0, 1], 1 ≤ j1, j2 ≤ J , is the transition
probability from state j1 to state j2 for class-k users. In
addition, we assume that channel processes are independent
across users. Denote the stationary distribution for the Markov

chain of class-k as π(k) = [π
(k)
1 , π

(k)
2 , . . . , π

(k)
J ], where π

(k)
j

(1 ≤ j ≤ J) is the stationary probability of state j. We assume
that the channel processes have reached the steady state, i.e.,
with the stationary distribution π(k), when transmission tasks
are created.

C. Scheduling Model and Performance Objectives
At the beginning of each time-slot t, the BS makes schedul-

ing decisions based on the network status. We define the system
capacity C as the amount of available radio resource, which is
the product of bandwidth and slot-length. We assume that when
a user i is selected to transmit in time-slot t, its download task
can be completed within the given time-slot using Fi/Si(t)
units of resource. This assumption is reasonable since the time-
slot length is much larger than that in packet-level scheduling.
For example, if we take a time-slot of 30 seconds, as many



3

as 3 Gbits (when the bandwidth is 20 MHz and the spectrum
efficiency is 5 bps/Hz [15]) can be transferred in a time-slot.
Hence, for a medium file size of a few MBytes, these files can
be easily completed in one time-slot provided that the channel
condition is good.

Let Qk(t) represent the number of class-k users waiting
for transmission. Note that in time-slot t, the users departing
the system include the users being scheduled and the users
violating their deadlines. Then, for each k ∈ {1, 2, . . . ,K},
the queue length Qk(t) evolves as follows

Qk(t+ 1) = Qk(t)− Zk(t)− Vk(t) +Ak(t),

where Zk(t) and Vk(t) represent the number of completed users
and expired users in time-slot t, respectively. Let Γ be the set of
all possible policies. Then for each policy γ ∈ Γ, the deadline
violation probability of class k is defined as

vk,γ(λ, C) = lim sup
T→∞

1

λkT

T−1∑
t=0

E[Vk(t)],

where λ = [λ1, λ2, . . . , λK ] is the arrival rate vector.
In a single-class system, we omit the class index for simplic-

ity and denote the deadline violation probability by vγ(λ,C).
The objective of the BS is to minimize the deadline violation
probability for a given load level, i.e.,

min
γ∈Γ

vγ(λ,C).

In a multi-class system, the deadline violation probabilities
across different classes are coupled and the BS needs to trade-
off the performance of different classes. In this case, we
are interested in the optimal region of the deadline violation
probability, which is defined as follows.

Definition 1 (Optimal DVP region) Given λ and C, the op-
timal region for the Deadline Violation Probability (optimal
DVP region) is defined as the set of probability vectors that
can be achieved under certain scheduling policy, i.e.,

V(λ, C) =
{
v ∈ [0, 1]K : ∃γ ∈ Γ,

such that vk,γ(λ, C) ≤ vk for all classes k
}
. (1)

We are then interested in identifying the optimal DVP region
and designing policies that can achieve any point in this region.

Remark: We note that application-level scheduling studied
in this paper differs from typical packet-level and flow-level
scheduling problems in literature. Our model differs from
packet-level scheduling [12, 13] due to two reasons. First,
the user population is dynamic (rather than fixed in [12, 13])
due to user arrivals and departures/expirations. Second, there
is a difference in the time-scale that we are interested in.
Specifically, packet-level scheduling focuses on the small time-
scale channel variations typically due to multi-path fading. In
contrast, our application-level scheduling focuses on exploit-
ing larger time-scale variations, which are typically due to
shadowing and/or users moving further/closer to the BS. This
difference can be seen from our choices of using larger time-
slots and of completing a task in one time-slot. We emphasize
that our model does not preclude the BS from using packet-
level opportunistic scheduling schemes [12, 13] when serving

the users within one time-slot, and we assume that the data rate
Si(t) already captures such fast-time-scale opportunistic gains.
Our model also differs from flow-level scheduling. In typical
flow-level scheduling studies [8, 9, 16], flow-level dynamics
and packet-level dynamics are mixed together, i.e., packet-
level scheduling decisions must take into account flow-level
statistics (e.g., delay or residual file size [9]). In contrast,
our model can be viewed as a simplification that decouples
flow-level scheduling from packet-level scheduling. The benefit
of such simplification is that we can provide rigorous delay
guarantees (in comparison, existing flow-level studies focus
only on stability and throughput optimality [8, 9, 16]).

III. SCHEDULING IN SINGLE-CLASS SYSTEMS

In this section, we study the single-class case, i.e., K = 1,
and omit the class index for simplicity. Recall that the BS
aims to minimize the deadline violation probability for a given
system capacity C and arrival rate λ. We first identify a lower
bound on the deadline violation probability by studying an
individual decision problem. Then, we propose asymptotically
optimal policies, called MTO and MTO-WCE, which achieve
the lower bound in the large-system regime, i.e., when C and
λ proportionally grow to infinity.

A. A Lower Bound on the Deadline Violation Probability
To obtain a lower bound on the deadline violation probability,

we first focus on the decision problem for an individual user:
the user decides whether or not to request transmission in each
time-slot based on its waiting time and channel condition. We
will show that the optimal performance obtained in such an
individual decision problem provides a lower bound on the
performance of network-scale scheduling.

Let w ∈ {0, 1, . . . , D − 1} be the waiting time of the user,
i.e., the number of time-slots that the user has waited in the
system. Then, a request decision policy for the user can be
represented by an individual decision matrix x = [xw,j ]D×J ,
where xw,j ∈ [0, 1] (w = 0, 1, . . . , D − 1; j = 1, 2, . . . , J)
is the probability that the user requests transmission when its
waiting time is w and its channel state is j. Let X be the set of
all possible decision matrices. Corresponding to each x ∈ X ,
we define the following two metrics:

• Silent probability p0(x): the probability that the user does
not request transmission within D slots.

• Expected consumed resource c(x): the expected amount
of resource consumed by the user if it ever requests
transmission in some time-slot.

Let p∗0 be the optimal value of the following resource-
constrained individual decision problem:

p∗0 = minx∈X p0(x)

subject to c(x) ≤ C

λ
.

(2)

We note that the above problem (2) can be viewed as a
constrained MDP and solved by a Lagrangian relaxation ap-
proach as in [17]. In particular, when the channel process is
independent across time, the optimal solution can be shown
to follow a threshold structure, i.e., for each given w, there
exists a j0 such that xw,j = 0 for j < j0, xw,j = 1 for
j > j0, and xw,j0 ∈ [0, 1]. In other words, in each time-slot t,
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the user only requests transmission when its data rate exceeds
a certain threshold j0. If xw,j0 �= 0 or 1, it corresponds to
some randomization at the state j0, which may be necessary
to guarantee the equality of resource constraint in (2). This
threshold j0 may depend on the waiting time w. In the case
when the channel is i.i.d. across time, the user will use larger
threshold j0 when w is small, and use a smaller threshold j0
when w is large, i.e., when it is close to expiration. We refer
the readers to [17] for the details of solving this constrained
MDP problem.

Next, the following proposition states that p∗0 is a lower
bound of the deadline violation probability.

Proposition 1 Given system capacity C and arrival rate λ,
the deadline violation probability under any scheduling policy
γ satisfies vγ(λ,C) ≥ p∗0.

Remark: Note that in general, a multi-user system is com-
plicated to analyze due to the coupling across users. In other
words, when one user requests transmission, the system may
not have the capacity to accommodate it if there are many
users requesting transmissions at the same time. However, a
key insight from Proposition 1 is that, the deadline violation
probability is bounded by each user’s own channel conditions,
while the coupling across users is captured only through the
average resource consumption c(x). Intuitively, there are on
average λ users that should be served in each time-slot, and
hence the expected resource consumption of each user should
not be larger than C/λ. Proposition 1 then shows that (2)
indeed gives a lower bound on the minimum deadline violation
probability.

Sketch of Proof: The scheduling problem of the whole
system can be viewed as a MDP. Solving this network-scale
MDP is extremely challenging as we discussed before, but we
know that there exists an optimal stationary policy for this
problem. Then, we bound its performance by showing that any
network-scale stationary policy can be mapped to an individual
decision policy subject to the constraint of (2). Details are
omitted here due to space limit and available in the Appendix
of [18].

B. Achieving the Lower Bound in the Large-System Regime

In this section, we study scheduling policies that are asymp-
totically optimal in the large-system regime as the system
capacity and arrival rate grow proportionally to infinity.

We consider the following semi-distributed framework. At
the mobile-side, each user makes its own decision on whether
or not to request transmission. As discussed in Section III-A, an
individual decision policy is represented by a decision matrix
x = [xw,j ]D×J . Namely, for a user with waiting time w and
channel condition j, it sends the transmission request with
probability xw,j . A user is referred to as an “ON” user when it
sends the transmission request, and an “OFF” user, otherwise
(Note that the notion of ON-OFF users is different from the
notion of ON-OFF channels in [4]: the channel in this paper
may still have multiple rate levels). Again, note that not all ON
users can be served if there are too many of them requesting
transmission at the same time. Hence, at the network-side,
the scheduler needs to make decision for serving the “ON”

users. Next, we show that the following Maximum-Total-On-
users (MTO) policy performs very well when the system size
is large and all users use appropriate x.

Definition 2 (MTO policy) In each time-slot, every user is
considered for scheduling only when it is ON. Further, the BS
serves the users such that the number of served ON users are
maximized.

We represent the MTO policy as MTO(x), since it depends
on the individual decision matrix x for each user. We note
that the MTO(x) policy exhibits a number of highly desirable
features for ease of implementation. First, each user determines
its own individual decision matrix x, possibly based on its
future channel statistics. The BS does not need to know the
channel statistics of each individual users. Second, to schedule
which users should be served, the BS only needs to know
the current channel conditions of those users who request
transmissions. The BS does not need to track the state of all
other users. Both features significantly reduce the amount of
signaling overhead between the users and the BS.

Let x∗ be the optimal solution to problem (2), we next show
that MTO(x∗) (i.e., using x∗ as the individual decision matrix)
is asymptotically optimal in the large-system regime.

Proposition 2 Fix c̄ = C/λ and let x∗ be the optimal solution
of problem (2). Then, MTO(x∗) is asymptotically optimal in the
large-system regime, i.e.,

lim
C→∞

vMTO(x∗)(C/c̄, C) = p∗0, (3)

and the convergence speed is at least 1/
√
C.

The proposition indicates that, as the system capacity and
the arrival rate grow proportionally to infinity, the deadline
violation probability under MTO(x∗) approaches the lower
bound. We note that this result is non-trivial because the
lower bound in Proposition 1 implicitly assumes that all users
requesting transmissions can be served immediately. However,
due to randomness, not all ON users can be served even when
the average total consumed resource is no greater than C.
Fortunately, when the system size is large, this “fluctuation”
effect becomes less critical. The proof is divided into two
parts. First, we consider an even simpler policy, called FOO,
that also has the same asymptotic properties. Then, we show
that the MTO policy dominates the FOO policy with the same
individual decision matrix, and thus has better performance.

1) A Baseline Policy: FOO
We first consider a policy that only serves those users

requesting transmission for the first time after they arrive. Such
a user is referred to as a “First-ON” user, and the corresponding
policy is referred to as First-On-Only (FOO) policy.

Definition 3 (FOO policy) Every user is considered for
scheduling only once and only when the user requests trans-
mission for the first time before they expire in D slots. In each
time-slot, the BS serves as many “First-ON” users as possible.

Similar to MTO(x), we represent the FOO policy as FOO(x),
since it also depends on the individual decision matrix x for
each user. We first consider a general individual decision matrix
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x. Let ρ(x) = λc(x)/C be the offered load level under x. For
a fixed offered load ρ(x) ≤ 1, we can show that in the large-
system regime, almost all “First-ON” users can be served and
the deadline violation probability under FOO(x) approaches
the silent probability p0(x).

Lemma 1 Fix the decision matrix x such that the load level
satisfies ρ(x) ≤ 1. Under the FOO policy, the deadline
violation probability approaches the silent probability as C
grows to infinity, i.e.,

lim
C→∞

vFOO(x)(Cρ(x)/c(x), C) = p0(x), (4)

and the convergence speed is at least 1/
√
C.

Sketch of Proof: We prove the lemma by exploiting two
critical properties of FOO. First, since each user is considered
to be scheduled only when it is “First-ON”, the candidate set for
scheduling in each time-slot only depends on each user’s own
channel characteristics. Second, FOO fully utilizes the resource
to serve “First-ON” users in each time-slot. Using these two
properties, we can show that as the system size increases, the
probability that a user is “First-ON” but can not be served
becomes negligible, with the convergence speed of at least
1/

√
C by the Central Limit Theorem.

More specifically, let Yj (j = 1, 2, . . . , J) be the number
of “First-ON” users with channel state j. Because the arrival
process is a discrete-time Poisson process, we can show that

Yj is a Poisson random variable with mean value π�
jλ, where

λ = Cρ(x)/c(x) and π�
j is the probability that a user is “First-

ON” and its channel state is j. Note that for j = 1, we have
Y1 = 0 because no user can request transmission when its data
rate is r1 = 0. For j > 1, by the Central Limit Theorem,
we can show that Yj will deviate from its mean value on the

order of
√
λ. This implies that the expectation of the part of

Yj that exceeds its mean value is on the order of
√
λ, i.e.,

E[Yj − π�
jλ]

+ = O(
√
λ), and hence E

{ [Yj−π�
jλ]

+

λ

}
= O( 1√

λ
).

Recall that c(x) is the expected consumed resource if the user
can be served when “First-ON”. Hence, ρ(x) ≤ 1 indicates
that the expected required resource for all “First-ON” users

is λc(x) = λ
∑J

j=2 π
�
j/rj ≤ C. Therefore, we can show that

most of the “First-ON” users will be served and the probability
that a “First-ON” user is not served (due to too large value of∑J

i=1 Yj) cannot be larger than that
rJ

∑J
j=1[Yj−π�

jλ]
+

r22C
, which

goes to 0 as 1/
√
λ as λ and C grow proportionally to infinity.

Details are omitted here due to space limit and available in
the Appendix of [18].

2) Dominance of MTO and Proof of Proposition 2
The FOO policy only allows each user to request transmis-

sion once before its deadline. However, the proposed MTO
policy removes this restriction and we can show that with the
same individual decision matrix x, the proposed MTO policy
dominates FOO in any time-slot. Specifically, the candidate set
of MTO is a superset of that of FOO in each time-slot, and
thus the number of served users under MTO is no less than that
under FOO in any time-slot. Therefore, Eq. (4) also holds for
MTO(x). As a special case, when the individual decision matrix

is x∗, we have ρ(x∗) ≤ 1, and the conclusion of Proposition 2
then follows.

C. Work-Conserving Enhancement of MTO

Under MTO, resource may still be wasted if after serving all
ON users, there is still capacity remaining. In this case, if we
allow the BS to serve some of the OFF users, the MTO policy
should perform even better. For example, consider the following
policy called MTO with Work-Conserving Enhancement (MTO-
WCE). We consider another version of problem (2) where the
constraint is relaxed to c(x) ≤ (1 + ξ)C/λ, where ξ > 0
is a control factor that can be used for trading-off between
the resource utilization and signaling overhead. We let x(ξ) be
the optimal solution to the relaxed individual decision problem.
The users who request transmission based on x∗ are still called
ON users, and the users who request transmission based on
x(ξ) are called “secondary-ON” users. The MTO-WCE policy
will serve the ON users first. If there is remaining capacity, the
BS then serves the “secondary-ON” users. Clearly, MTO-WCE
must achieve even better performance than MTO because we
always serve the ON users first.
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 C
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MTO
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EDOF−WCE
LRF
Delay−MW
Lower bound

Fig. 1. Convergence of deadline violation probability (D = 10). Detailed
settings for the file size and channel processes are presented in Section V.

D. Comparison and Discussions

We briefly compare the above policies in Fig. 1, which shows
the deadline violation probability versus the system scale C
in a single-class setting with fixed λ/C. As we can observe
from the figure, FOO, MTO, MTO-WCE approach the lower
bound when the system size is large. However, FOO leads to
a much larger violation probability in medium-sized system
due to the restriction that we discussed earlier. Further, MTO-
WCE outperforms MTO and reduces the violation probability
even further. Next, we compare the above policies with other
policies (i.e., Delay-MW, EDOF-WCE, and LRF, which will be
defined later), and discuss the implications of the observations
from Fig. 1.

1) Achieving asymptotic optimality is not trivial: Readers
may have the impression that, since even a policy as simple as
FOO achieves the same asymptotic optimality when the system
size is large, perhaps any reasonable policy will be as good
as MTO/MTO-WCE. This apparent triviality could be quite
misleading. For example, consider a natural variant of EDF,
called Earliest-Deadline-ON-user-First (EDOF), where in each
time-slot, the BS serves ON users, i.e., those users requesting
transmissions, according to the EDF discipline. As shown in
Fig. 1, even for EDOF with work-conserving-enhancement
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(EDOF-WCE), the deadline violation probability is still larger
than that under FOO and may not approach the lower bound
p∗0 even when the system is large. What happens is that ON
users closer to the deadline tend to request transmissions even
with poor channels. Because EDOF prioritizes these users, it
reduces the overall system performance. Another well-known
policy, Delay-driven MaxWeight (Delay-MW) [9], does not
approach the lower bound either when the system size is
large, as shown in Fig. 1 (which is not surprising because
Delay-driven MaxWeight is only throughput optimal but does
not guarantee deadline performance). The above examples
therefore illustrate that, even when the system size is large,
we must carefully design efficient scheduling policies based
on rigorous theoretical principles, in particular, by choosing
policies that dominate FOO.

2) Serving only the ON users (or secondary-ON users) is
important: In the single-class case, one may envision other
policies that do not rely on individual decision matrices x∗ or
x(ξ). For example, consider the following Less-Resource-First
(LRF) policy: all users are eligible for service and at each time-
slot, and the BS gives priorities to the users that require less
resource to be served. For identical-file-size systems, LRF can
be viewed as a work-conserving enhancement of the Best-Rate
policy in [8]. One can show that the LRF policy also dominates
FOO and hence is asymptotically optimal in the single-class
case. However, there are two reasons why MTO/MTO-WCE
are more preferable than LRF. First, as we will see later in Sec-
tion V, it is difficult to extend the LRF policy to the multi-class
case because it is unable to balance the performance across
different classes. In contrast, the MTO/MTO-WCE policies
using the optimal individual decision matrices can be shown
to be optimal in the multi-class case as well. Second, MTO
and MTO-WCE incur much lower signaling overhead because
only the ON (or secondary-ON) users need to report the channel
state to the BS. In contrast, for LRF the BS needs to know the
channel conditions of all users. Hence, there are both analytical
and practical advantages to use MTO/MTO-WCE.

IV. SCHEDULING IN MULTI-CLASS SYSTEMS

In the previous section, we have shown that, when there is
a single class, simple MTO and MTO-WCE policies are not
only asymptotically optimal when the system size is large, but
also perform well in medium-sized systems. In this section, we
extend the results to multi-class systems.

In multi-class systems, the design of scheduling policies
must be even more careful because we need to balance the
performance across different classes. Due to the inter-class
contention, it is impossible to simultaneously minimize the
deadline violation probability of all classes. Thus, we turn to
study the optimal DVP region (Definition 1). We will identify
an outer bound for the optimal DVP region and show that
MTO/MTO-WCE can asymptotically attain any point strictly
inside the outer bound in the large-system regime. Further, we
quantify the maximum throughput that can be supported for
given requirement on the deadline violation probabilities, which
will show the benefit of application-level scheduling.

A. Optimal DVP Region
For given system capacity C and arrival rate vector λ, we

define the optimal DVP region V(λ, C) by Eq. (1). However,

obtaining the accurate region of V(λ, C) is difficult. Next, we
will establish a simple outer bound for V(λ, C), and show that
an appropriately-designed MTO policy will attain this bound
when the system size is large.

In order to obtain an outer bound for V(λ, C) , we first
consider the scenario where each class is separately served with
a certain proportion of the resource. Such separation allows us
to use the results obtained in the single-class case. Specifically,

let ζ ∈ [0, 1]K satisfy
∑K

k=1 ζk = 1, and let ζkC be the
resource allocated to class k. By Proposition 1, we know that
the lower bound on the deadline violation probability for each
class is given by the optimal value p∗0,k(ζk) of the following
optimization problem:

p∗0,k(ζk) = minxk∈Xk
p0,k(xk)

subject to ck(xk) ≤ ζkC/λk.

As a result, separating the resource according to ζ should allow
us to achieve any vector of deadline violation probability in
{v ∈ [0, 1]K : p∗0,k(ζk) ≤ vk ≤ 1}. Taking the union of all
possible ζ, we then obtain the following region:

V̂(λ, C) =
⋃

ζ∈[0,1]K ,
∑K

k=1 ζk=1

{v ∈ [0, 1]K : p∗0,k(ζk) ≤ vk ≤ 1}.

Next, we will show that V̂(λ, C) is an outer bound for
the optimal DVP region V(λ, C). Further, we will show that
the MTO policy with appropriately chosen individual decision
matrices is asymptotically optimal in attaining any vector of
deadline violation probabilities in this outer bound when the
system size is large. Specifically, suppose that we are given

a vector v = [v1, v2, . . . , vk] ∈ V̂(λ, C). Let x�
k(vk) be the

optimal solution to the following individual decision problem:

minxk∈Xk
ck(xk)

subject to p0,k(xk) ≤ vk.
(5)

Further, let x�(v) = {x�
1(v1),x

�
2(v2), . . . ,x

�
K(vK)}. We rep-

resent the MTO policy with individual matrices x�(v) as
MTO(x�(v)). In other words, under MTO(x�(v)), class-k users

request transmissions using matrix x�
k(vk), and those users

from each class requesting transmission are called ON users.
As in Section III, in each time-slot, the MTO policy serves as
many ON users as possible, regardless of which class they are
from.

Proposition 3 For given system capacity C and arrival rate
vector λ, the optimal DVP region satisfies V(λ, C) ⊆ V̂(λ, C).
In addition, for a fixed amount of average resource c̄ = C/λ,
arrival proportion vector α, and any v ∈ V̂(λ, C), we have

lim
C→∞

vk,MTO(x�(v))(Cα/c̄, C) ≤ vk, (6)

Sketch of Proof: The proof for the outer bound is similar to
the proof of Proposition 1. For any achievable vector v under
a stationary policy, we can map the system dynamics to an
individual decision matrix for each class and the corresponding
value of ζ. Then, based on the overall resource constraints, we
can show that the vector v must belong to V̂(λ, C).

To show the asymptotic optimality of MTO(x�(v)), we can
first show that with individual decision matrices x�(v), the of-

fered load level must satisfies ρ(x�(v)) = 1
C

∑K
k=1 λkc

�
k(vk) ≤
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1, where c�k(vk) is the optimal value of problem (5). Otherwise,

the vector v cannot be in V̂(λ, C). Thus, we can show that the
conclusion holds for FOO(x�(v)) by the similar approach as in
Lemma 1. Then we need to extend the results to MTO(x�(v)).
However, the extension is trickier than the single-class case,
because even though MTO(x�(v)) dominates FOO(x�(v)) in
terms of total number of served ON users, it does not dominate
FOO(x�(v)) in terms of number of served ON users for each
class. We need to prove the conclusion by further examining
the upper bound of the number of served ON users for each
class. Specifically, we note that the expected number of served
users in each time-slot should not exceed an upper bound given
by the expected number of ON users. Using this upper bound,
we can then show that the deadline violation probability of
each class under MTO will approach a value no greater than
vk. The details are available in [18].

Remark: As we discussed earlier for the single-class case, a
highly desirable feature of the MTO policy is that each user
computes independently its decision matrix xk, and decides
whether it should be ON or OFF in each time-slot. Then, the
BS only needs to schedule as many ON users as possible. Note
that the BS needs not to know the channel statistics of each
user, nor its targeted deadline violation probability. Hence, the
MTO policy is easy to implement in a distributed manner. Note
also that the individual decision matrices xks play a crucial role
in balancing the performance requirements of different classes
of users. Without such control, it would have been much more
difficult for the BS to decide who should be served. As we
will see in the simulation results in Section V, this difficulty is
precisely why policies such as LRF, which performs well for
single-class systems, fail in multi-class systems. In LRF (or in
other weight-based policies such as Delay-driven MaxWeight),
although one can introduce and adjust weights to control the
priority of different classes, it is difficult to predict the achieved
deadline violation probabilities in advance, without actually
running the policy. Hence, they are ineffective in guaranteeing
the delay performance in the deadline-constrained scenarios
that we are interested in.

We also note that, similar to the single-class case, we
can use work-conserving enhancement to further improve the
performance. Specifically, we can solve the problem (2) with
relaxed resource constraint ck(x) ≤ (1 + ξ)ck(x

�(vk)), and
use the solution to decide the “secondary-ON” users as in
Section III-C.

B. Application-Level Effective Capacity Region
Instead of minimizing the deadline violation probability sub-

ject to given offered load, a dual problem would be to maximize
the offered load subject to given deadline violation probabili-
ties. Let ηk be the maximum deadline violation probability for
class-k users. Then, in the single-class system, the objective of
the BS is to maximize the throughput while guaranteeing that
the deadline violation probability does not exceed ηk for each
k. We refer to this maximum throughput as Application-Level
Effective Capacity (ALEC), to differentiate it from the Effective
Capacity concept proposed in [19]. In a multi-class system, the
ALECs are again coupled across different classes. Therefore,
with given requirement η = [η1, η2, . . . , ηK ], we define the
ALEC region as follows.

Definition 4 (ALEC region) Given system capacity C and
required value η of deadline violation probabilities, the ALEC
region is defined as follows,

Λ(η, C) =
{
λ ∈ [0,∞)K : ∃ policy γ ∈ Γ,

such that vk,γ(λ, C) ≤ ηk for all classes k
}

(7)

Similar to the analysis of the optimal DVP region, we
consider the outer bound for Λ(η, C). Define the following
region:

Λ̂(η, C) =
{
λ ∈ [0,∞]K ,

K∑
k=1

c�k(ηk)λk ≤ C
}
,

where c�k(ηk) is the optimal value of the constrained optimiza-
tion problem (5), with the deadline violation probability vk
replaced by ηk. Clearly, Λ̂(η, C) increases linearly in C. Using

the approach in Section IV-A, we can show that Λ̂(η, C) is an
outer bound for Λ(η, C) and is tight in the large-system regime.

Proposition 4 Given the system capacity C and the required
values η of deadline violation probabilities, the ALEC region
satisfies Λ(η, C) ⊆ Λ̂(η, C). In addition, for any λ that is
inside the interior of Λ̂(η, 1), we have

lim
C→∞

vk,MTO(x�(η))(λC,C) ≤ ηk. (8)

As a special case of Proposition 4, we conclude that for the
single-class case (i.e., K = 1), the ALEC is upper bounded
by C/c�(η) and it approaches this upper bound as C grows
to infinity. By evaluating this ALEC in Section V, we will
demonstrate the benefit of application-level scheduling.

V. SIMULATION RESULTS

A. Simulation Setup
We evaluate the performance of the proposed mechanism

with typical LTE parameters [15], which are summarized in
Table I. Since we consider application-level scheduling, we
focus on a large time-scale and set the time-slot length to
be 30 seconds. The file size of each user follows truncated
lognormal distribution with mean 2 Mbytes, standard deviation
0.72 Mbytes, and maximum size 5 Mbytes [20]. We generate
the channel processes based on the random waypoint (RWP)
mobility model [21]. Specifically, we estimate the 1-step transi-
tion probabilities of the channel process for the users traveling
in the cell with RWP model with a velocity of 3 Km/h. Then,
the transition probabilities are used to drive a Markov model
that simulates channel realizations.

TABLE I
SYSTEM PARAMETERS

Property Setting
Carrier frequency 2 GHz
System bandwidth 1.25, 2.5, 5, 7.5, 10, 15, 20 MHz
BS Tx power 46 dBm for 10 MHz
Coverage radius 500 m
Path loss 128.1 + 37.6 log10(d[km]) dB,
Penetration loss 20 dB
Shadowing Lognormal, standard deviation 8 dB
Noise power density -170 dBm/Hz
Link adaption Shannon’s equation, clipped at -10 dB and 20 dB

We evaluate the deadline violation probability and ALEC
under application-level scheduling with different disciplines.
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We use the optimal individual decision matrices for FOO,
EDOF-WCE, and MTO/MTO-WCE. For the work-conserving
enhancement, i.e., MTO-WCE and EDOF-WCE, the control
factor is set to ξ = 0.15 (see the definition of ξ in Section III).
We also compare with the LRF (see Section III-C) and Delay-
driven MaxWeight (Delay-MW) [9] policies. In the multi-class
case, weight vector is introduced in LRF and Delay-driven
MaxWeight to trade-off between different classes. Specifically,
the LRF policy prioritizes users according to ζkFi/Si(t),
and Delay-driven MaxWeight prioritizes users according to
ζkwiSi(t), where 0 ≤ ζk ≤ 1 reflects the additional weight

of class-k users and
∑K

k=1 ζk = 1.

B. Deadline Violation Probability
Recall that we have evaluated the deadline violation prob-

ability versus the system size C in Fig. 1, when the relative
load λ/C is fixed. Next, we evaluate the deadline violation
probability with fixed C in Fig. 2. In the single-class case,
Fig. 2(a) shows the deadline violation probability as a function
of the arrival rate. The minimum silent probability given by
(2) serves as a lower bound of the system, as stated in
Proposition 1. We can observe that the deadline violation
probability of MTO-WCE is very close to the lower bound
and dominates all other policies in the whole range presented.
When the load is light (e.g., λ ≤ 70), all work-conserving
policies achieve similar performance because the contention
is low. However, as the load increases, the performance of
different scheduling policies starts to differ. The MTO, MTO-
WCE, and LRF policies perform very well, while other policies
can perform significantly worse. For example, the deadline
violation probability under Delay-driven MaxWeight can be
much larger than that under MTO-WCE (by two times when
λ = 120). The EDOF-WCE policy results in rather high
deadline violation probability in the range of 85 < λ < 125,
likely due to the fact that the EDOF policy tends to serve users
when their channel conditions are not favorable (refer to our
discussions in Section III-D).

Fig. 2(b) shows the deadline violation probabilities for the
2-class scenario. For LRF and Delay-driven MaxWeight, each
pair of deadline violation probabilities corresponds to a weight
vector ζ. From the figure, we can see that the proposed MTO-
WCE policy achieves close-to-optimal violation probabilities.
Because of the reasons discussed in Fig. 2(a), EDOF-WCE
behaves strangely in certain regions. The deadline violation
probability under LRF and Delay-driven MaxWeight is greater
than that under MTO-WCE. Moreover, the exact impact of
weight vector is unpredictable and difficult to tune in practice.

In summary, designing the optimal scheduling policies is
non-trivial and some heuristic policies, e.g., EDOF, may per-
form rather poorly in certain range. The rigorous theoretical
framework in this paper provides a principled approach to de-
sign and analyze the scheduling policies. Under this framework,
the proposed MTO/MTO-WCE policies not only achieve the
optimal bound in the large-system regime, but also perform
well in medium-sized systems.

C. Application-Level Effective Capacity
In this section, we evaluate ALEC under different system

sizes and requirements. The ALEC is normalized by the

bandwidth and shown as spectrum efficiency (bps/Hz). Because
MTO-WCE consistently outperforms FOO, MTO, and EDOF-
WCE in earlier simulations, we will mainly use MTO-WCE in
the rest of the simulations.

Fig. 3 shows the convergence of ALEC in a single-class
system as the system size increases. We can see that under
MTO-WCE, the supportable traffic load approaches the upper
bound stated in Proposition 4 (the dashed line). The gap from
the upper bound is negligible when C ≥ 10 MHz, which is a
typical value of the bandwidth in cellular networks. Hence, we
use C = 10 MHz for the rest of the simulation.

Fig. 4(a) shows the ALEC in a single-class system as a
function of deadline. It clearly demonstrates the benefit of ex-
ploiting the delay tolerance of the traffic. Namely, the capacity
can be significantly improved if the users can tolerate certain
delay. For example, if users require to finish the transmission
task within 1 slot (30 seconds), the spectrum efficiency is
about 1 bps/Hz. However, with application-level scheduling,
this efficiency can be increased to more than 6 bps/Hz if the
users can tolerate a delay of 10 slots (5 minutes). Comparing
to Delay-driven MaxWeight, we see that although MTO-WCE
performs similarly to Delay-driven MaxWeight when the dead-
line is small, it clearly outperforms Delay-driven MaxWeight
for larger deadlines. Comparing to the upper bound, we can
see that the room for further improvement over the proposed
MTO-WCE policy is very small.

Fig. 4(b) shows the ALEC region for a 2-class system. We
can see that MTO-WCE achieves an ALEC region that is
quite close to the outer bound. In contrast, for a given weight
vector ζ, the ALEC regions under Delay-driven MaxWeight
and LRF are smaller than that achieved by MTO-WCE. It is
interesting to observe that, if we take the union of the ALEC
region under LRF or Delay-driven MaxWeight over different
choices of ζ, the union becomes closer to the optimal. However,
in practice, it is difficult to predict the delay performance
of LRF or Delay-driven MaxWeight in advance. As a result,
it is difficult to tune the parameter ζ for these algorithms
under a given mixture of deadline-constrained traffic, without
actually running the algorithms. Therefore, we believe that the
theoretical results and our proposed MTO/MTO-WCE policies
are particularly useful for multi-class systems with different
deadline constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study application-level scheduling mech-
anisms for delay-tolerant traffic with deadline requirements.
The objective of the network is to minimize the deadline
violation probability for given arrival traffic. We present a
lower bound on the deadline violation probability, and develop
simple threshold-based policies, MTO and MTO-WCE, that
achieve the lower bound in the large-system regime, under
general channel models and multiple classes. These schemes
also perform well in medium-size systems. We note the insights
from the analysis are important in the design of scheduling
policies as some commonly studied policies may not perform
well in certain regimes. Further, based on the asymptotic ap-
proach, we propose estimation approach for the ALEC region.
Numerical results show that if users can tolerate certain delay,
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Fig. 2. Deadline violation probability, (a) single-class scenario with different arrival rates
(C = 10 MHz, D = 10), (b) 2-class scenario (C = 10 MHz, D = [5, 15], and λ = [15, 20]).
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the capacity can be improved significantly under application-
level scheduling. For example, the capacity can be increased
by about 6 times with a deadline of 10 time-slots (5 minutes).

Although the results in the paper focus on the single-cell
settings, we believe that the key insights are applicable to
more general settings. For future work, we will study how to
generalize the algorithms and insights into multi-cell settings.
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