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Abstract

The performance of large-scaled peer-to-peer (P2P) video-on-demand (VoD) streaming systems

can be very challenging to analyze. In practical P2P VoD systems, each peer only interacts with a

small number of other peers/neighbors. Further, its upload capacity may vary randomly, and both its

downloading position and content availability change dynamically. In this paper, we rigorously study the

achievable streaming capacity of large-scale P2P VoD systems with sparse connectivity among peers, and

investigate simple and decentralized P2P control strategies that can provably achieve close-to-optimal

streaming capacity. We first focus on a single streaming channel. We show that a close-to-optimal

streaming rate can be asymptotically achieved for all peers with high probability as the number of peers

N increases, by assigning each peer a random set of Θ(logN) neighbors and using a uniform rate-

allocation algorithm. Further, the tracker does not need to obtain detailed knowledge of which chunks

each peer caches, and hence incurs low overhead. We then study multiple streaming channels where

peers watching one channel may help in another channel with insufficient upload bandwidth. We propose

a simple random cache-placement strategy, and show that a close-to-optimal streaming capacity region

for all channels can be attained with high probability, again with only Θ(logN) per-peer neighbors.

These results provide important insights into the dynamics of large-scale P2P VoD systems, which will

be useful for guiding the design of improved P2P control protocols.

I. INTRODUCTION

Peer-to-Peer (P2P) Video-On-Demand (VoD) streaming systems have already become a major

player on today’s Internet. Their success (e.g., PPLive, TVAnts, UUSee, and Zattoo) has made
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high-quality on-demand streaming of rich contents available to millions of users at low server

costs [1]. In contrast to their commercial success, however, in-depth theoretical understanding of

these systems appears to be lacking. The performance of large-scaled P2P VoD systems can be

extremely complex to study. As time progresses, the part of the video that a peer is interested in

viewing, the cached content that it can use to serve others, and its upload capacity can all change

substantially. Further, these systems are highly decentralized in nature, and each peer often only

has a very limited view of the overall system through its sparsely-connected neighbors. Due

to these reasons, it remains a challenging problem to understand the fundamental performance

limits of highly dynamic and decentralized P2P VoD systems.

In this paper, we study a problem of fundamental interest to P2P VoD systems, i.e., what is the

optimal streaming rate that all peers can reliably receive, and how to achieve this optimal rate

with simple, robust and decentralized control. Note that a trivial upper-bound on the streaming

rate can be obtained by dividing the total upload capacity of all peers by the total number

of peers. In P2P live-streaming systems, it has been shown in our prior work that streaming

rates close to this optimal value can be achieved through simple and decentralized control [2].

However, in P2P VoD system, it is unclear whether such an optimal rate can still be attained. In

contrast to live-streaming [2]–[10], each peer in a VoD system is interested in playing a different

portion of the video. Further, its viewing position may jump back and forth [11], [12]. As a

result, the content availability at each peer can be highly discontinuous and dynamic. One way

to alleviate this difficulty is to assume that some peers (referred to as “caches”) have cached

the entire video beforehand, and other downloading peers request the content only from the

caches. In [13]–[15], the authors have studied the optimal cache-placement problem based on

this assumption. An implicit assumption along this line of work is that there exists a central

entity that can perfectly balance the downloading requests among caches. Otherwise, such a

global balancing problem by itself can be very challenging in a decentralized setting when the

upload capacity of the peers varies.

An alternate (and perhaps practically more relevant) approach is to directly model how

peers downloading the same video can use their upload capacity to help each other, which

is unfortunately more difficult. Such models were proposed in, e.g., [12], [16], [17]. However,

it appears difficult to establish whether they can achieve close-to-optimal streaming rates. More

recently, [18] proposes an algorithm that allocates the overall upload capacity in the system
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sequentially from the “oldest” peer to the “youngest” peer. For each peer, its requested capacity is

first allocated from older peers. If there is no sufficient upload capacity, capacity is then requested

from the server. Similarly, [19] proposes a global optimization problem for rate-allocation given

the age of the peers. While these algorithms have been found to exhibit good performance, the

resulting rate-allocation may need to be completely recalculated when the peers’ upload capacity

changes. Further, these analyses have not accounted for the possibility that the peers’ playback

positions may jump back and forth, in which case even an older peer may not have the content

to serve younger peers.

In summary, existing analytical studies of the streaming capacity of P2P VoD systems either

require extensive centralized control, are sensitive to upload-capacity variations or do not account

for the random-seek behavior the peers. In contrast, in this paper we provide the first rigorous

study of the streaming capacity of large-scale P2P VoD systems with simple decentralized control

that are robust to upload-capacity variations, and random-seek behaviors. We focus on the setting

of “hot” videos, i.e., there are a large number of peers interested in viewing each video. We first

study a single-channel system, i.e., all users are interested in viewing the same video. Assuming

that the contribution of bandwidth and cache capacities from the dedicated server(s) is minimal,

we show that by using a (properly-designed) random neighbor-selection algorithm and a uniform

rate-allocation algorithm, with probability approaching 1 as the total number of peers N increases,

all peers can achieve a close-to-optimal streaming rate of (1−ϵ)µ, where µ is the average upload

capacity per peer and ϵ is a small positive constant. In our algorithm, each peer is only assigned

Θ(logN) upstream neighbors, with which they exchange content-availability information. These

neighbors are chosen uniformly randomly from a suitable choice set determined at the tracker

(note that this is the only part of the algorithm that requires centralized knowledge). To determine

the choice set, the tracker only needs to know the current downloading position of each peer, but

does not need to know the detailed content/chunk availability at each peer. Further, regardless

of the variation of its upload-capacity, each peer evenly distributes its upload capacity among

downstream neighbors for whom it has the available chunk(s). As readers will see in Section II,

our analytical studies provide key insights as to why these simple design principles can result in

near-optimal performance, which was conjectured in some prior simulation-based studies [20].

Further, these insights reveal the critical and non-trivial roles that different design choices, e.g.,

the size of the choice set and the extent of content availability, play in the overall system.
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We then turn to a multi-channel P2P VoD system where different groups of peers are interested

in viewing different videos. Based on the single-channel control algorithm discussed earlier, we

propose a cache-placement algorithm that can achieve (with high probability) a close-to-optimal

streaming rate region for all channels (see Section III for the precise definition). Our cache

placement policy shares some similarity to the “proportional-to-deficit-bandwidth” strategy in

[18], which was conjectured to be close-to-optimal. However, our policy does not require a

sequential rate-allocation algorithm as in [18].

Our results have a similar flavor to the results in our earlier work [2] for P2P live-streaming

systems. However, as we discussed earlier and will elaborate further in Section II, P2P VoD

systems are significantly different from live-streaming systems in many aspects. Thus, new

control algorithms and analytic techniques are required. To the best of our knowledge, this work

provides the first analytic result that demonstrates how to achieve close-to-optimal streaming

capacity in large-scale P2P VoD systems using simple, robust, and decentralized control.

II. A SINGLE-CHANNEL P2P VOD SYSTEM

In this section, we focus on a system with a single channel, i.e., all users are interested in

viewing the same video. We first describe the system model. We will then propose simple, robust

and decentralized peer selection and rate allocation algorithms that result in at most Θ(logN)

upstream neighbors per peer. We then prove that all peers can achieve the close-to-optimal

streaming rate with high probability, when N is large.

A. System Model

We consider a P2P VoD system where users/peers1 would like to watch a common video.

Let T (0) denote the length of the video. There is a server S and totally N peers. Let N denote

the set of all peers in the system, i.e., |N | = N . We assume that the number of peers N is

fixed. In other words, if a peer leaves the system, a new peer is assumed to immediately join

the system at a possibly random initial position. This assumption simplifies the analysis, while

we believe that the insights under this assumption will also hold for a more dynamic model

where peers randomly join and leave the system. In a VoD system, the viewing/downloading

1We use the terms “user” and “peer” interchangeably throughout the rest of the paper.
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progress of different peers in the same channel is typically different. Peers who have already

downloaded certain parts of the video can then serve the cached content to later peers. We define

the downloading position of a peer as the immediately next position in the video that the peer

will download. We assume that, the downloading position of each peer is i.i.d. according to a

distribution with density function γ(t). In other words, for a small δt, γ(t)δt is the probability

that the downloading position of a peer is between t and t + δt. Note that the downloading

position of a peer is typically larger than its viewing position, with some buffering in between

to absorb any fluctuations in the downloading speed. Some peers who have finished watching a

channel may stay for some period of time and serve other peers in the channel. We thus allow

γ(t) to have a Dirac delta function at point T (0). Equivalently, let Q̄ denote the probability that

a peer’s downloading position is T (0). For ease of exposition, we assume that, with probability

1, the downloading position of each peer before T (0) is different from that of other peers. From

now on, we will index a peer watching a channel by its downloading position t. Let N− denote

the set of all peers with downloading position t < T (0).

To model how peers serve other peers, each peer t has a set of downstream neighbors Dt that

this peer t may upload content to. Correspondingly, each peer t ∈ N− also has a set of upstream

neighbors Ut = {s ∈ N|t ∈ Ds} that this peer t can potentially download the content from.

However, since peer may perform random seeks, it may not have all the content “before” its

downloading position. Hence, not all neighbors in the upstream neighbor set Ut of peer t have

the requested content of peer t. We denote U t ⊂ Ut as the set of upstream neighbors of peer t

who have the data that peer t is requesting and is willing to serve peer t. Correspondingly, let

Dt = {s|t ∈ U s} ⊂ Dt denote the set of downstream neighbors that peer t can actually serve.

We call Dt and U t the effective downstream neighbors and the effective upstream neighbors,

respectively. Let Ut = |Ut|, Dt = |Dt|, Dt = |Dt| and U t = |U t|.2

Let Vt denote the upload capacity of peer t. We assume that Vt is a bounded random variable

between [0, Vmax] with mean value µ, which is i.i.d. across all peers. Like other work [2]–[4],

[8], [9], we assume that the download capacity and the core network capacity are sufficiently

large, and hence the upload capacity is the only resource bottleneck. The system performance is

determined by the relationship between the targeted streaming rate and the downloading rates.

2As a convention, we will use script variable to denote a set (e.g., Ut), and use a normal variable to denote its size (e.g., Ut).
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Let R denote the targeted streaming rate of the video. Let Cs→t denote the streaming rate from

peer s to peer t. Clearly, Cs→t = 0 for any s /∈ U t (or equivalently for all t /∈ Ds). We have the

following upload capacity constraint on each peer s:∑
t∈N

Cs→t =
∑
t∈Ds

Cs→t ≤ Vs.

Let Ct denote the achievable downloading rate for peer t, which is then given by:

Ct =
∑
s∈N

Cs→t =
∑
s∈Ut

Cs→t.

To guarantee smooth playback, the downloading rate of each viewing peer must be no smaller

than the targeted rate R of the video. Note that the peers whose downloading position is T (0)

do not need to download new data, and hence we are only interested in the downloading rate of

those peers in N−. We thus define the streaming capacity of the system as the largest value of

R such that Ct ≥ R for all peers t ∈ N−.

We note that there is a simple upper bound on the streaming capacity. We assume that Q̄

is away from 0 even with large N , and the contribution of the server capacity is negligible.

In this case, it is easy to see that the largest possible streaming rate that all peers can attain

is Nµ
N(1−Q̄)

= µ
1−Q̄ on average. However, this upper bound completely ignores the details of the

VoD system, especially whether a peer has the content and the upload capacity to help the other

peer. Hence, it is unclear whether this upper bound is attainable in a large and decentralized

VoD system. In practice, Q̄ is usually not very large. Hence, in the rest of this section, we will

omit the contribution of Q̄ in the streaming capacity, and we will say that the channel achieves a

close-to-optimal streaming capacity (1−ϵ)µ with a small ϵ > 0 if all peers attain a streaming rate

no smaller than (1− ϵ)µ. Our goal in this section is to design simple, robust and decentralized

algorithms that can achieve this close-optimal streaming capacity with high probability.

B. A Simple and Distributed Peer Selection and Rate Allocation Algorithm

In our prior work for P2P live-streaming systems [2], we proposed a simple peer selection

strategy where each peer uniformly randomly selects Θ(logN) downstream neighbors, and

divides its upload capacity evenly among its downstream neighbors. This simple algorithm

has been shown to achieve a close-to-optimal streaming rate for live-streaming P2P systems.

Although this result serves as a useful starting point, as reader will see below, the same design
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would have led to very poor performance in VoD systems. Thus, we need to design a new set

of control algorithms tailored to VoD systems.

(i) Peer Selection: We first explain why a uniformly-random peer-selection algorithm will not

work well for VoD systems. Note that unlike live-streaming systems, in a VoD system different

peers are viewing different parts of the video, and their cached content is also different. If an

older peer (whose downloading position is in the later part of the video) chooses a younger peer

(whose downloading position is in the earlier part of the video) as an upstream neighbor, there

is a high chance that the younger peer does not have the content to help the older peer. Hence,

the connection between them is of no use. This problem will be the most severe for the oldest

peers that are close to the end of the video. With uniformly-random peer selection, the peers

who are interested in downloading this part of the video will find that most of their selected

upstream neighbors are younger and do not have the desired content. Hence, the streaming rate

to these oldest peers will be very poor. Hence, we need to design a new peer selection strategy

for VoD P2P systems.

A key idea of our new strategy is to restrict the random neighbor selection of each peer t to

be done within a choice set Ūt, which contains peers with downloading positions larger than t.

More specifically, we use the “random sequential choice-set selection strategy” as follows. Let

Q be a constant such that 0 < Q < Q̄. In this strategy, the choice set Ūt of peer t ∈ N− consists

of the next NQ peers whose downloading positions are immediately larger than t’s. If there are

less than NQ peers after t and immediately before T (0), Ūt will be the set of all peers with

downloading positions larger than t. In practice, the tracker can order all the peers according to

their downloading positions and assign choice sets according to the above strategy. Recall our

assumption that no two peers before T (0) are at the same downloading position. In practice, if

this assumption does not hold, the tracker can always break ties arbitrarily. Then, the tracker

server picks M = α logN (where α is a positive constant to be determined later) peers uniformly

randomly from peer t’s choice set Ūt, which constitute peer t’s set of upstream neighbors Ut.

We have Ut ⊂ Ūt. Correspondingly, define the client set of peer t as D̄t = {s ∈ N−|t ∈ Ūs}.

The set Dt of downstream neighbors of t must come from this client set and is given by

Dt = {s ∈ N−|t ∈ Us}. Let Ūt = |Ūt| and D̄t = |D̄t|.

Remark: It appears that the tracker must maintain the current downloading position of all

peers, which may incur high overhead. However, as we will explain later, by enforcing that all
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peers advance their downloading position at the same speed, this overhead can be significantly

reduced.

(ii) Content Availability: Even with the above peer-selection strategy, the streaming rate for

some peer can still be very poor. This is because peers may fast-forward/backward in a VoD

system. This discontinuous random-seek behavior means that a peer t may not always have all

the content before t. Thus, even if a peer only picks an older peer as an upstream neighbor, the

connection and the capacity may still be wasted. Unfortunately, the random-seek behavior of

peers is quite complicated to model. To the best of our knowledge, no existing analytical works

on P2P VoD systems are able to take into account the impact of this random-seek behavior.

Our strategy is to develop a condition for content availability that is sufficient for achieving

close-to-optimal streaming rates, yet easy to satisfy even with random-seeks. This is perhaps the

most difficult part of our design. To see why such a condition is non-trivial to formulate, consider

the following scenario. Suppose that the NQ peers in the choice set Ūs of peer s are uniformly

in the range (s, s + ∆). Let t0 = s + ∆/2. Each peer t ∈ (s, t0) has all the content before t.

However, each peer t ∈ (t0, s +∆) only has the content in (t0, t), possibly because it random-

sought to t0 before. Further, suppose that we use our peer-selection strategy described earlier,

and each peer uniformly divides its constant upload capacity µ among its effective downstream

neighbors. Then, peer s has M upstreaming neighbors uniformly in (s, s +∆). However, only

those peers in (s, t0) can help peer s, each of which has on average M effective downstream

neighbors. Hence, the average streaming rate of peer s is only µ
M

M
2

= µ
2
, which is far from

optimal. Clearly, the key difficulty here is that, due to its particular position, compared to other

downstream neighbors, peer s has a much smaller probability to become an effective downstream

neighbor of upstream peers in (t0, s+∆).

Our condition below addresses this difficulty. Fix a positive constant qmin ∈ (0, 1). We require

that, for any peer s and any one of its upstream neighbor t, the probability that peer t has the

content for (and is willing to help) peer s is equal to qt > qmin, independently of the position of

peer t. This content availability condition can be implemented as follows. Choose q′min such that

(1−e−q′min)/2 = qmin. Suppose that a peer (denoted by t) randomly seeks to position t = t0 first.

It will first download a fraction of the content from the range that may be requested by the peers

in its client set. More specifically, let ψ(t0) be the downloading position of the youngest peers

in this peer’s client set D̄t0 . This peer then selects K intervals within [ψ(t0), t0], each of which
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has a length of q′t(t0 − ψ(t0))/K, where q′t ≥ q′min > 0 satisfies 1 −
(
1− q′t

K

)K
= qt. These K

intervals are selected independently and uniformly randomly. At this point, it is easy to see that

the above content-availability condition holds: for any peer s in [ψ(t0), t0], the probability that

peer t = t0 has the required content for peer s is equal to the probability that peer s is in at least

one of the K intervals, which is calculated as 1−
(
1− q′t

K

)K
= qt. For sufficiently large K, we

will have qt ≥ (1− e−q
′
min)/2 = qmin. Next, as peer t continues to watch the video, it downloads

the content from t0 to its current downloading position t > t0. In order to meet the content

availability condition for all peers in the client set D̄t, as long as D̄t contains at least one peer

s whose downloading position is smaller than t0, then for all other peers in D̄t ∩ (t0, t), peer t

is only willing to serve it with probability qt, independently of other peers. This restriction will

continue until all peers s ∈ D̄t advance past t0. Then, peer t can serve all of its downstream

neighbors (equivalently, qt = 1). As we will see later, this condition will be sufficient to achieve

a close-to-optimal streaming rate.

(iii) Rate Allocation: To serve downstream neighbors, each peer applies a uniform rate-

allocation algorithm that takes into account content-availability. Specifically, let D̂t ⊂ D̄t denote

the set of peers in peer t’s client set D̄t, whom peer t has the requested data and is willing to

serve. We call D̂t the effective client set of peer t. Let D̂t = |D̂t|. Thus, the effective downstream

neighbor set Dt of peer t will be the intersection of the effective client set and the downstream

neighbor set of peer t, i.e., Dt = D̂t ∩ Dt. Then, each peer divides its upload capacity equally

among all of its effective downstream neighbors. Thus, the streaming rate from peer s to peer

t, Cs→t, is equal to Vs/Ds if t ∈ Ds, and Cs→t = 0, otherwise. Correspondingly, we can define

the effective choice set Ût of peer t as the set of peers in the choice set Ūt who has the required

content of peer t. We have U t = Ût ∩Ut. See Table I for a summary of the relationship between

these notations. Note that for rate-allocation, peers only need to know the content availability

information at their neighbors. There is no need for the tracker to maintain content availability

information, which leads to low control overhead.

(iv) Uniform Progress: There remains one serious high-overhead problem. In a P2P VoD

system, it is possible that some peer downloads content at a higher speed than others. If that

is the case, the tracker needs to constantly update and re-order their downloading positions.

Further, some upstream neighbors of peer t may either fall behind or advance too far ahead. As
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TABLE I
RELATIONSHIP BETWEEN D̄t , D̂t , Dt AND Dt . THE RELATIONSHIP BETWEEN Ūt , Ût , Ut AND U t ARE SIMILAR.

D̄t client set of peer t (containing roughly NQ peers)
a subset of D̄t that peer t has the requested content

D̂t and is willing to serve
a subset of D̄t with size M that are actual down-Dt stream neighbors of peer t

Dt
intersection of D̂t and Dt, which are the peers that peer t
serves

a result, the neighbors of each peer may need to be re-selected constantly. There will then be

significant overhead at the tracker.

We introduce the following condition to significantly reduce the overhead. Suppose that the

targeted streaming rate is (1 − ϵ)µ at the video’s normal playback speed. We enforce that the

downloading position of each peer will also advance ahead of its playback position at the normal

playback speed of the video. In other words, even if the available download rate that a peer

receives from its upstream neighbors is larger than (1− ϵ)µ, it will still download content at the

speed of (1 − ϵ)µ. This condition ensures that the downloading positions of all peers advance

at the same speed. In practice, the above design choice can be easily satisfied by the following

protocol design: a peer will prefetch content for the video only up to a maximum lead-time

ahead of its current playback position.

There are three benefits of this design. First, since the streaming rate of a video is known

before-hand, the tracker can easily predict the advancement of each peer’s downloading position.

Unless a peer fast-forwards/backwards, there is no need for the tracker to update and re-order

peers’ downloading position. Hence, the signaling overhead will be reduced significantly. Second,

the upstream neighbors and downstream neighbors of each peer do not need to change constantly

either, unless a neighbor leaves the system or fast-fowards/backwards. Third, the above design

significantly simplifies our analysis because it is sufficient to focus on the streaming rates at

a snapshot of time. On the other hand, some readers may be concerned that this design may

unnecessarily constrain the downloading speed of those peers who could have downloaded faster.

However, since our goal is to achieve the highest possible streaming rate for all peers, it is in

fact more beneficial to maintain fairness. As we will show in our main result, our design is

sufficient for attaining the close-to-optimal streaming capacity.
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C. Performance Analysis

We have proposed a simple and decentralized algorithm that is easy to implement, is robust

to changes in the peers’ upload capacity, and incurs low control overhead at the tracker. Next,

we show that the above algorithm will attain close-to-optimal streaming rate. Recall from the

content availability condition that qt ≥ qmin for all peers t, and Ct is the downloading rate of

peer t.

Theorem 1. For any ϵ ∈ (0, 1) and d > 1, choose α ≥ 8d
pqminϵ2

with p = µ
Vmax

. Suppose that

each peer chooses M = α logN upstream neighbors. Then for sufficiently large N and K, the

following holds

P
(
Ct ≤ (1− ϵ)µ, for some t ∈ N−) ≤ O

(
1

Nd

)
. (1)

Theorem 1 shows that Θ(logN) upstream neighbors are sufficient for achieving close-to-

optimal streaming rate of (1−ϵ)µ for all peers with high probability. Further, it provides additional

insights on the required number of neighbors as a function of the system parameters. First, if

we wish to achieve a closer-to-optimal streaming rate (i.e., smaller ϵ) or a faster convergence

of the probability (i.e., larger d), we need more neighbors per peer. Second, α is inversely

proportional to p = µ
Vmax

. Hence, if there are higher levels of variation in the distribution of

upload capacities (i.e., the peak rate Vmax is large and/or a significant fraction of peers have

small upload capacities), the required number of neighbors per peer must also be larger to tackle

the extra level of randomness.

Another important consequence of Theorem 1 is that α is inversely proportional to qmin. First,

it is no longer necessary to ensure that an upstream neighbor of peer t always has the content

that peer t requests (i.e., qt = 1 for all t). According to Theorem 1, in order to ensure near-

optimal streaming rates, it would be sufficient if each peer has at least qmin fraction of the content

that its downstream peers will likely request. This relaxation significantly simplifies the system

design when there are random-seeks. For example, the content availability strategy described

earlier would be sufficient. On the other hand, in order to improve system performance, we

should design P2P protocols with large values of qmin, since it reduces the required number of

neighbors.

We next provide a sketch of the proof of Theorem 1. We first fix any peer t and show that
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the probability for its downloading rate Ct to be smaller than (1− ϵ)µ is 1
N2d . Theorem 1 then

follows by taking the union bound. Note that peer t has exactly M upstream neighbors that may

help it. Index these M upstream neighbors as i = 1, ...,M . Let Ii be the indicator function of

the event that the i-th upstream neighbor of peer t is an effective upstream neighbor, and let

I = [I1, I2, ...IM ]T . Then Ct can be represented by Ct =
∑M

i=1
ViIi
Di

. We note that compared to

our prior work [2] for live streaming, a main difficulty here stems from the number of effective

downstream peers Di for each upstream neighbor i. In [2], each upstream neighbor serves exactly

M downstream peers. In contrast, here Di is random and varies with an unknown parameter qi.

Further, there exists non-trivial correlation across i because the client sets of different upstream

neighbors of peer t overlap. To address this difficulty, we use the following main supporting

lemma.

Lemma 2. Fix qmin > 0. (a) Let Ĩ = [Ĩ1, Ĩ2, ..., ĨM ]T be a set of M independent Bernoulli

random variables such that P(Ĩi = 1) = qi ≥ qmin. (b) Let D̃+
i , i = 1, 2, ...,M , be M positive

(and possibly correlated) random variables such that E[D̃+
i |̃I, Ĩi = 1] ≤ ρqiM for some constant

ρ > 0. (c) Let D̃i, i = 1, 2, ...,M be M positive (and possibly correlated) random variables

such that for any r1, r2, ..., rM ≥ 0,

E

[
exp

(
−

M∑
i=1

ri

D̃i

)∣∣∣∣∣ Ĩ
]
≤

M∏
i=1

E

[
exp

(
− ri

D̃+
i

)∣∣∣∣ Ĩ] . (2)

(d) Let Ṽi, i = 1, 2, ...,M , be M i.i.d. random variables independent from D̃+
i ’s and Ĩi’s such

that E[Ṽi] = µ and 0 < Ṽi < Vmax for all i. For and d > 0, let α ≥ 2dVmax

ϵ2µqmin
. Then, for any ϵ > 0

there exists N0 such that when N > N0 and M = α logN , the following holds

P

(
M∑
i=1

ṼiĨi

D̃i

≤ (1− ϵ)µ

ρ

)
≤ O

(
1

N2d

)
. (3)

The proof is Appendix A. We will soon relate Ĩi, D̃i and Ṽi to Ii, Di and Vi. To interpret the

result of Lemma 2, note that if D̃i = D̃+
i and D̃+

i ’s are independent from each other conditioned

on Ĩ, then the condition in (2) trivially holds. Using Jensen’s inequality, it is then easy to see

that E[C̃t] ≥ µ/ρ, where C̃t =
∑M

i=1
ṼiĨi
D̃i

. Lemma 2 implies that, as long as M = α logN , the

probability that C̃t ≤ (1− ϵ)µ/ρ will diminish to zero. The conditions in the lemma, however,

allows the result to hold even if D̃i’s are correlated, and hence is very useful.
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We will use Lemma 2 to show Theorem 1. For ease of exposition, we consider instead

an alternative choice-set selection strategy called “random sequential-range”, which is slightly

different from the “random sequential” choice set selection strategy that we originally used.

In such a “random sequential-range” choice set selection strategy, each user t choose a choice

set Ūt that contains all the other peers whose downloading position are in the range (t, ϕ′(t)],

where ϕ′(t) satisfies that
∫ ϕ′(t)
t

γ(τ)dτ = Q, if
∫ T (0)−

t
γ(τ)dτ ≥ Q, and ϕ′(t) = T (0), otherwise.

Correspondingly, the client set D̄t of each peer t contains all the peers in the range [ψ′(t), t),

where ψ′(t) satisfies that
∫ t
ψ′(t)

γ(τ)(d)τ = Q, if
∫ t
0
γ(τ)dτ ≥ Q, and ψ′(t) = 0, otherwise.

Clearly, for any t < T (0) − ψ′(T (0)), E[Ūt] = NQ. When N is large, Ūt should concentrate on

NQ. Hence, we would expect that the performance of the two choice-set selection strategy are

close to each other. A more general statement can be made as in the following lemma.

Lemma 3. Let X be the collection of all continuous intervals Γ ⊂ [0, T (0)). Fix L ≥ 1. Given

any ϵ ∈ (0, 1), let

A =

{∣∣∣∣∣
∑L

l=1 nl
N

−
∫
∪L
l=1Γl

γ(τ)dτ

∣∣∣∣∣ ≤ ϵ

∫
∪L
l=1Γl

γ(τ)dτ + ϵ,

for all disjoint Γ1, ...,ΓL ∈ X

}
,

where nl is the number of peers in Γl. Then, for any d > 1, there exists N0 such that for any

N > N0, P(A) ≥ 1−O
(

1
N2d

)
.

The proof of Lemma 3 is provided in Appendix A. Note that if A happens, then the number

of peers in every ∪Ll=1Γl will be close to its mean value. Lemma 3 states that such an event A

happens with high probability. In the following, we will focus on the situation when event A

holds. Let PA(·) and EA(·) denote the probability and the expectation conditioned on A.

We are now ready to prove Theorem 1. Fix a peer t and its set of M upstream neighbors

i = 1, ...,M . First, we note that Ii’s are independent because the content availability of each

upstream neighbor i is independent. Further, let qi be the parameter introduced in the content

availability condition in Section II-B. Then P(Ii = 1) = PA(Ii = 1) = qi ≥ qmin. Thus,

condition (a) of Lemma 2 is met with Ĩi = Ii. Next, we will analyze the correlation between

Di’s. Consider an upstream neighbor i. Let ti be its current downloading position. If peer i
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recently random-sought to a position before ti, let ti0 < ti be the position that it first jumped to.

Further, let Γi be the range of content from [ψ′(ti0), ti0 ] that peer i randomly downloaded when

it first jumped to ti0 , according to the content availability strategy in Section II-B. Recall that

the effective client set D̂i is a subset of D̄i that peer i has the requested content. D̂i consists of

two parts: (a) all the n1 peers in Γi ∩ [ψ′(ti), ti0), and (b) for the n2 peers in [ti0 , ti), each of

them is in D̂i with probability qi independent of others. Given A in Lemma 3, we must have,

for any ϵ ∈ (0, 1),

n1 ≤ N
(∫

Γi∩[ψ′(ti),ti0 ]
γ(τ)dτ + ϵ

)
(1 + ϵ) , n+

1 ,

n2 ≤ N
(∫

[ti0 ,ti]
γ(τ)dτ + ϵ

)
(1 + ϵ) , n+

2 .

Now, consider an alternative system by adding (n+
1 − n1) + (n+

2 − n2) dummy peers. Construct

a new set D̂+
i that contains all peers in D̂i. In addition, the first group of (n+

1 − n1) dummy

peers are always added to D̂+
i . For the second group of (n+

2 − n2) dummy peers, each of them

is in D̂+
i with probability qi, independently of others. The advantage of making use of D̂+

i is

that D̂+
i only depends on Ii, ti0 and Γi. Further, Γi and ti0 are independent across i. Hence,

D̂+
i ’s are independent across i conditioned on A. Further, D̂i ≤ D̂+

i by our construction. Next,

consider Di ⊂ D̂i, i.e., the set of effective downstream neighbors of i. For each peer in D̂i,

it randomly choose M upstream neighbors, one of which may be i. Further, for each dummy

peers in D̂+
i , we also let it choose peer i as an upstream neighbor with prob M

NQ
. Let D+

i be

the number of effective downstream neighbors of i in this alternative system. Note that D+
i may

still be correlated across i (even though D̂+
i ’s are independent). This is because the sets D̂+

i

may overlap, and if an overlapped peer s has picked i as an upstream neighbor, it will be less

likely to pick another upstream neighbor i′ ∈ {1, 2, ..,M}. Fortunately, we can show a negative

dependency between D+
i ’s. Specifically, if D+

i is large, then it is likely that less peers will pick

i′, and hence D+
i′ will likely be small. This negative dependency is made precise in the following

lemma (see Appendix A for proof).

Lemma 4. For any r1, r2, ..., rM ≥ 0, D+
i ’s satisfy

EA

[
exp

(
−

M∑
i=1

ri
D+
i

)∣∣∣∣∣ I
]
≤

M∏
i=1

EA

[
exp

(
− ri
D+
i

)∣∣∣∣ I] .
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Note that Di ≤ D+
i by our construction. Hence, condition (c) of Lemma 2 holds with D̃i = Di

and D̃+
i = D+

i . To verify condition (b), We can show the following lemma based on the content

availability condition. The proof is in Appendix A.

Lemma 5. Suppose γmin ≤ γ(t) ≤ γmax for all t ∈ [0, T (0)) for some 0 < γmin ≤ γmax. For any

ϵ ∈ (0, 1), there exists K0, such that for K > K0, we have

EA
[
D+
i

∣∣ I, Ii = 1
]
≤ (1 + ϵ) qiM.

Thus, condition (b) of Lemma 2 holds. Finally, note that Vi’s are i.i.d. and independent of all

other random variables. Hence, Theorem 1 follows from Lemma 2 for the “random sequential-

range” choice set selection strategy. One can then show that Theorem 1 also holds for our original

policy (see Appendix A for details).

III. A MULTI-CHANNEL P2P VOD SYSTEM

In the last section, we have focused on a single-channel P2P system. In this section, we

study a multi-channel P2P system. Peers in each channel are interested in viewing a common

video, which is however different across channels. Based on our single-channel algorithm, we

will propose a simple and robust cache placement policy that could achieve a close-to-optimal

streaming capacity for all channels.

A. System Model

We consider a P2P VoD system containing J channels. Let J = {1, 2, ..., J} denote the set

of all channels, and T
(0)
j denote the video length of channel j. Let Nj denote the set of peers

that are watching channel j, and Nj = |Nj|. Let N denote the set of all peers in the system,

i.e., N =
∪
j∈J Nj and N = |N |. We assume that Nj = pj ·N , where pj is the fraction of peers

viewing channel j, which represents the popularity of channel j. Later on we will consider a

system with large N , in which case we assume that pj’s are fixed and do not change with N .

Note that Nj is fixed for a given N , which is consistent with our single-channel model. Within

each channel, we use the same model as Section II-A, except that a subscript or superscript j

is added to each notation to denote the channel. For example, Q̄j , V
j
t and Dj

t represents the

probability that a channel j peer’s downloading position is at T (0)
j , the upload capacity of a peer
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in channel j and the set of downstream neighbors of peer t in channel j, respectively. We assume

that E[V j
t ] = µ for all j, i.e., the upload capacity in each channel has the same distribution.

Using the results from Section II, we know that each channel j can sustain a maximum

streaming rate around (1− ϵ)µ. However, in a multi-channel system, it is typical that different

channels have different streaming rate requirements. Let Rj denote the targeted streaming rate for

the video of channel j. Let R = [R1, R2, ..., RJ ]
T . Naturally, the streaming rate in some channel

j may satisfy Rj ≤ (1−ϵ)µ, which implies that the upload capacity of peers viewing the channel

is sufficient to support the targeted streaming rate. Such channels are referred to as sufficient

channels. On the other hand, some other channel may have Rj ≥ (1−ϵ)µ. We call such channels

insufficient channels. We denote the set of insufficient channels as I = {j ∈ J |Rj > (1− ϵ)µ},

and the set of sufficient channels as S = {j ∈ J |Rj ≤ (1 − ϵ)µ}. Seemingly, peers in an

insufficient channel will not have enough upload capacity to stream the desired video.

A natural idea to improve the overall system performance is to use the extra capacity from

sufficient channels to help the peers in insufficient channels. This kind of helping will obviously

support a larger set of vectors R of streaming rate requirements. We define the streaming capacity

region Λ of the multi-channel system as the set of streaming rate vectors, such that for each

R ∈ Λ, under some centralized peer-selection and rate-allocation strategy, every peer in the

system can receive a sufficient downloading rate Rj to view its desired channel. Assuming that

the contribution of server capacity is minimal, the largest possible streaming capacity region

is given by Λ′
m =

{
R
∣∣∣∑J

j=1(1− Q̄j)NjRj ≤
∑

i∈N E[Vi]
}

. In other words, since the upload

capacity of peers is the only in the system, the best we can do is to support those rate vectors

R such that the summation of all demand is no greater than the summation of the overall

upload capacity. Again, Q̄j’s are usually not very large in practice, and hence we will omit the

contribution of Q̄j in the rest of this section. Let

Λm =

{
R

∣∣∣∣∣
J∑
j=1

NjRj ≤
∑
i∈N

E[Vi]

}
.

We say that a multi-channel control algorithm achieves a close-to-optimal capacity region, if for

any R ∈ (1− ϵ)Λm with some ϵ > 0, all peers in each channel j can sustain the streaming rate

Rj .

In order for peers from a sufficient channel k to help peers in an insufficient channel j, the
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peers in channel k must already have the content for channel j, in addition to the content for

channel k that they are interested in viewing. For this purpose, we assume that, in addition

to the video from its own channel, each peer also caches an additional video from one other

channel, and hence can serve this cached video to peers in that channel. (Note that although

we assume that the entire video from another channel is cached in this case, a similar line of

analysis can be carried out if the video from another channel is divided into a small number

of parts, and each peer only cached one part of the video.) Further, we assume that the cached

content has already been pre-loaded, and we ignore the bandwidth resources to place these

cached contents. We will then study the optimal placement probabilities for each video and how

to best use the cached content. We note that a similar assumption of pre-loading cached content

has been made in other prior works [13], [14], [18] that study the optimal cache placement

probability. In practice, this kind of proactive deployment can be implemented in several ways.

One possibility is to let the peers download the cached videos from the server during non-

busy hours. Such a method is especially useful when the peers are always online, e.g., when

using set-top boxes. Another possibility is to perform active push or passive replacement using

a randomized algorithm [18]. The key assumption here and in [13], [14], [18] is that the cache

content will change at a much slower time-scale than the content that each peer is interested in

viewing. Hence, the cache replenishment process can be performed much more slowly, and thus

the amount of bandwidth consumed for cache placement will be significantly smaller than the

amount of bandwidth consumed for streaming.

B. Algorithm and Performance

We start with our cache-placement algorithm, which has some similarity to the “proportional-

to-deficient-bandwidth” policy in [18]. (However, note that its optimality is not rigorously shown

in [18].)

(i) Cache Placement: As we discussed earlier, each peer will cache one other video in addition

to its currently-watching video. The tracker maintains which peers cache which videos. Given

R ∈ (1−ϵ)Λm, the tracker determines the required number of additional helpers for each channel

j, hrj , according to hrj =
NjRj

µ
√
1−ϵ −

√
1− ϵNj . Here, hrj can be interpreted as the deficit of upload

bandwidth in channel j. Note that using hrj , the tracker can classify sufficient and insufficient

channels: for a sufficient channel j, hrj is negative or zero; for an insufficient channel j, hrj gives
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a positive value. Every peer in each sufficient channel k caches a video randomly chosen from

those of insufficient channels with the following distribution: the probability ηkj that a peer in

channel k caches the video of channel j satisfies

ηkj = ηj ,
hrj∑
l∈I h

r
l

, for all k ∈ S, j ∈ I. (4)

Note that this probability only depends on Rj (video rate), µ (average upload capacity), pj

(video popularity), but is independent of N . Due to such a randomized cache placement policy,

a random number of peers in each sufficient channel k cache a copy of channel j’s video. Let

us denote this number by H̃kj . The total number of peers in sufficient channels that cache the

video for channel j is then H̃j =
∑

k∈S H̃kj . In our algorithm, the tracker randomly chooses

Hkj peers among the H̃kj peers in channel k (which cache video j) to help channel j ∈ I,

where Hkj is given by Hkj =
⌈

|hrkh
r
j |∑

l∈S |hrl |

⌉
. We call these Hkj peers “helpers” for channel j, and

we use Hj to denote the set of all helpers assigned to help channel j. Note that if Hkj > H̃kj ,

our algorithm would fail because there is not a sufficient number of peers who cache the video.

However, we show in Appendix B that this failure probability goes to 0 as N → ∞. Hence, the

actual number of helpers for each channel j is Hj , |Hj| =
∑

k∈J Hkj .

(ii) Peer Selection and Rate Allocation: Each peer t in an insufficient channel j uniformly

randomly selects MN upstream neighbors from its choice set Ū j
t and uniformly randomly picks

MH upstream neighbors from its helper set Hj , where MN+MH =M . Each peer in a sufficient

channel only needs to select MN = M upstream neighbors from its choice set (i.e., MH = 0

for peers in sufficient channels). Note that if a peer in a sufficient channel k is selected into

the helper set Hj of an insufficient channel j, its upload capacity will be completely reserved

for serving peers in channel j, and will not be used to serve peers in its own viewing channel.

Each upstream peer still applies the uniform rate-allocation strategy. All other parts of the peer

selection and rate allocation algorithms remain the same as in the single-channel case. We can

show that with our simple multi-channel control algorithms, the targeted streaming rate of each

channel can be attained with high probability. Specifically, let Ck
t be the achieve streaming of

peer t in channel k ∈ J . We have the following main result for multi-channel systems. Detailed

analysis and proofs are provided in Appendix B.

Theorem 6. Given any ϵ ∈ (0, 1), d > 1 and R ∈ (1− ϵ)Λm. Let ϵ′ = 1−
√
1− ϵ. There exists
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N0 such that if N ≥ N0, M = α logN and α ≥ 16d
min{ρmin,p,2σminp}qminϵ′2

,then we can find MH and

MN such that

P
(
Ck
t ≤ Rk, for some k ∈ J and t ∈ N−

k

)
≤ O

(
1

Nd

)
.

IV. SIMULATION RESULTS

In this section, we provide simulation results of both single-channel and multi-channel systems

to verify our analytical results. We first simulate a single-channel system and study the probability

that peers achieve close-to-optimal streaming capacity as the number of each peer’s upstream

neighbor number increases. We will also compare performance as we vary different system

parameters, such as the distribution of peers’ upload capacity (represented by p = µ
Vmax

) and

the content availability at peers (represented by q = qmin). Throughout, the single channel

system has N = 20000 peers. The upload capacity of each peer is assumed to be ON-OFF, i.e.,

P(Vi = Vmax) = p and P(Vi = 0) = 1 − p for each peer i. We assume that Vmax = 10. The

average upload capacity of peers is µ = pVmax. The video length of the channel is T (0) = 3

(hours), and we assume that the downloading positions of all the peers satisfy an exponential

distribution, with the density function γ(t) = e−t for t ∈ [0, 3). The parameter Q̄, which is the

probability that a peer’s downloading position is T (0), is given by Q̄ = e−3 ≈ 0.05. We vary

the number of upstream neighbors per peer from M = 10 logN = 99 to M = 90 logN = 891,

which correspond to 0.5% to 4.45% of the total number of peers N . Then, for each choice of the

system parameters (p, q, ϵ) and the number of upstream neighbors per peer, we generate a single-

channel P2P VoD streaming system according to our single-channel P2P control algorithms for

1000 times. In each run of the simulation, we record the smallest downloading rate among all

peers and compare it with (1−ϵ)µ. We count the number of times that this smallest downloading

rate is larger than (1−ϵ)µ and plot the probability for that to happen. The result is shown in Fig.

1. We can observe from the simulation results that, when p = 0.9, q = 0.9, ϵ = 0.3, and when

each peer selects no fewer than 10 logN = 100 (which corresponds to 0.5% of N ) upstream

neighbors, a downloading rate higher than 1− ϵ = 70% of the average peer upload-capacity can

be achieved in the entire network with probability close to 1. (We note that while qmin = 0.9

appears to be large, it only means that each peer has 90% of the content for the range of its

client set, which is of a small size NQ = 0.05N .) When p is reduced to 0.5 or q is reduced

to 0.5, more upstream neighbors are needed to achieve the same performance. Further, under
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Fig. 1. Single-channel system: the probability of success as the number of upstream neighbors increases.
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Fig. 2. Multi-channel system: the probability of success as the number of upstream neighbors increases.

the same values of p and q, when we reduce ϵ to 0.2, more upstream neighbors are needed to

achieve the same performance. These observations verify our insights following Theorem 1.

Next, we simulate a multi-channel P2P VoD system with 4 channels. We use the same

settings as in the single-channel simulations on the distribution of peer upload capacities and

the distribution of peers’ downloading positions. We set Vmax = 10 and p = 0.5. The content

availability is given by q = qmin = 0.9. We set N1 = 4000, N2 = 6000, N3 = 3000, N4 = 7000.

We choose a target streaming rate vector R = [6, 3, 7, 1]T , which is in 0.7Λm (i.e., ϵ = 0.3).

Channels 1 and 3 are insufficient channels, and channels 2 and 4 are sufficient channels. In

Fig. 2, we plot the probability that the downloading rate of a peer in channel j is greater than

its target streaming rates Rj , for each of the four channels as the number of upstream neighbors

per peer varies. Further, the curve with “∆” plots the probability that all peers in all channels

simultaneously sustain downloading rates greater than their corresponding target streaming rates.

As we can see from Fig. 2, all channels attain with high probability their required streaming

rates even with a small number of upstream neighbors.
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V. CONCLUSION

In this paper we provide a rigorous analytical study on the performance of large-scale P2P

VoD systems with sparse connectivity and simple, robust, and decentralized control. For both

single-channel and multi-channel systems, we provide easy-to-implement P2P control algorithms

and show that the system can achieve close-to-optimal streaming capacity with probability

approaching 1, as the total number of peers N increases. Under our control algorithms, each

peer is only assigned Θ(logN) upstream neighbors, with which it exchanges content availability

information. Most parts of the control algorithms are decentralized. These algorithms incur low

control overhead and are easy-to-implement in practice. Our analytical studies provide easy-to-

verify conditions for such close-to-optimal streaming to hold, which shed important insights to

guide the design of improved P2P streaming protocols. For future work, it would be interesting

to study whether the required number of per-peer neighbors can be further reduced, possibly

by using more sophisticated peer-selection and rate-allocation algorithms than those studied in

this paper. The challenge would be how to improve the system performance while retaining the

simplicity and decentralized properties.

APPENDIX A

DETAIL PROOF OF THEOREM 1

In this appendix, we will provide detailed proof of Theorem 1. Since the outline of the proof

has already been discussed in Section II-C, we will only fill in the detailed proofs of all the

intermediate lemmas that are omitted in the main body of the paper.

Before we start, we would like to first present three useful results that will be used in the

proofs.

Lemma 7. Let X be an binomial random variable with sample size n and success probability

p, i.e.,

P(X = k) =

(
n

k

)
pk(1− p)n−k,

for k = 0, 1, 2, ..., n. Then, for k ≤ np, the following holds

P(X ≤ k) ≤ exp

[
−(k − np)2

2np

]
.
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Proof: Using the Chernoff bound, we have, for any θ ≥ 0,

P(X ≤ k) ≤
E
[
e−θX

]
e−θk

=
(pe−θ + 1− p)n

e−θk
=

[1− (−p(e−θ − 1))]n

e−θk
.

Since 0 ≤ −p(e−θ − 1) ≤ 1, and 1− x ≤ e−x when 0 ≤ x ≤ 1, we have

1− [−p(e−θ − 1)] ≤ exp
(
p(e−θ − 1)

)
.

Thus,

P(X ≤ k) ≤
exp

(
np(e−θ − 1)

)
e−θk

= exp
(
np(e−θ − 1) + θk

)
.

Now, let θ = − log
(
k
np

)
(note that θ ≥ 0 since k ≤ np). We thus have

P(X ≤ k) ≤ exp

[
np

(
k

np
− 1

)
− k log

(
k

np

)]
= exp

{
np

[
k

np
− 1− k

np
log

(
k

np

)]}
.

(5)

For 0 ≤ x ≤ 1, one can see that (1− x) log(1− x) ≥ x2/2− x by checking d
dx(1− x) log(1−

x) − (x2/2 − x) = − log(1 − x) − x ≥ 0 and (1 − x) log(1 − x) = x2/2 − x when x = 0. In

addition, note that 0 ≤ 1− k
np

≤ 1 since k ≤ np. We thus have

k

np
log

(
k

np

)
≥

(
1− k

np

)2
2

−
(
1− k

np

)
.

Therefore, applying the above inequality to (5), we have

P(X ≤ k) ≤ exp

np
 k

np
− 1−

(
1− k

np

)2
2

+

(
1− k

np

)
 = exp

[
−(k − np)2

2np

]
.

Lemma 8. Let X ≥ 0 be a random variable such that E[X] ≤ ν. Then, for any r ≤ ν, the

following holds

E
[
e−

r
X

]
≤ e−

r
ν .
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Proof: Let

g(x) =

 e−
r
x , x ≥ r

x
er
, 0 ≤ x < r

.

Clearly, g(x) is continuous for x ≥ 0. Next, we are going to show that g(x) is a concave function.

To see this, note that for x ≥ r,

g′(x) =
r

x2
e−

r
x ≥ 0.

For x < r,

g′(x) =
1

er
≥ 0.

Thus, g′(x) is continuous for x ≥ 0. We only need to show that g′′(x) ≤ 0 for x ≥ 0. Note that

for x ≥ r, 2x
r
≥ 2. Hence,

g′′(x) =

(
1− 2x

r

)
r2

x4
e−

r
x ≤ 0.

Obviously, for x < r, g′′(x) = 0. We then have g′′(x) ≤ 0 for all x ≥ 0, and thus g(x) is a

concave function.

Further, note that ey ≥ ey for y > 1 (since d
dye

y = ey ≥ e = d
dyey for y > 1 and ey = ey

when y = 1). Therefore, we can verify that for both 0 ≤ x ≤ r and x ≥ r,

e−
r
x ≤ g(x).

Combining with Jensen’s inequality, we then have

E
[
e−

r
X

]
≤ E [g(X)] ≤ g(E[X]).

Since g(x) is non-decreasing and E[X] ≤ ν, we have g(E[X]) ≤ g(ν) = e−
r
ν .

Lemma 9. Let V be any bounded random variable between [0, Vmax] with mean µ. For any

θ > 0,

E[e−θV ] ≤ E[e−θṼ ] =
µ

Vmax

e−θVmax + 1− µ

Vmax

,
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where Ṽ is an “ON-OFF” random variable with mean µ, i.e.,

P
(
Ṽ = Vmax

)
=

µ

Vmax

,

P
(
Ṽ = 0

)
= 1− µ

Vmax

.

Proof: For θ = 0,

E[e−θV ] = E[e−θṼ ] = 1.

For any θ > 0,

d

dθ
E[e−θV ] = E[−V e−θV ] ≤ E[−V e−θVmax ] = −µe−θVmax .

On the other hand,

d

dθ
E[e−θṼ ] =

d

dθ
E

[
µ

Vmax

e−θVmax + 1− µ

Vmax

]
=− µe−θVmax .

Thus, for any θ > 0,
d

dθ
(E[e−θV ]− E[e−θṼ ]) ≤ 0.

Consequently, for any θ > 0,

E[e−θV ] ≤ E[e−θṼ ].

A. Detail proof of Lemma 2

According to the Chernoff bound, for any θ > 0, we have

P

(
M∑
i=1

ṼiĨi

D̃i

≤ (1− ϵ)µ

ρ

)
≤

E
[
exp

(
−θ
∑M

i=1
ṼiĨi
D̃i

)]
exp

(
−θ (1−ϵ)µ

ρ

) . (6)
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The numerator satisfies

E

[
exp

(
−θ

M∑
i=1

ṼiĨi

D̃i

)]

=E

[
E

[
exp

(
−θ

M∑
i=1

ṼiĨi

D̃i

)∣∣∣∣∣ Ĩ, Ṽ1, ..., ṼM
]]

. (7)

Note that Ṽi’s are independent from D̃i’s and Ĩi’s. Using condition (2), we then have

E

[
exp

(
−θ

M∑
i=1

ṼiĨi

D̃+
i

)∣∣∣∣∣ Ĩ, Ṽ1, ..., ṼM
]

≤
M∏
i=1

E

[
exp

(
−θ ṼiĨi

D̃+
i

)∣∣∣∣∣ Ĩ, Ṽ1, ..., ṼM
]

=
M∏
i=1

E

[
exp

(
−θ ṼiĨi

D̃+
i

)∣∣∣∣∣ Ĩ, Ṽi
]
. (8)

Let

θ = −ρqminM

Vmax

log(1− ϵ).

Since ϵ ≤ 1− e−1, we have − log(1− ϵ) ≤ 1. Therefore,

θṼi ≤ ρqminM
Ṽi
Vmax

≤ ρqiM.

Note that E[D̃+
i |̃I, Ĩi = 1] ≤ ρqiM from the assumption of the lemma. Thus, fixing Ĩi = 1 and

Ṽi and using Lemma 8, we have

E

[
exp

(
−θ ṼiĨi

D̃+
i

)∣∣∣∣∣ Ĩ, Ĩi = 1, Ṽi

]
≤ exp

(
−θ Ṽi

ρqiM

)
.

Then, define functions gi(I, V ), I = 0 or 1, 0 ≤ V ≤ Vmax, as follows

gi(0, V ) = 1,

gi(1, V ) = exp

(
−θ V

ρqiM

)
.
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Thus, for any i,

E

[
exp

(
−θ ṼiĨi

D̃+
i

)∣∣∣∣∣ Ĩ, Ṽi
]
≤ gi(Ĩi, Ṽi). (9)

Combining (7), (8) and (9), we have

E

[
exp

(
−θ

M∑
i=1

ṼiĨi

D̃i

)]

≤E

[
M∏
i=1

E

[
exp

(
−θ ṼiĨi

D̃+
i

)∣∣∣∣∣ Ĩ, Ṽi
]]

≤E

[
M∏
i=1

gi(Ĩi, Ṽi)

]
=

M∏
i=1

E
[
gi(Ĩi, Ṽi)

]
, (10)

where in the last step we have used independence of Ĩi’s and Ṽi’s. Note that given Ṽi, the

conditional expectation of gi(Ĩi, Ṽi) is given by

E
[
gi(Ĩi, Ṽi)|Ṽi

]
=P(Ĩi = 0) + exp

(
−θ Ṽi

ρqiM

)
P(Ĩi = 1)

=1− qi + qi exp

(
−θ Ṽi

ρqiM

)
.

Therefore, letting p = µ/Vmax,

E
[
gi(Ĩi, Ṽi)

]
= E

[
E
[
gi(Ĩi, Ṽi)|Ṽi

]]
=1− qi + qiE

[
exp

(
−θ Ṽi

ρqiM

)]

≤1− qi + qi

(
1− p+ p exp

(
−θ Vmax

ρqiM

))
(from Lemma 9)

=1− pqi + pqi exp

(
−θ Vmax

ρqiM

)
≤ exp

(
pqi

(
e
−θ Vmax

ρqiM − 1
))

, (11)
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where the last inequality is due to 1−x ≤ e−x when 0 ≤ x ≤ 1, and 0 ≤ pqi

(
1− exp

(
−θ Vmax

ρqiM

))
≤

1. Recall that θ = −ρqminM
Vmax

log(1− ϵ). Hence,

pqi

(
e
−θ Vmax

ρqiM − 1
)

=pqi

(
(1− ϵ)

qmin
qi − 1

)
≤pqi

(
1− ϵ

qmin

qi
− 1

)
=− pqminϵ. (12)

Note that the second step is due to the fact that (1 − x)a ≤ 1 − ax when 0 ≤ a ≤ 1 and

0 ≤ x ≤ 1. Now combine (10), (11), and (12). We have

E

[
exp

(
−θ

M∑
i=1

ṼiĨi

D̃i

)]
≤ exp (−Mpqminϵ) . (13)

Note that for 0 ≤ x ≤ 1, one can see that (1 − x) log(1 − x) ≥ x2/2 − x by checking
d

dx(1− x) log(1− x)− (x2/2− x) = − log(1− x)− x ≥ 0 and (1− x) log(1− x) = x2/2− x

when x = 0. It then follows from (6) and (13) that

P

(
M∑
i=1

ṼiĨi

D̃i

≤ (1− ϵ)µ

ρ

)

≤ exp

(
θ
(1− ϵ)µ

ρ

)
E

[
exp

(
−θ

M∑
i=1

ṼiĨi

D̃i

)]
.

≤ exp

(
−qminM

Vmax

(1− ϵ)µ log(1− ϵ)−Mpqminϵ

)
≤ exp

(
−pqminM

(
ϵ2

2
− ϵ

)
−Mpqminϵ

)
=exp

(
−pqminM

ϵ2

2

)
.

Clearly, if α ≥ 4dVmax

ϵ2µqmin
= 4d

ϵ2pqmin
and M = α logN , we will have

P

(
M∑
i=1

ṼiĨi

D̃i

≤ (1− ϵ)µ

ρ

)
≤ exp

(
−pqmin

4d

ϵ2pqmin

ϵ2

2
logN

)
=

1

N2d
.
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B. Detail proof of Lemma 3

Given ϵ, divide time interval [0, T (0)) into ⌈T (0)/ϵ⌉ sub-intervals ∆1, ∆2, ... ∆⌈T (0)/ϵ⌉, each

of which (except the last one) has a length of ϵ. More specifically, let ∆i = [(i − 1)ϵ, iϵ),

i = 1, 2, ..., ⌈T (0)/ϵ⌉ − 1 and ∆⌈T (0)/ϵ⌉ = [(⌈T (0)/ϵ⌉ − 1)ϵ, T (0)). Let mi be the number of

peers in ∆i. Then, mi is a binomial random variable with sample N and success probability

pi ,
∫
∆i
γ(τ)dτ . According to Lemma 7, we have

P (mi ≤ (1− ϵ)Npi) ≤ exp

(
−ϵ

2

2
Npi

)
.

Note that N −mi is also a binomial random with sample size N and success probability 1− pi.

Using Lemma 7 again, we get

P (N −mi ≤ N − (1 + ϵ)Npi) ≤ exp

(
− ϵ2p2i
2(1− pi)

N

)
.

Hence,

P (|mi −Npi| ≥ ϵNpi)

≤ exp

(
−ϵ

2

2
Npi

)
+ exp

(
− ϵ2p2i
2(1− pi)

N

)
≤O

(
1

N2d

)
,

when N is sufficiently large. Let B denote the event that |mi −Npi| ≤ ϵNpi, for all i. By the

union bound, we then have

P (Bc) = P


⌈

T (0)

ϵ

⌉∪
i=1

{|mi −Npi| ≥ ϵNpi}


≤O

(
1

N2d

)
.

Note that any continuous interval Γl can be covered by at most ⌊|Γl|/ϵ⌋+2 of ∆i’s, where |Γl|

denotes the length of Γl. If event B happens, we will have

nl ≤
(∫

Γl

γ(τ)dτ + 2γmaxϵ

)
(1 + ϵ) for all l and all Γ1, ...,ΓL ∈ X .
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Similarly, note that any interval Γl covers at least ⌈|Γl|/ϵ⌉ − 2 many of ∆i’s. Thus, if event B

happens, we will have

nl ≥
(∫

Γl

γ(τ)dτ − 2γmaxϵ

)
(1− ϵ) for all l and all Γ1, ...,ΓL ∈ X .

We then have

P

(∣∣∣∣∣
L∑
l=1

nl −
∫
∪L
l=1Γl

γ(τ)dτ

∣∣∣∣∣ ≤ ϵ

∫
∪L
l=1Γl

γ(τ)dτ + 2Lγmaxϵ(1 + ϵ),

for all Γ1, ...,ΓL

)
≥ P(Bc) ≥ 1−O

(
1

N2d

)
.

Since ϵ > 0 can be arbitrarily small, replacing ϵ by ϵ′ = 2Lγmaxϵ(1 + ϵ), the result of Lemma 3

thus follows.

C. Detail proof of Lemma 4

Recall that Ii is the indicator function of the event that peer i is an effective upstream neighbor

of peer t. The following discussion is under the condition that I is given. Hence, for simplicity

we omit the conditioning on I. Let D̂+ = [D̂+
1 , D̂

+
2 , ..., D̂

+
M ]T . Obviously,

EA

[
exp

(
−

M∑
i=1

ri
D+
i

)]

=EA

[
EA

[
exp

(
−

M∑
i=1

ri
D+
i

)∣∣∣∣∣ D̂+

]]
. (14)

Now, for any component-wise non-decreasing function f(D+
1 , D

+
2 , ..., D

+
M−1), consider the func-

tion

g(d) = EA

[
f(D+

1 , D
+
2 , ..., D

+
M−1)

∣∣D+
M = d, D̂+

]
, d ∈ ℵ.

Note that the value of D+
M for the last peer M is fixed at d. We claim that g(d) ≤ g(d − 1).

To see this, let Ji, i = 1, 2, ..., D̂+
M be the indicator functions of the event that the i-th peer

(denoted by Mi) in the effective client set of peer M is an effective downstream neighbor of

peer M . We then have D+
M =

∑D̂+
M

i=1 Ji. Suppose that the distribution of [D1, D2, ..., DM−1]
T

given DM = d and D̂+ is identical to [D̃1, D̃2, ..., D̃M−1]
T . Next, decrease DM from d to d− 1

by letting one of the Ji’s be 0. Without loss of generality, assume that J1 = 0. This means
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that peer M1 is not choosing peer M as an upstream neighbor. Since peer M1 should have

exactly M upstream neighbors, it should replace peer M by another upstream neighbor, which

may or may not be an effective upstream neighbor of peer M . Let Li, i = 1, 2, ...,M − 1

be the indicator functions that M1 select peer i as its additional effective upstream neighbor.

Clearly, the distribution of [D1, D2, ..., DM−1]
T given DM = d − 1 and D̂+ is identical to

[D̃1, D̃2, ..., D̃M−1]
T + [L1, L2, ..., LM−1]

T . Hence,

g(d) =EA

[
f(D+

1 , D
+
2 , ..., D

+
M−1)

∣∣D+
M = d, D̂+

]
=EA

[
f(D̃1, D̃2, ..., D̃M−1)

]
≤EA

[
f(D̃1 + L1, D̃2 + L2, ..., D̃M−1 + LM−1)

]
=EA

[
f(D+

1 , D
+
2 , ..., D

+
M−1)

∣∣D+
M = d− 1, D̂+

]
=g(d− 1).

Now let

f(d1, d2, ..., dM−1) = exp

(
−

M−1∑
i=1

ri
di

)
,

h(d) = exp
(
−rM
d

)
.

Then, g(·) is a non-increasing function and h(·) is a non-decreasing function. Let X,Y be two

independent random variables with the same distribution as D+
M conditioned on A and D̂+. It

follows that

0 ≥ E[(g(X)− g(Y ))(h(X)− h(Y ))]

= E[g(X)h(X)] + E[g(Y )h(Y )]

− E[g(X)h(Y )]− E[g(Y )h(X)]

= 2(E[g(X)h(X)]− E[g(X)]E[h(X)]).
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Therefore,

EA

[
g(D+

M)h(D+
M)
∣∣ D̂+

]
≤EA

[
g(D+

M)
∣∣ D̂+

]
EA

[
h(D+

M)
∣∣ D̂+

]
.

Consequently,

EA

[
exp

(
−

M∑
i=1

ri
D+
i

)∣∣∣∣∣ D̂+

]
= EA

[
g(D+

M)h(D+
M)
∣∣ D̂+

]
≤EA

[
g(D+

M)
∣∣ D̂+

]
EA

[
h(D+

M)
∣∣ D̂+

]
=EA

[
exp

(
−

M−1∑
i=1

ri
D+
i

)∣∣∣∣∣ D̂+

]
EA

[
exp

(
− rM
D+
M

)∣∣∣∣ D̂+

]
.

One can then show by induction that

EA

[
exp

(
−

M∑
i=1

ri
D+
i

)∣∣∣∣∣ D̂+

]

≤
M∏
i=1

EA

[
exp

(
− ri
D+
i

)∣∣∣∣ D̂+

]
. (15)

Note that D̂+
i ’s are independent from each other, and D+

i only depends on D̂+
i . We thus have

EA

[
exp

(
− ri
D+
i

)∣∣∣∣ D̂+

]
= EA

[
exp

(
− ri
D+
i

)∣∣∣∣ D̂+
i

]
. (16)
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Hence, combining (14), (15) and (16) yields

EA

[
exp

(
−

M∑
i=1

ri
D+
i

)]

=EA

[
EA

[
exp

(
−

M∑
i=1

ri
D+
i

)∣∣∣∣∣ D̂+

]]

≤EA

[
M∏
i=1

EA

[
exp

(
− ri
D+
i

)∣∣∣∣ D̂+

]]

=EA

[
M∏
i=1

EA

[
exp

(
− ri
D+
i

)∣∣∣∣ D̂+
i

]]

=
M∏
i=1

EA

[
EA

[
exp

(
− ri
D+
i

)∣∣∣∣ D̂+
i

]]
(by the independence of D̂+

i ’s)

=
M∏
i=1

EA

[
exp

(
− ri
D+
i

)]
.

D. Detail proof of Lemma 5

Recall that ti0 is the time that peer i first jumped to, and peer i randomly select K intervals

of length ∆ = qi
K
(ti0 − ψ′(ti0)) from range [ψ′(ti0), ti0 ]. Given the event Ii = 1 (i.e., the i-th

upstream neighbor of peer t has the content that peer t requests), there are two possibilities.

First, if t ≥ ti0 , then because peer i independently choose whether to serve peer t or not with

probability qi, the probability for other downstream neighbors of peer i to become an effective

downstream neighbors will be independent of the event Ii = 1. The result in the lemma can

be easily verified. Second, if t < ti0 , then one of the K intervals must cover time t. Then, any

peers in the range [ψ′(ti), ti0 ] \ (t−∆, t+∆) can only be covered by the other K − 1 intervals.

Therefore, For any peer in this range, the probability that peer i has its requested content is

could be smaller than qi. As a result, the analysis must be more careful (as follows). Let D̂1
i

denote the number of peers in D̂i ∩ [ψ′(ti), ti0 ] \ (t−∆, t+∆). We thus have

EA

[
D̂

(1)
i |Ii = 1

]
≤Nqi(1 + ϵ)

(∫
[ψ′(ti),ti0 ]\(t−∆,t+∆)

γ(τ)dτ + ϵ

)
.
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Let D̂(2)
i denote the number of peers in D̂i ∩ (t −∆, t +∆). The worst case is when all these

peers belongs to D̂i. We have

EA

[
D̂

(2)
i |Ii = 1

]
≤N(1 + ϵ)

(∫
[ψ′(ti),ti0 ]∩(t−∆,t+∆)

γ(τ)dτ + ϵ

)
≤2N(1 + ϵ) (∆γmax + ϵ) .

Let D̂(3)
i denote the number of peers in D̂i ∩ [ti0 , ti]. We have

EA

[
D̂

(3)
i |Ii = 1

]
≤Nqi(1 + ϵ)

(∫
[ti0 ,ti]

γ(τ)dτ + ϵ

)
.

Therefore, the expectation of D̂i can then be bounded by

EA

[
D̂i|Ii = 1

]
=EA

[
D̂

(1)
i |Ii = 1

]
+ EA

[
D̂

(2)
i |Ii = 1

]
+ EA

[
D̂

(3)
i |Ii = 1

]
≤Nqi(1 + ϵ)

(∫
[ψ′(ti),ti]

γ(τ)dτ + ϵ

)
+ 2N(1 + ϵ) (∆γmax + ϵ) .

For sufficiently large K, we have ∆ < ϵ. Further, note that the different between D̂i and D̂+
i is

at most 2ϵ(NQ+ ϵ). Hence, since ϵ > 0 can be arbitrarily small, we have for sufficiently large

K,

EA

[
D̂+
i |Ii = 1

]
≤ (1 + ϵ)qiNQ.

Next, note that given A, for any s belongs to these D̂+
i peers, the number of peers Ūs in its

choice set Ūs can be bounded by

Ūs ≥ (1− ϵ)(NQ− ϵ).
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Since each of these D̂+
i peers becomes an effecitve downstream neighbors of i with probability

at most M/Ūs, we have

EA
[
D+
i |Ii = 1

]
≤ M

(1− ϵ)(NQ− ϵ)
EA

[
D̂+
i |Ii = 1

]
≤ M

(1− ϵ)(NQ− ϵ)
(1 + ϵ)qiNQ.

Define ϵ′ > 0 such that 1+ ϵ′ ≤ (1+ϵ)NQ
(1−ϵ)(NQ−ϵ) . As ϵ can be arbitrarily small, replacing ϵ′ by ϵ, we

have

EA
[
D+
i |Ii = 1

]
≤ (1 + ϵ)qiM.

Because the available content of two different peers are independent, D̂+
i must be independent

from Ij , j ̸= i. Moreover, D+
i only depends on D̂+

i and is hence independent from Ij , j ̸= i.

Therefore,

EA
[
D+
i |I, Ii = 1

]
= EA

[
D+
i |Ii = 1

]
≤ (1 + ϵ)qiM.

E. Detail Proof of Theorem 1

With Lemma 2, 3, 4 and 5, it is trivial to show (3) holds for our alternative policy: “random

sequential-range” choice set selection strategy. To go back to our original “random sequential”

choice set selection strategy and prove Theorem 1, we need the following lemma:

Lemma 10. Given any ϵ > 0 and d > 1, let

W = {|ψ(t)− ψ′(t)| < ϵ, for all t ∈ N} .

Then, P(W) ≥ 1−O
(

1
N2d

)
.

Proof: For any peer t such that ψ′(t) = 0, i.e.,
∫ t
0
γ(τ)dτ ≤ NQ, the event |ψ(t)−ψ′(t)| ≥ ϵ

implies that ψ(t) ≥ ϵ. Thus, the number of peers in [ϵ, t) must be greater than NQ. However,∫ t

ϵ

γ(τ)dτ =

∫ t

0

γ(τ)dτ −
∫ ϵ

0

γ(τ)dτ ≤ NQ− ϵγmin.

Note that the number of peers in [ϵ, t) is a binomial random variable with sample size N and
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success probability
∫ t
ϵ
γ(τ)dτ . According to Lemma 7, we have

P (|ψ(t)− ψ′(t)| ≥ ϵ)

≤P (the number of peers in [ϵ, t) is greater than NQ)

≤ exp

(
−(NQ− ϵγmin −NQ)2

NQ− ϵγmin

)
≤O

(
1

N2d+1

)
. (17)

Further, for any peer t such that ψ′(t) > 0, |ψ(t)− ψ′(t)| ≥ ϵ implies that

ψ(t) ≤ ψ′(t)− ϵ or ψ(t) ≥ ψ′(t) + ϵ.

Consider the case when ψ(t) ≤ ψ′(t) − ϵ. Such an event implies that the number of peers in

[ψ′(t)−ϵ, t) is less than NQ. However, the number of peers in [ψ′(t)−ϵ, t) is a binomial random

variable with sample size N and success probability∫ t

ψ′(t)−ϵ
γ(τ)dτ ≥

∫ t

ψ′(t)

γ(τ)d + ϵγmin = NQ+ ϵγmin.

According to Lemma 7, we thus have,

P (ψ(t) ≤ ψ′(t)− ϵ)

≤P (the number of peers in [ψ′(t)− ϵ, t) is less than NQ)

≤ exp

(
−(NQ+ ϵγmin −NQ)2

NQ+ ϵγmin

)
≤O

(
1

N2d+1

)
. (18)

Similarly, one can show that

P (ψ(t) ≥ ψ′(t) + ϵ) ≤ O

(
1

N2d+1

)
. (19)
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Finally, combining (17), (18) and (19), and taking the union bound, we have

P(W) =P

(∩
t∈N

|ψ(t)− ψ′(t)| < ϵ

)

=1−P

(∪
t∈N

|ψ(t)− ψ′(t)| ≥ ϵ

)

≥1−NP (|ψ(t)− ψ′(t)| ≥ ϵ)

≥1−O

(
1

N2d

)
.

Next, fix any peer t. Recall that for any peer i ∈ Ut, D̂i consists of two parts: (a) all the n1

peers in Γi∩ [ψ(ti), ti0), and (b) for the n2 peers in [ti0 , ti), each of them is in D̂i with probability

qi independent of others. For any ϵ > 0, given A in Lemma 3 and W in Lemma 10, we have

n1 ≤N

(∫
Γi∩[ψ(ti),ti0 ]

γ(τ)dτ + ϵ

)
(1 + ϵ)

≤N

(∫
Γi∩[ψ′(ti)−ϵ,ti0 ]

γ(τ)dτ + ϵ

)
(1 + ϵ)

≤N

(∫
Γi∩[ψ′(ti),ti0 ]

γ(τ)dτ + ϵγmax

)
(1 + ϵ)

and

n2 ≤ N

(∫
[ti0 ,ti]

γ(τ)dτ + ϵ

)
(1 + ϵ).

Since ϵ > 0 can be arbitrarily, replacing ϵ by ϵ
γmax

we have

n1 ≤ N
(∫

Γi∩[ψ′(ti),ti0 ]
γ(τ)dτ + ϵ

)
(1 + ϵ) = n+

1 ,

n2 ≤ N
(∫

[ti0 ,ti]
γ(τ)dτ + ϵ

)
(1 + ϵ) = n+

2 .

Now, we can construct an alternative system in the same way as we did in Section II-C. We

will have Di ≤ D+
i , i = 1, 2, ...,M , where D+

i ’s satisfy Lemma 4 and Lemma 5, with the
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conditioning event A replaced by A ∩W . Let PAW(·) and EAW(·) denote the probability and

the expectation conditioned on A ∩W . We thus have, for any r1, r2, ..., rM ≥ 0,

EAW

[
exp

(
−

M∑
i=1

ri
Di

)∣∣∣∣∣ I
]

≤EAW

[
exp

(
−

M∑
i=1

ri
D+
i

)∣∣∣∣∣ I
]

≤
M∏
i=1

EAW

[
exp

(
− ri
D+
i

)∣∣∣∣ I] .
Now applying Lemma 2 and taking ρ = (1 + ϵ), we have

PAW

(
M∑
i=1

ViIi
Di

≤ (1− ϵ)µ

1 + ϵ

)
≤ O

(
1

N2d

)
.

Note that Ct =
∑M

i=1Cit =
∑M

i=1
ViIi
Di

and ϵ is arbitrary. Hence, for any ϵ > 0,

PAW (Ct ≤ (1− ϵ)µ)O

(
1

N2d

)
.

Consequently,

P (Ct ≤ (1− ϵ)µ)

≤PAW (Ct ≤ (1− ϵ)µ) +P(A) +P(W)

≤O
(

1

N2d

)
.

The result of Theorem 1 thus follows by taking the union bound over all peers.

APPENDIX B

DETAILED PROOF OF THEOREM 6

A. Properties of Our Cache Placement Policy

The following proposition shows that if each peer in a sufficient channel caches the video of

channel j according to the probability ηkj that satisfies,

ηkj ≥ η
kj

,
|hrkhrj |√

1− ϵNk

∑
l∈I h

r
l

, (20)
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and if the number of helpers for channel j in channel k is decided by,

Hkj =

⌈ |hrkhrj |∑
l∈S |hrl |

⌉
, (21)

the optimal streaming capacity of each channel will be greater than its targeted streaming rate.

Proposition 11. Given R ∈ (1− ϵ)Λm and ϵ ∈ (0, 1), assume that ηkj and Hkj satisfy (20) and

(21) respectively. There exists N0 such that for all N ≥ N0, the following holds

(a)
√
1− ϵE[H̃kj] ≥ Hkj − 1, for all j ∈ I and k ∈ S;

(b) P(Ã) ≤ O
(

1
N2d

)
for some d > 1, where

Ã = {H̃kj < Hkj for some k ∈ S and j ∈ I};

(b) Given Ãc,
√
1− ϵ

(
1 +

Hj

Nj

)
µ ≥ Rj , for all j ∈ J .

Proof: (a)For k ∈ S and j ∈ I, we have

Hkj <
|hrk|hrj∑
l∈S |hrl |

+ 1

On the other hand,
√
1− ϵE[H̃kj] ≥ |hrk|

hrj∑
l∈S |hrl |

.

Obviously,
√
1− ϵE[H̃kj] ≥ Hkj − 1.

(b) For k ∈ S and j ∈ I, E[H̃jk] is binomial distributed with sample size Nj and success

probability ηk. Note that
√
1− ϵE[H̃kj] ≥ Hkj − 1. Apply Lemma 7, we have for sufficiently

large N ,

P(H̃kj ≤ Hkj) ≤ P(H̃kj ≤
√
1− ϵE[H̃kj] + 1)

≤ exp

−

(
E[H̃kj]−

√
1− ϵE[H̃kj] + 1

)2
2E[H̃kj]


≤ exp

(
−ϵ

′2

2
E[H̃kj] + ϵ′

)
where ϵ′ = 1−

√
1− ϵ. It is trivial to show that there exists a constant C ′

0 such that

E[H̃kj] ≥
|hrkhrj |∑
l∈I h

r
l

≥ C ′
0N.
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Consequently, for any d > 1

P(H̃kj ≤ Hkj) ≤ exp

(
−ϵ

′2

2
C ′

0N + ϵ′
)
.

Finally, by union bound

P(H̃kj ≤ Hkj for some k ∈ S and j ∈ I)

≤N2 exp

(
−ϵ

′2

2
C ′

0N + ϵ′
)

≤ O

(
1

N2d

)
.

(c) For insufficient channel k ∈ I, hrk ≥ 0. Hence for all j ∈ S

Hjk =

⌈ |hrj |hrk∑
l∈S |hrl |

⌉
≥

|hrj |hrk∑
l∈S |hrl |

.

Note that Hjk = 0 for j ∈ I, thus,

Hk =
∑
j∈J

Hjk =
∑
j∈S

Hjk ≥
∑
j∈S

|hrj |hrk∑
l∈S |hrl |

= hrk.

It follows that

√
1− ϵ

(
1 +

Hk

Nk

)
µ ≥

√
1− ϵ

(
1 +

hrk
Nk

)
µ

=
√
1− ϵ

(
1 +

NkRk

µ
√
1−ϵ −

√
1− ϵNk

Nk

)
µ

=µ
√
1− ϵ

(
1−

√
1− ϵ+

Rk

µ
√
1− ϵ

)
≥Rk.

For sufficient channel k ∈ S, hrk ≤ 0. Hence for all j ∈ I

Hjk = −Hkj = −
⌈
−

|hrj |hrk∑
l∈S |hrl |

⌉
≥

|hrj |hrk∑
l∈S |hrl |

− 1.

Since
∑

k∈J h
r
k ≤ 0, we have

∑
l∈S |hrl | ≥

∑
l∈I h

r
l . In addition, note that Hjk = 0 for j ∈ S ,

thus,

Hk =
∑
j∈J

Hjk =
∑
j∈I

Hjk ≥
∑
j∈I

( |hrj |hrk∑
l∈S |hrl |

− 1

)
≥ hrk − |I|.
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It follows that

√
1− ϵ

(
1 +

Hk

Nk

)
µ ≥

√
1− ϵ

(
1 +

hrk
Nk

− |I|
Nk

)
µ

=
√
1− ϵ

(
1 +

hrk
Nk

)
µ− µ

√
1− ϵ

|I|
Nk

≥µ
√
1− ϵ

(
1−

√
1− ϵ+

Rk

µ
√
1− ϵ

)
− µ

√
1− ϵ

|I|
Nk

≥Rk + µ
√
1− ϵ

(
1−

√
1− ϵ− |I|

pkN

)
Since |I| is a constant, there exist N0 such that if N ≥ N0, we have

1−
√
1− ϵ− |I|

pkN
≥ 0,

and
√
1− ϵ

(
1 +

Hk

Nk

)
µ ≥ Rk.

Therefore, for any insufficient or sufficient channel, (c) holds for sufficiently large N .

It is easy to verify that ηj ≥ η
kj

for all k ∈ S . Therefore, Proposition 11 also holds for our

proportional-to-deficient-bandwidth cache-placement policy, which is given by 4. Proposition 11

shows several nice properties of our cache-placement policy. (a) and (b) tell us that with high

probability, the number of helpers selected in each sufficient channel k to help each insufficient

channel j is no greater than the number of peers in channel k which cache video j. Therefore,

our cache-placement policy can guarantee to provide enough helpers for all insufficient channels

with high probability. Moreover, note that with the contributed upload capacity of the helpers,

the maximum streaming rate of each channel j is given by (1 +
Hj

Nj
)µ (assuming a centralized

control algorithm). Hence, (c) shows that the optimal streaming rate in each channel, either

sufficient or insufficient, is larger than its targeted streaming rate.

Based on this proposition, we next show that the targeted streaming rate of each insufficient

or sufficient channel can be attained with high probability, with our simple multi-channel control

algorithms.
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B. Downloading Rates in Insufficient Channels

The downloading rate Cj
t of peer t in insufficient channel j contains two parts: Cj

t,N , the

aggregate streaming rate from the peers in the same channel in Ū j
t , and Cj

t,H , the aggregate

streaming rate from the helpers in Hj of channel j, i.e.,

Cj
t = Cj

t,N + Cj
t,H ,∀j ∈ I.

We derive Lemma 12 and Lemma 13 on Cj
t,N and Cj

t,H , respectively.

Lemma 12. For any ϵ ∈ (0, 1), d > 1 and any insufficient channel j, if MN = αN logN where

αN ≥ 8d
pqminϵ2

, we have

P
(
Cj
t,N ≤ (1− ϵ)µ

)
≤ O

(
1

N2d

)
, for all t ∈ N−

j .

Lemma 12 is a direct corollary from Theorem 1. Note that the derivation of the aggregation

streaming rate from peers in Ū j
t is the same as that in the single-channel case.

Lemma 13. For any insufficient channel j, let ρj =
Nj

Hj
. For any ϵ ∈ (0, 1), d > 1, if MH ≥

αH logN where αH ≥ 8d
min{ρj ,p}ϵ2 , we have

P

(
Cj
t,H ≤ (1− ϵ)µ

Hj

Nj

)
≤ O

(
1

N2d

)
, for all t ∈ N−

j . (22)

Proof: We have two sets of peers Nj and Hj . For each peer t in Nj , it selects MH upstream

neighbors from Hj . Label these MH upstream neighbors as 1, 2, ...,MH . Clearly, each peer i of

these MH peers will have Nj

Hj
M downstream neighbors. Since every peer Hj in always have the

requested content of any peer in Nj , we have

E[Di] =
Nj

Hj

MH .

In addition, note that if a peer s ∈ Nj has picked i ∈ {1, 2, ...,MH} as an upstream neighbor, it

will be less likely to pick another upstream neighbor i′ ∈ {1, 2, ..,MH}. We can show a negative

dependency between Di’s as we did in Lemma 4. More specifically, for any r1, r2, ..., rMH
≥ 0,

Di’s satisfy

EA

[
exp

(
−

MH∑
i=1

ri
Di

)]
≤

MH∏
i=1

EA

[
exp

(
− ri
Di

)]
.
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Now using Lemma 2 and noting that Ii’s are always 1, we get

P

(
Cj
t,H ≤ (1− ϵ)µ

Hj

Nj

)
=P

( ∑
i=1MH

Vi
Di

≤ (1− ϵ)µ
Hj

Nj

)

≤O
(

1

N2d

)
.

With Lemma 12 and Lemma 13, we can obtain the following theorem for insufficient channels.
Theorem 14. Given any ϵ ∈ (0, 1), d > 1 and R ∈ (1 − ϵ)Λm, assume that the conditions in

Proposition 11 hold. Let ϵ′ = 1 −
√
1− ϵ. There exists N0 such that if N ≥ N0, M = α logN

and

α ≥ 16d

min{ρmin, p}qminϵ′2
, (23)

then we can identify MH and MN such that for any j ∈ I,

P
(
Cj

t ≤ Rj , for some t ∈ N−
j

)
≤ O

(
1

Nd

)
.

Proof: Pick the ϵ in Lemma 12 and 13 as ϵ′. Since (23) holds, for any insufficient channel

j, one can choose MH = αH logN and MN = αN logN such that αH ≥ 8d
min{ρj ,p}qminϵ′2

and

αN ≥ 8d
pqminϵ′2

. Note that 1− ϵ′ =
√
1− ϵ. We then have

P
(
Cj
t,N ≤ µ

√
1− ϵ

)
≤ O

(
1

N2d

)
P

(
Cj
t,H ≤ µ

√
1− ϵ

Hj

Nj

)
≤ O

(
1

N2d

)
.

Since Cj
t = Cj

t,N + Cj
t,H , if Cj

t ≤ µ
√
1− ϵ

(
1 +

Hj

Nj

)
, we must have Cj

t,N ≤ µ
√
1− ϵ or

Cj
t,H ≤ µ

√
1− ϵ

Hj

Nj
. Therefore,

P

(
Cj
t ≤ µ

√
1− ϵ

(
1 +

Hj

Nj

))
≤P

(
Cj
t,N ≤ µ

√
1− ϵ

)
+P

(
Cj
t,H ≤ µ

√
1− ϵ

Hj

Nj

)
≤O

(
1

N2d

)
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Now by Proposition 11 (c) and (d), we have for sufficiently large N ,

P(Cj
t ≤ Rj) = P(Cj

t ≤ Rj|Ã) +P(Cj
t ≤ Rj|Ãc)

≤O
(

1

N2d

)
+P

(
Cj
t ≤ µ

√
1− ϵ

(
1 +

Hj

Nj

)∣∣∣∣ Ãc

)
≤O

(
1

N2d

)

C. Downloading Rates in Sufficient Channels

We next investigate the downloading rate of peer t in sufficient channel k ∈ S . Let σk be

the probability that a peer in Nk is selected into the helper set of an insufficient channel. Since

peers are identical and there are in total −Hk helpers in channel k (the value of Hk in sufficient

channels is negative according to (21)), we derive

σk =
−Hk

Nk

.

Hence, with probability σk, a peer in sufficient channel k does not contribute any upload capacity

to its own channel, and thus it is equivalent to a peer with upload capacity 0 in channel k. We

introduce an indicator function gki :

gki =

 0, if i ∈ Nk is a helper for another channel,

1, otherwise.

We can then define a peer’s equivalent upload capacity V̂ in a sufficient channel. The equivalent

upload capacity of peer i ∈ Nk is

V̂ k
i = V k

i g
k
i .

We have E[gki ] = 1− σk and E[V̂ k
i ] = (1− σk)µ. The sufficient channel k can then be viewed

as a single-channel system with peer upload capacity V̂ k
i , where E[V̂ k

i ] = (1− σk)µ. However,

V̂ k
i ’s may not necessarily be independent, which can be understood as follows. The number of

peers in channel k assigned to help insufficient channels is Hk. Hence whenever a peer becomes

a helper, the probability that other peers in channel k become helpers is reduced. Fortunately,

Lemma 15 shows that Lemma 2 can still be applied in this case.
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Lemma 15. For any sufficient channel k ∈ S , let Xk ⊂ Nk be any subset of Nk. Then for any

r1, r2, ..., r|Xk| that are all non-negative or all non-positive, we have

E

[
exp

(∑
i∈Xk

riV̂
k
i

)]
≤
∏
i∈Xk

E
[
exp

(
riV̂

k
i

)]
. (24)

Proof: Note that regardless which insufficient channel the effective caches in channel k are

going to help, the caches selection procedure selects Hk effective caches out of Nk peers. Each

peer will be selected with equal probability. Hence, Ji’s are identical distributed and
∑

i∈Nk
Ji =

Hk. Let |Xk| = n and write Xk = {1, 2, ..., n}. For i ≤ n − 1, define the random vector

J = [J1, J2, ..., Jn−1]
T which contains all the Ji’s but Jn. We first claim that for any j =

[j1, j2, ..., jn−1]
T with ji = 0 or 1, i = 1, 2, ..., n − 1 and any non-decreasing function f :

{0, 1}n−1 7→ ℜ, we have

E[f(J)|Jn = 1] ≤ E[f(J)|Jn = 0]. (25)

To see this, consider the situition when we select m balls out of l ≥ n balls and let us use

Jlm = [J lm,1, ..., J
l
m,n−1]

T denote the variables whose element J lm,i indicates whether the ith ball

is selected or not. When conditioned on Jn = 1, the distribution of J is the same as JNk−1
Hk−1.

When conditioned on Jn = 0, the distribution of J is the same as JNk−1
Hk

. Note that JNk−1
Hk

can

be obtained from JNk−1
Hk−1 by selecting an addition ball from the remaining Nk − Hk balls. Let

us denote the indicator functions of the event that the ith ball is selected when selecting the

addition ball as J̃i and letJ̃ = [J̃1, J̃2, ..., J̃n−1]
T . We then have

JNk−1
Hk

= JNk−1
Hk−1 + J̃.

Obviously J̃ ≥ 0, and JNk−1
Hk

≥ JNk−1
Hk−1. In addition, since f is non-decreasing, we have

f
(
JNk−1
Hk

)
≥ f

(
JNk−1
Hk−1

)
. Therefore,

E[f(J)|Jn = 1] = E
[
f
(
JNk−1
Hk−1

)]
≤ E

[
f
(
JNk−1
Hk

)]
= E[f(J)|Jn = 0].
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Next let

f(J) = exp

(
n−1∑
i=1

riJi

)
,

g(Jn) = ernJn .

For any non-negative r1, r2, ..., rn, we have

E

[
exp

(
n∑
i=1

riJi

)]

=E

[
ernJnE

[
exp

(
n−1∑
i=1

riJi

)∣∣∣∣∣ Jn
]]

=E [g(Jn)E [f(J)| Jn]]

According to (24), h(Jn) = E [f(J)| Jn] is a non-increasing function of Jn and g(Jn) is obviously

a non-decreasing function of Jn. Let X, Y be two independent random variables with the same

distribution as Jn. It follows that (the FKG inequality)

0 ≥ E[(g(X)− g(Y ))(h(X)− h(Y ))]

= E[g(X)h(X)] + E[g(Y )h(Y )]− E[g(X)h(Y )]− E[g(Y )h(X)]

= 2(E[g(X)h(X)]− E[g(X)]E[h(X)]).

Hence, we have

E[g(Jn)h(Jn)] ≤ E[g(Jn)]E[h(Jn)],

and

E

[
exp

(
n∑
i=1

riJi

)]
≤E[g(Jn)]E[h(Jn)]

=E
[
ernJn

]
E

[
exp

(
n−1∑
i=1

riJi

)]
.
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Using induction, one can show

E

[
exp

(
n∑
i=1

riJi

)]
≤

n∏
i=1

E
[
eriJi

]
.

Finally, note that the above inequality holds for any non-negative ri’s and Ui’s are i.i.d.. We

have

E

[
exp

(
n∑
i=1

riUiJi

)]
(26)

=E

[
E

[
exp

(
n∑
i=1

riUiJi

)∣∣∣∣∣U1, U2, ..., Un

]]
(27)

≤E

[
n∏
i=1

E
[
eriUiJi

∣∣U1, U2, ..., Un
]]

(28)

=E

[
n∏
i=1

E
[
eriUiJi

∣∣Ui]] (29)

=
n∏
i=1

E
[
E
[
eriUiJi

∣∣Ui]] (30)

=E
[
eriUiJi

]
. (31)

Similarly, for all non-positive ri’s, one can show that if f is a non-increasing function, (25)

holds in the oppsite direction, i.e.,

E[f(J)|Jn = 1] ≥ E[f(J)|Jn = 0], (32)

and the reset of the proof follows almost the same lines as the case for all non-negative ri’s.

Lemma 15 shows that the required conditions in Lemma 2 hold. We can then apply Lemma

2 to obtain the following result for any sufficient channel.

Theorem 16. Given any ϵ ∈ (0, 1), d > 1 and R ∈ (1 − ϵ)Λm, assume that the conditions in

Proposition 11 hold. Let ϵ′ = 1 −
√
1− ϵ. There exists N0 such that if N ≥ N0, M = α logN

and

α ≥ 8d

σminpqminϵ′2
, (33)
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where σmin = mink∈S σk, then for any k ∈ S,

P
(
Ck
t ≤ Rk for some t ∈ N−

k

)
≤ O

(
1

Nd

)
.

Proof: As discussed before, any sufficient channel k can be viewed as a single channel

system where the upload capacity of each peer is given Ṽi. E[Ṽi] = σkµ. Hence, we can then

apply Lemma 2 and Theorem 1. We have for any sufficient channel k and ϵ′, if

α ≥ 8d

σminpqminϵ′2
≥ 8d

σkpqminϵ′2
,

then

P
(
Ck
t ≤ (1− ϵ′)σkµ

)
≤ O

(
1

Nd

)
.

Now by Proposition 11 (d), given Ãc

(1− ϵ′)σkµ = µ
√
1− ϵ

(
1 +

Hk

Nk

)
≥ Rk.

Then according to Proposition 11 (c), we have for sufficiently large N ,

P(Ck
t ≤ Rk) = P(Ck

t ≤ Rk|Ã) +P(Ck
t ≤ Rk|Ãc)

≤O
(

1

N2d

)
+P

(
Ck
t ≤ µ

√
1− ϵ

(
1 +

Hk

Nk

)∣∣∣∣ Ãc

)
≤O

(
1

Nd

)
.

D. Detailed Proof of Theorem 6

Combining the results for insufficient channels (Theorem 14) and sufficient channels (Theorem

16), we can proof the main result for a multi-channel P2P VoD system - Theorem 6.

Proof of Theorem 6: Consider any channel k ∈ J . If k is an insufficient channel, since

α ≥ 16d

min{ρmin, p, 2σminp}qminϵ′2
≥ 16d

min{ρmin, p}qminϵ′2
,

Theorem 14 holds. Thus, when N is sufficiently large, we can identify MH and MN such that

P
(
Ck

t ≤ Rk for some t ∈ N−
k

)
≤ O

(
1

Nd

)
. (34)
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If k is a sufficient channel, since

α ≥ 16d

min{ρmin, p, 2σminp}qminϵ′2
≥ 16d

σminpqminϵ′2
,

Theorem 16 holds. Thus, when N is sufficiently large, we can find MH = 0 and MN =M such

that (34) holds. Hence, (34) holds for any channel k when N is sufficiently large. The result

then follows from the union bound.
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