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Abstract—In this paper, we focus on the scheduling problem
in multi-channel wireless networks, e.g., the downlink of a single
cell in fourth generation (4G) OFDM-based cellular networks.
Our goal is to design efficient scheduling policies that can achieve
provably good performance in terms of both throughput and delay,
at a low complexity. While a recently developed scheduling policy,
called Delay Weighted Matching (DWM), has been shown to be
both rate-function delay-optimal (in the many-channel many-
user asymptotic regime) and throughput-optimal (in general
non-asymptotic setting), it has a high complexity O(n5), which
makes it impractical for modern OFDM systems. To address
this issue, we first develop a simple greedy policy called Delay-
based Queue-Side-Greedy (D-QSG) with a lower complexity O(n3),
and rigorously prove that D-QSG not only achieves throughput
optimality, but also guarantees near-optimal rate-function-based
delay performance. Specifically, the rate-function attained by D-
QSG for any fixed integer threshold b > 0, is no smaller than
the maximum achievable rate-function by any scheduling policy
for threshold b − 1. Further, we develop another simple greedy
policy called Delay-based Server-Side-Greedy (D-SSG) with an
even lower complexity O(n2), and show that D-SSG achieves
the same performance as D-QSG. Thus, we are able to achieve
a dramatic reduction in complexity (from O(n5) of DWM to
O(n2)) with a minimal drop in the delay performance. Finally,
we conduct numerical simulations to validate our theoretical
results in various scenarios. The simulation results show that
our proposed greedy policies not only guarantee a near-optimal
rate-function, but also empirically are virtually indistinguishable
from the delay-optimal policy DWM.

I. INTRODUCTION

In this paper, we consider the scheduling problem in a

multi-channel wireless network, where the system has a large

bandwidth that can be divided into multiple orthogonal sub-

bands (or channels). A practically important example of such

a multi-channel network is the downlink of a single cell of a

fourth generation (4G) OFDM-based wireless cellular system

(e.g., LTE and WiMax). In such a multi-channel system, a

key challenge is how to design efficient scheduling policies

that can simultaneously achieve high throughput and low

delay? This problem becomes extremely critical in OFDM

systems that are expected to meet the dramatically increasing

demands from multimedia applications with more stringent

Quality-of-Service (QoS) requirements (e.g., voice and video
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applications), and thus look for new ways to achieve higher

data rates, lower latencies, and a much better user experience.

Yet, an even bigger challenge is how to design such high-

performance scheduling policies at a low complexity? For

example, in OFDM systems, the Transmission Time Interval

(TTI), within which the scheduling decisions need to be made,

is typically on the order of a few milliseconds. On the other

hand, there are hundreds of orthogonal channels that need to be

allocated to hundreds of users. Hence, the scheduling decision

has to be made within a very short scheduling cycle.

We consider a single-cell multi-channel system consisting

of n channels and a proportionally large number of users, with

intermittent connectivity between each user and each channel.

We assume that the Base Station (BS) maintains a separate

First-in First-out (FIFO) queue associated with each user,

which buffers the packets for the user to download. The delay

performance that we focus on in this paper is the probability

that the largest packet waiting time (or delay) in the system

exceeds a certain fixed threshold. Such a probability can be

estimated by its asymptotic decay-rate (or called rate-function

in large-deviations theory) when n becomes large. We refer to

this setting as the many-channel many-user asymptotic regime.

A number of recent works have considered a multi-channel

system similar to ours, but looked at delay from different

perspectives. A line of works focused on queue-length-based

metrics: average queue length [1] or queue-length rate-function

in the many-channel many-user asymptotic regime [2]–[5]. In

[1], the authors focused on minimizing cost functions over a

finite horizon, which includes minimizing the expected total

queue length as a special case. The authors showed that their

goal can be achieved in two special scenarios: 1) a simple two-

user system, and 2) systems where fractional server allocation

is allowed. In [2]–[5], delay performance is evaluated by the

queue-overflow probability, and its associated rate-function,

i.e., the asymptotic decay-rate of the probability that the largest

queue length in the system exceeds a fixed threshold. Although

[2] and [5] proposed scheduling policies that can guarantee

both throughput optimality and rate-function optimality, they

suffer from the following shortcomings. First, although the

decay-rate of the queue-overflow probability may be mapped

to that of the delay-violation probability when the arrival

process is deterministic with a constant rate [6], this is not

true in general, especially when the arrivals are correlated over

time. Further, [7] and [8] have shown through simulations that

good queue-length performance does not necessarily imply

good delay performance. Second, their results on rate-function



optimality strongly rely on the assumptions that the arrival

process is i.i.d. not only across users, but also in time, and

that per-user arrival at any time is no greater than the largest

channel rate. Third, even under this more restricted model,

their proposed algorithms with rate-function optimality are

of complexity at least O(n3). For more general models, no

algorithms with provable rate-function optimality are provided.

Similar to this paper, another line of work [7] directly

focused on the delay performance rather than the queue-length

performance. The performance of delay is often harder to

characterize, because the delay in a queueing system often

does not admit a Markovian representation, even for simple

M/M/1 queues. The problem becomes even harder in a multi-

user system with fading channels and interference constraints,

since the service rate for individual queues becomes more un-

predictable. In [7], the authors developed a scheduling policy

called Delay Weighted Matching (DWM), which maximizes

the sum of the delay of the packets scheduled in each time-

slot. It has been shown that DWM is not only throughput-

optimal, but also rate-function delay-optimal in many cases

(i.e., maximizing delay rate-function, rather than queue-length

rate-function as considered in [2]–[5].) However, DWM incurs

a high complexity O(n5), which renders it impractical for

modern OFDM systems with many channels and users (e.g.,

on the order of hundreds). Hence, scheduling policies with a

lower complexity are preferred in such multi-channel systems.

This leads to the following natural but important questions:

Can we find scheduling policies that have a significantly

lower complexity, with comparable or only slightly worse

performance? How much complexity can we reduce, and how

much performance do we need to sacrifice? In this paper,

we answer these questions positively. Specifically, we develop

low-complexity greedy policies that achieve both throughput

optimality and rate-function near-optimality.

We summarize our main contributions as follows.

First, we propose a greedy scheduling policy, called Delay-

based Queue-Side-Greedy (D-QSG), which has a lower com-

plexity O(n3) compared to O(n5) of DWM. D-QSG, in an

iterative manner, schedules the oldest packets remaining in the

system one-by-one whenever possible. We rigorously prove

that D-QSG not only achieves throughput optimality, but also

guarantees a near-optimal rate-function. Specifically, the rate-

function attained by D-QSG for any fixed integer threshold

b > 0, is not only positive but also no smaller than the

maximum achievable rate-function by any scheduling policy

for threshold b−1. We obtain this result by comparing D-QSG

with a new Greedy Frame-Based Scheduling (G-FBS) policy

that can exploit a key property of D-QSG. We show that G-

FBS policy guarantees a near-optimal rate-function, and that

D-QSG dominates G-FBS in every sample-path.

Second, we propose another greedy scheduling policy,

called Delay-based Server-Side-Greedy (D-SSG), which has

an even lower complexity O(n2). D-SSG, also in an iterative

manner, allocates servers one-by-one to serve a connected

queue that has the largest head-of-line (HOL) delay. Note

that the queue-length-based counterpart of D-SSG, called Q-

SSG, has been studied in [3], [4]. There, however, the authors

were only able to prove a positive (queue-length) rate-function

for restricted arrival processes that are i.i.d. not only across

users, but also in time. On the contrary, we show that D-SSG

achieves the same performance as D-QSG, by proving that

D-SSG and D-QSG are sample-path equivalent under certain

tie-breaking rules. Thus, we are able to achieve a dramatic

reduction in complexity (from O(n5) of DWM to O(n2)) with

a minimal drop in the delay performance.

Finally, we conduct numerical simulations to validate our

theoretical results in various scenarios. Our simulation results

show that our proposed greedy policies not only guarantee a

near-optimal rate-function, but also empirically are virtually

indistinguishable from the delay-optimal policy DWM. Further,

the simulation results also show that D-SSG consistently

outperforms its queue-length-based counterpart Q-SSG in all

scenarios that we consider.

The remainder of the paper is organized as follows. In

Section II, we describe the details of our system model and

performance metrics. In Section III, we derive an upper bound

on the rate-function that can be achieved by any scheduling

policy. Then, in Sections IV and V, we present our main

results on throughput optimality and near-optimal rate-function

for our proposed low-complexity greedy policies. Further, we

conduct numerical simulations in Section VI. Finally, we make

concluding remarks in Section VII.

Due to space limitations, the detailed proofs are omitted and

provided in our online technical report [9].

II. SYSTEM MODEL

We consider a discrete-time model for the downlink of a

single-cell multi-channel wireless network with n orthogonal

channels and n users. In each time-slot, a channel can be

allocated only to one user, but a user can be allocated with

multiple channels simultaneously. As in [2]–[5], [7], for ease

of presentation, we assume that the number of users is equal

to the number of channels. Our rate-function delay analysis

follows similarly if the number of users scales linearly with

the number of channels. We let Qi denote the FIFO queue

associated with the i-th user, and let Sj denote the j-th server1.

We consider the following i.i.d. ON-OFF channel model that

has also been used in the previous works (e.g., [1]–[5], [7]). In

such a model, the connectivity between each queue and each

server change between ON and OFF from time to time. We

assume that the perfect channel state information (i.e., whether

each channel is ON or OFF for each user in each time-slot)

is known at the BS. This is a reasonable assumption in the

downlink scenario of a single cell in a multi-channel cellular

system with dedicated feedback channels. We also assume unit

channel capacity, i.e., at most one packet from Qi can be

served by Sj when the connectivity between Qi and Sj is ON.

This assumption of unit channel capacity is made for ease of

exposition, and our analysis can be readily extended to a 0-

K channel model (where the channel capacity is K packets

1Throughout this paper, we use the terms “user” and “queue” interchange-
ably, and use the terms “channel” and “server” interchangeably.
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Fig. 1. System model. The connectivity between each pair of queue Qi and
server Sj is “ON” (denoted by a solid line) with probability q, and “OFF”
(denoted by a dashed line) otherwise.

per time-slot when a channel is ON). Let Ci,j(t) denote the

connectivity between queue Qi and server Sj in time-slot t.

Then, Ci,j(t) can be modeled as a Bernoulli random variable

with a parameter q ∈ (0, 1), i.e.,

Ci,j(t) =

{

1, with probability q,

0, with probability 1− q.

We assume that all the random variables Ci,j(t) are i.i.d.

across all the variables i, j and t. Such a network can be

modeled as a multi-queue multi-server system with stochastic

connectivity, as shown in Fig. 1.

As in the previous works [1]–[3], [7], the above i.i.d. ON-

OFF channel model is a simplification, and is assumed only

for the analytical results. The ON-OFF model is a good

approximation when the BS transmits at a fixed achievable rate

if the SINR level is above a certain threshold at the receiver,

and does not transmit otherwise. The sub-bands being i.i.d.

is a reasonable assumption when the channel width is larger

than the coherence bandwidth of the environment. Moreover,

we believe that our results obtained for this simple channel

model can provide useful insights for more general models.

Indeed, we will show through simulations that our proposed

greedy policies also perform well in more general models,

e.g., accounting for heterogeneous (near- and far-)users and

time-correlated channels. Further, we will briefly discuss how

to design efficient scheduling policies in general scenarios

towards the end of this paper.

We present more notations used in this paper as follows.

Let Ai(t) denote the number of packet arrivals to queue Qi

in time-slot t. Let A(t) =
∑n

i=1 Ai(t) denote the cumulative

arrivals to the entire system in time-slot t, and let A(t1, t2) =
∑t2

τ=t1
A(τ) denote the cumulative arrivals to the system from

time t1 to t2. We let λi denote the mean arrival rate to queue

Qi, and let λ , [λ1, λ2, . . . , λn] denote the arrival rate vector.

We assume that packets arrive at the beginning of a time-slot,

and depart at the end of a time-slot. We use Qi(t) to denote the

length of queue Qi at the beginning of time-slot t immediately

after packet arrivals. Queues are assumed to have an infinite

buffer capacity. Let Zi,l(t) denote the delay of the l-th packet

at queue Qi at the beginning of time-slot t, which is measured

since the time when the packet arrived to queue Qi until the

beginning of time-slot t. Note that at the end of each time-

slot, the packets that are still present in the system will have

their delays increased by one due to the elapsed time. Further,

let Wi(t) = Zi,1(t) denote the HOL delay of queue Qi at the

beginning of time-slot t. Finally, we define (x)+ , max(x, 0),
and use 1{·} to denote the indicator function.

We now state the assumptions on the arrival processes. The

throughput analysis is carried out under the following mild

assumption, which has also been used in [10].

Assumption 1: For each user i ∈ {1, 2, . . . , n}, the arrival

process Ai(t) is an irreducible and positive recurrent Markov

chain with countable state space, and satisfies the Strong Law

of Large Numbers: That is, with probability one,

lim
t→∞

∑t−1
τ=0Ai(τ)

t
= λi. (1)

We also assume that the arrival processes are mutually in-

dependent across users (which can be relaxed for throughput

analysis as discussed in [10].)

The following two assumptions are also used in the previous

work [7] on the rate-function delay analysis.

Assumption 2: There exists a finite L such that Ai(t) ≤ L

for any i and t, i.e., instantaneous arrivals are bounded.

Assumption 3: The arrival processes are i.i.d. across users,

and λi = p for any user i. Given any ǫ > 0 and δ > 0,

there exists T > 0, N > 0, and a positive function IB(ǫ, δ)
independent of n and t such that

P(

∑t
τ=1 1{|

∑
n
i=1 Ai(τ)−pn|>ǫn}

t
> δ) < exp(−ntIB(ǫ, δ)),

for all t > T and n > N .

Assumption 2 requires that the arrivals in each time-slot

have bounded support, which is indeed true for real systems.

Assumption 3 is also very general, and can be viewed as a

result of the statistical multiplexing effect of a large number

of sources. Assumption 3 holds for i.i.d. arrivals and arrivals

driven by two-state Markov chains (that can be correlated over

time) as two special cases.

A. Performance Objectives

In this paper, we consider two performance metrics: 1) the

throughput and 2) the rate-function of the probability that

the largest packet delay in the system exceeds a certain fixed

threshold in the many-channel many-user asymptotic regime.

We first define the optimal throughput region (or stability

region) of the system for any fixed integer n > 0 under

Assumption 1. As in [10], a stochastic queueing network

is said to be stable if it can be described as a discrete-

time countable Markov chain and the Markov chain is stable

in the following sense: The set of positive recurrent states

is nonempty, and it contains a finite subset such that with

probability one, this subset is reached within finite time from

any initial state. When all the states communicate, stability is

equivalent to the Markov chain being positive recurrent [11].

The throughput region of a scheduling policy is defined as

the set of arrival rate vectors for which the network remains

stable under this policy. Then, the optimal throughput region is

defined as the union of the throughput regions of all possible

scheduling policies, which is denoted by Λ∗. A scheduling

policy is throughput-optimal, if it can stabilize any arrival



rate vector strictly inside Λ∗. For more discussions on the

optimal throughput region Λ∗ in our multi-channel systems,

please refer to our online technical report [9].

Next, we consider the probability that the largest packet

delay in the system exceeds a certain fixed threshold, and

its rate-function in the many-channel many-user asymptotic

regime. Let W (t) , max1≤i≤n Wi(t) denote the largest HOL

delay over all the queues (i.e., the largest packet delay in the

system) at the beginning of time-slot t. Assuming that the

system is stationary and ergodic, we define rate-function I(b)
as the asymptotic decay-rate of the probability that the largest

packet delay exceeds any fixed integer threshold b ≥ 0, as the

system size n goes to infinity, i.e.,

I(b) , lim
n→∞

−1

n
logP(W (0) > b). (2)

Note that once we know this rate-function, we can then

estimate the delay-violation probability using P(W (0) > b) ≈
exp(−nI(b)). The estimate tends to be more accurate as n

becomes larger. Clearly, for systems with a large n, a larger

value of the rate-function implies a better delay performance,

i.e., a smaller probability that the largest packet delay in the

system exceeds a certain threshold. We define the optimal

rate-function as the maximum achievable rate-function over

all possible scheduling policies, which is denoted by I∗(b). A

scheduling policy is rate-function delay-optimal if it achieves

the optimal rate-function I∗(b) for any fixed integer threshold

b ≥ 0.

III. AN UPPER BOUND ON THE RATE-FUNCTION

In this section, we derive an upper bound on the rate-

function that can be achieved by any scheduling algorithm.

Let IAG(t, x) denote the asymptotic decay-rate of the prob-

ability that in any interval of t time-slots, the total number of

packet arrivals is greater than n(t+ x), as n tends to infinity,

i.e.,

IAG(t, x) , lim inf
n→∞

−1

n
logP(A(−t+ 1, 0) > n(t+ x)).

Let IAG(x) be the infimum of IAG(t, x) over all t > 0, i.e.,

IAG(x) , inf
t>0

IAG(t, x).

Also, we define IX , log 1
1−q

.

Theorem 1: Given the system model described in Sec-

tion II, for any scheduling algorithm, we have

lim sup
n→∞

−1

n
logP(W (0) > b)

≤ min{(b+ 1)IX , min
0≤c≤b

{IAG(b− c) + cIX}} , IU (b).

Theorem 1 can be shown by considering two events that lead

to {W (0) > b}, and computing their probabilities and decay-

rates. We provide the proof in our online technical report [9].

Remark: Theorem 1 implies that IU (b) is an upper bound

on the rate-function that can be achieved by any scheduling

policy. Hence, even for the optimal rate-function I∗(b), we

must have I∗(b) ≤ IU (b) for any fixed integer threshold b ≥ 0.

In [7], the authors proposed the Delay Weighted Matching

(DWM) policy that is rate-function delay-optimal and achieves

upper-bound IU (b) in many cases. However, it suffers from

a high complexity O(n5). Specifically, DWM requires com-

puting a maximum-weight matching over a bipartite graph

G[V,E] with |V | = O(n2) and |E| = O(n3), which has a

complexity O(|V ||E|+ |V |2 log |V |) = O(n5) in general [12].

IV. DELAY-BASED QUEUE-SIDE-GREEDY (D-QSG)

In this section, we develop a simple greedy scheduling

policy called Delay-based Queue-Side-Greedy (D-QSG). D-

QSG, in an iterative manner, schedules the oldest packets in

the system one-by-one whenever possible. In this sense, D-

QSG can be viewed as an approximation of First-Come First-

Serve (FCFS) policy, which has been known to be delay-

optimal in many systems (e.g., a single-server queue) [7].

We will show that D-QSG not only achieves throughput

optimality, but also guarantees a near-optimal rate-function,

at a complexity O(n3).

A. Algorithm Description

We start by presenting some additional notations. In the D-

QSG policy, there are at most n rounds in each time-slot t.

Let Qk
i (t), Z

k
i,l(t) and W k

i (t) = Zk
i,1(t) denote the length of

queue Qi, the delay of the l-th packet of Qi, and the HOL

delay of Qi after the k-th round in time-slot t, respectively.

In particular, we have Q0
i (t) = Qi(t), Z

0
i,l(t) = Zi,l(t), and

W 0
i (t) = Wi(t). Let Υk(t) denote the set of indices of the

available servers at the beginning of the k-th round, and let

Ψk(t) denote the set of queues that have the largest HOL

delay among all the queues that are connected to at least

one server in Υk(t) at the beginning of the k-th round, i.e.,

Ψk(t) , {1 ≤ i ≤ n | W k−1
i (t) · 1{∑

j∈Υk(t) Ci,j(t)>0} =

max1≤l≤n W k−1
l (t) · 1{∑

j∈Υk(t) Cl,j(t)>0}}. Also, let i(k, t)

be the index of the queue that is served in the k-th round

of time-slot t, and let j(k, t) be the index of the server that

serves Qi(k,t) in that round. We then specify the operations of

D-QSG as follows.

Delay-based Queue-Side-Greedy (D-QSG) policy: In each

time-slot t,

1) Initialize k = 1 and Υ1 = {1, 2, . . . , n}.

2) In the k-th round, allocate server Sj(k,t) to Qi(k,t), where

i(k, t) = min{i | i ∈ Ψk(t)},
j(k, t) = min {j ∈ Υk(t) | Ci(k,t),j(t) = 1}.

That is, in the k-th round, we consider the queues

that have the largest HOL delay among those that

have at least one available server connected (i.e., the

queues in set Ψk(t)), and break ties by picking the

queue with the smallest index (i.e., Qi(k,t)). We then

choose an available server that are connected to queue

Qi(k,t), and break ties by picking the server with the

smallest index (i.e., server Sj(k,t)), to serve Qi(k,t).

At the end of the k-th round, update the length of

Qi(k,t) to account for service, i.e., set Qk
i(k,t)(t) =



(

Qk−1
i(k,t)(t)− Ci(k,t),j(k,t)(t)

)+

and Qk
i (t) = Qk−1

i (t)

for all i 6= i(k, t). Also, update the HOL delay of Qi(k,t),

by setting W k
i(k,t)(t) = Zk

i(k,t),1(t) = Zk−1
i(k,t),2(t) if

Qk
i(k,t)(t) > 0, and W k

i(k,t)(t) = 0 otherwise, and setting

W k
i (t) = W k−1

i (t) for all i 6= i(k, t).
3) Stop if k equals n. Otherwise, increase k by 1, set

Υk(t) = Υk−1(t)\{j(k, t)}, and repeat step 2.

Remark: D-QSG has a complexity O(n3), since there are

at most n rounds, and in each round, it takes O(n2 + n) =
O(n2) time to find a queue that has at least one connected

and available server (which takes O(n2) time to check for all

queues) and that has the largest HOL delay (which takes O(n)
time to compare). It should be noted that in each round, when

there are multiple queues that have the largest HOL delay, D-

QSG chooses the queue with the smallest index; when there

are multiple available servers that are connected to the chosen

queue, D-QSG allocates the server with the smallest index.

We specify such a tie-breaking rule for ease of analysis. In

practice, we can also break ties arbitrarily.

B. Near-optimal Delay Performance

In this section, we present the main result of this paper on

near-optimal rate-function. We first define near-optimal rate-

function, and then evaluate the delay performance of D-QSG.

A policy P is said to achieve near-optimal rate-function

if the delay rate-function I(b) attained by policy P for any

fixed integer threshold b > 0, is no smaller than I∗(b−1), the

optimal rate-function for threshold b− 1. That is,

I(b) = lim inf
n→∞

−1

n
logP (W (0) > b) ≥ I∗(b − 1). (3)

We next present our main result in the following theorem,

which states that D-QSG achieves a near-optimal rate-function.

Theorem 2: Under Assumptions 2 and 3, D-QSG achieves

a near-optimal rate-function, as given in (3).

We prove Theorem 2 by the following strategy: 1) motivated

by a key property of D-QSG (Lemma 1), we propose the

Greedy Frame-Based Scheduling (G-FBS) policy, which is a

variant of the FBS policy in [7] that has been shown to be rate-

function delay-optimal in many cases; 2) show that G-FBS

achieves a near-optimal rate-function (Theorem 3); 3) prove

a dominance property of D-QSG over G-FBS. Specifically, in

Lemma 2, we show that for any given sample path, by the end

of each time-slot, D-QSG has served every packet that G-FBS

has served. Note that Theorem 2 holds for D-QSG with any

tie-breaking rules, under which, when allocating a server to

a queue, it does not account for the connectivity between this

server and the other queues. The performance of D-QSG may

be further improved, if a better tie-breaking rule is applied.

We now present a crucial property of D-QSG in Lemma 1,

which is the key to proving the rate-function near-optimality

for G-FBS and D-QSG.

Lemma 1: Consider any n packets and any strictly increas-

ing function f(n) < n
2 . Suppose that D-QSG is applied to

schedule these n packets. Then, there exists a finite integer

NX > 0 such that for all n ≥ NX , with probability no smaller

than 1− 2(1− q)n−2f(n), D-QSG schedules at least n− 2
√
n

packets, including the oldest f(n) packets.

We provide the proof of Lemma 1 in our online technical

report [9], and explain the importance of Lemma 1 as follows.

We first recall how DWM is shown to be rate-function delay-

optimal in [7]. Specifically, the authors of [7] compare DWM

with another policy FBS. In FBS, packets are filled into

frames with size n − H in a FCFS manner, where H is a

suitably chosen constant independent of n. The FBS policy

attempts to serve the entire HOL frame whenever possible.

The authors of [7] first establish the rate-function optimality

of the FBS policy. Then, by showing that DWM dominates

FBS (i.e., DWM will serve the same packets in the entire HOL

frame whenever possible), the delay optimality of DWM then

follows.

However, this comparison approach will not work directly

for D-QSG. In order to serve all packets in a frame whenever

possible, one would need certain back-tracking (or rematching)

operations as in a typical maximum-weight matching algo-

rithm like DWM. For a simple greedy algorithm like D-QSG

that does not do back-tracking, it is unlikely to attain the same

probability of serving the entire frame. In fact, even if we

reduce the maximum frame size to n − 2
√
n, we are still

unable to show that D-QSG can serve the entire frame with a

sufficiently high probability. Thus, we cannot compare D-QSG

with FBS as in [7].

Fortunately, Lemma 1 provides an alternate avenue. Specif-

ically, for a frame of size n, even though D-QSG may not

serve any given subset of n− 2
√
n packets with a sufficiently

high probability, it will serve some subset of n−2
√
n packets

with a sufficiently high probability. Further, this subset must

contain the oldest 2
√
n packets for a large n, if we choose

f(n) in Lemma 1 such that f(n) ∈ ω(
√
n). Note that D-QSG

still leaves (at most) 2
√
n packets to the next time-slot. In

the next time-slot, if we can make sure that D-QSG serves

all of these 2
√
n leftover packets, which also happen to be

the oldest, we would then at worst suffer an additional one-

time-slot delay. Intuitively, we would then be able to show that

D-QSG attains a near-optimal delay rate-function.

To make this argument rigorous, we next compare D-QSG

with a new policy called Greedy Frame-Based Scheduling

(G-FBS). Note that G-FBS is only for assisting our analysis,

and will not be used as an actual scheduling algorithm. In the

G-FBS policy, packets are grouped into frames. Each frame

has a capacity of n0 = n − 2
√
n packets, i.e., at most n0

packets can be filled into a frame. As packets arrive to the

system in each time-slot, the frames are created by filling the

packets sequentially. Specifically, packets that arrive earlier are

filled into the frame with a higher priority, and packets from

queues with a smaller index are filled with a higher priority

when multiple packets arrive in the same time-slot. Once the

current frame is fully filled, it will be closed and a new frame

will be open. We also assume that there is a “leftover” frame,

called L-frame for simplicity, with a capacity of 2
√
n packets.

The L-frame is for storing the packets that are not served in

the previous time-slot and are carried over to the current time-



slot. At the beginning of each time-slot, we combine the HOL

frame and the L-frame into a “super” frame, called S-frame for

simplicity, with a capacity of n packets. If there are less than

n packets in the S-frame, we can artificially add some dummy

packets with a delay of zero at the end of the S-frame so that

the S-frame is fully filled. In each time-slot, G-FBS runs the

D-QSG policy, but restricted to only the n packets of the S-

frame. We call it a success, if D-QSG can schedule at least n0

packets, including the oldest f(n) packets, from the S-frame,

where f(n) < n
2 is any function that satisfies that f(n) ∈ o(n)

and f(n) ∈ ω(
√
n). In each time-slot, if a success does not

occur, then no packets will be served. When there is a success,

the G-FBS policy serves all the packets that are scheduled by

D-QSG restricted to the S-frame in that time-slot. Lemma 1

implies that in each time-slot, a success occurs with probability

at least 1−2(1−q)n−2f(n). When there is a success, all packets

from the S-frame, except for at most 2
√
n = n− n0 packets,

are successfully served, and these served packets include the

oldest f(n) packets. The packets that are not served will be

stored in the L-frame, and carried over to the next time-slot

(except for the dummy packets, which will be discarded.)

Remark: Although G-FBS is similar to FBS policy [7], it

exhibits a key difference from FBS. In the FBS policy, in each

time-slot, either an entire frame (i.e., all the packets in the

frame) will be completely served or none of its packets will

be served. Hence, it does not allow packets to be carried over

to the next frame. In contrast, G-FBS allows leftover packets

and is thus more flexible in serving frames. This property is

the key reason that we can use a lower-complexity policy (like

D-QSG). On the other hand, it leads to a small gap between the

rate-functions achieved by G-FBS and delay-optimal policies

(e.g., FBS and DWM). Nonetheless, this gap can be well

characterized by using Lemma 1. Specifically, in the G-FBS

policy, an L-frame contains at most 2
√
n packets, because at

most 2
√
n packets are not served whenever there is a success.

Further, these (at most) 2
√
n leftover packets will be among

the oldest f(n) packets (in the S-frame) in the next time-slot

when n is large, due to our choice of f(n) ∈ ω(
√
n). Hence,

another success will serve all the leftover packets. This implies

that at most x + 1 successes are needed to completely serve

x frames, for any finite integer x > 0. In fact, this property

is the key reason for a one-time-slot shift in the guaranteed

rate-function by G-FBS, which leads to the near-optimal delay

performance, as we show in the following theorem.

Theorem 3: Under Assumptions 2 and 3, G-FBS policy

achieves a near-optimal rate-function, as given in (3).

The proof of Theorem 3 follows a similar line of argument

as in the proof for rate-function delay optimality of FBS (The-

orem 2 in [7]). We consider all the events that lead to the delay-

violation event {W (0) > b}, which can be caused by two

factors: bursty arrivals and sluggish service. On the one hand,

if there are a large number of arrivals in certain period, say of

length t time-slots, which exceeds the maximum number of

packets that can be served in a period of t+ b+ 1 time-slots,

then it unavoidably leads to a delay violation. On the other

hand, suppose that there is at least one packet arrival at certain

time, and that under G-FBS, a success does not occur in any

of the following b+1 time-slots (including the time-slot when

the packet arrives), then it also leads to a delay violation. Each

of these two possibilities has a corresponding rate-function for

its probability of occurring. Large-deviations theory then tells

us that the rate-function for delay violation is determined by

the smallest rate-function among these possibilities (i.e., “rare

events occur in the most likely way”.) We can then show that

I(b) ≥ IU (b − 1) ≥ I∗(b − 1) for any integer b > 0, where

I(·) is the rate-function attained by G-FBS, IU (·) is the upper

bound that we derived in Section III, and I∗(·) is the optimal

rate-function, respectively. We provide the detailed proof of

Theorem 3 in our online technical report [9].

Remark: Note that the gap between the optimal rate-function

and the above near-optimal rate-function is likely to be quite

small. For example, in the special case of i.i.d. 0-1 arrivals,

the near-optimal rate-function implies that I(b) ≥ b
b+1IU (b) ≥

b
b+1I

∗(b), since we can compute that IU (b) = (b+1) log 1
1−q

for this special case.

Finally, we make use of the following dominance property

of D-QSG over G-FBS.

Lemma 2: For any given sample path, by the end of any

time-slot, D-QSG has served every packet that G-FBS has

served.

We prove Lemma 2 by induction, and provide the proof in

our online technical report [9]. Then, the near-optimal rate-

function of D-QSG (Theorem 2) follows immediately from

Lemma 2 and Theorem 3.

C. Throughput Optimality

In this section, we establish throughput optimality of D-

QSG. Note that the rate-function is studied in the asymptotic

regime, i.e., when n goes to infinity. Hence, even if the

convergence rate of the rate-function is fast (as is typically

the case), the throughput performance may be poor for small

to moderate values of n. As a matter of fact for a fixed n, a

rate-function delay-optimal policy (e.g., FBS) may not even

be throughput-optimal. To this end, we are also interested in

the throughput performance of scheduling policies in general

non-asymptotic regimes (i.e., in a multi-channel system with

any fixed value of n.)

It is well-known that the MaxWeight Scheduling policy [10],

[13]–[15] that maximizes the weighted sum of the rates (where

the weight is either queue length or delay) is throughput-

optimal in very general settings, including the multi-channel

system that we consider in this paper. Hence, we first discuss a

simple extension of the Delay-based MaxWeight Scheduling

(D-MWS) policy [8], [10], [14], [15] for our multi-channel

system.

Let Sj(t) denote the set of queues that are connected to

server Sj in time-slot t, i.e., Sj(t) = {1 ≤ i ≤ n | Ci,j(t) =
1}, and let Γj(t) denote the subset of queues in Sj(t) that

have the largest HOL delay in time-slot t, i.e., Γj(t) , {i ∈
Sj(t) | Wi(t) = maxl∈Sj(t) Wl(t)}. We then specify the

operations of D-MWS as follows.



Delay-based MaxWeight Scheduling (D-MWS) policy: In

each time-slot t, the scheduler assigns server Sj to serve queue

Qi(j,t) such that i(j, t) = min{i | i ∈ Γj(t)}. That is, each

server is selected to serve a connected queue that has the

largest HOL delay, breaking ties by picking the queue with

the smallest index when there are multiple such queues.

Remarks: We can prove throughput-optimality of D-MWS

in our multi-channel system, using fluid limit techniques by

following the same line of analysis used in [10] for a single-

channel system. The key insight we obtain from the proof in

[10] is that to achieve throughput optimality, it is sufficient

for each server to serve a connected queue that has the largest

weight in the fluid limits rather than in the original system.

Using the insight obtained above, we next show that D-QSG

is throughput-optimal in general non-asymptotic settings (for

a system with any fixed n).

Theorem 4: D-QSG policy is throughput-optimal under As-

sumption 1.

We prove Theorem 4 using the fluid limit techniques [10],

[16]. Different from D-MWS policy under which, each server

chooses to serve a connected queue with the largest HOL

delay, D-QSG allocates servers to serve the oldest packets first

one-by-one in an iterative manner. Hence, we can show that

the operations of D-QSG guarantees that each server chooses

a connected queue that has a large enough weight, and that in

the fluid limits the weight of the queue chosen by each server

is equal to that of the queue chosen under D-MWS. Then, we

complete the proof of Theorem 4, following a similar line of

analysis as in [10]. We provide the detailed proof in our online

technical report [9].

So far, we have shown that D-QSG not only achieves

a near-optimal rate-function, but also guarantees throughput

optimality, with a lower complexity O(n3) than that of DWM.

Interestingly, we will show next that just by switching the or-

der of examining the servers or the queues first, we can obtain

another policy that not only achieves the same performance of

throughput optimality and rate-function near-optimality as that

of D-QSG, but also incurs an even lower complexity O(n2).

V. DELAY-BASED SERVER-SIDE-GREEDY (D-SSG)

In this section, we develop another greedy scheduling policy

called Delay-based Server-Side-Greedy (D-SSG), under which

each server iteratively chooses to serve a connected queue that

has the largest HOL delay. We show that D-SSG is equivalent

to D-QSG under certain tie-breaking rules, in the sample-path

sense, and thus achieves the same performance of throughput

optimality and rate-function near-optimality as that of D-QSG.

Further, D-SSG has an even lower complexity O(n2).
Before we describe the detailed operations of D-SSG, we

would like remark on D-MWS due to the similarity be-

tween D-MWS and D-SSG. Note that D-MWS is not only

throughput-optimal, but also has a low complexity O(n2).
However, we can show that D-MWS suffers from poor delay

performance. Specifically, following a similar line of argument

as in the proof of Theorem 3 in [3], we can show that D-

MWS yields a zero rate-function in certain scenarios (e.g.,

with i.i.d. 0-1 arrivals). We omit the proof here, and explain

the intuition behind it as follows. Under D-MWS, each server

chooses to serve a connected queue that has the largest HOL

delay without accounting for the decisions of the other servers.

This way of allocating servers leads to an unbalanced schedule.

That is, only a small fraction of the queues get served in

each time-slot. This inefficiency essentially leads to poor delay

performance.

Now, we describe the operations of our proposed D-SSG

policy. D-SSG is similar to D-MWS, in the sense that it also

allocates each server to serve a connected queue that has

the largest HOL delay. However, there is a key difference.

That is, instead of allocating the servers all at once as in D-

MWS, D-SSG allocates the servers one-by-one, accounting

for the scheduling decisions of the servers that are allocated

earlier. We will show that this critical difference results in a

substantial improvement in the delay performance.

We present some additional notations, and then specify the

detailed operations of D-SSG. In each time-slot, there are n

rounds, and in each round, one of the remaining servers is

allocated. Let Qk
i (t), Z

k
i,l(t) and W k

i (t) = Zk
i,1(t) denote the

length of queue Qi, the delay of the l-th packet of Qi, and the

HOL delay of Qi after k ≥ 1 rounds of server allocation in

time-slot t, respectively. In particular, we have Q0
i (t) = Qi(t),

Z0
i,l(t) = Zi,l(t), and W 0

i (t) = Wi(t). Recall that Sj(t) =

{1 ≤ i ≤ n | Ci,j(t) = 1}. Let Γk
j (t) denote the set of indices

of the queues that are connected to server Sj in time-slot t

and have the largest HOL delay at the beginning of the k-th

round in time-slot t, i.e., Γk
j (t) , {i ∈ Sj(t) | W k−1

i (t) =

maxl∈Sj(t) W
k−1
l (t)}. Let i(j, t) denote the index of queue

that is served by server Sj in time-slot t under D-SSG.

Delay-based Server-Side-Greedy (D-SSG) policy: In each

time-slot t,

1) Initialize k = 1.

2) In the k-th round, allocate server Sk to serve queue

Qi(k,t), where i(k, t) = min{i | i ∈ Γk
k(t)}. That is,

in the k-th round, server Sk is allocated to serve the

connected queue that has the largest HOL delay, break-

ing ties by picking the queue with the smallest index if

there are multiple such queues. Then, update the length

of Qi(k,t) to account for service, i.e., set Qk
i(k,t)(t) =

(

Qk−1
i(k,t)(t)− Ci(k,t),k(t)

)+

and Qk
i (t) = Qk−1

i (t) for

all i 6= i(k, t). Also, update the HOL delay of Qi(k,t) to

account for service, i.e., set W k
i(k,t)(t) = Zk

i(k,t),1(t) =

Zk−1
i(k,t),2(t) if Qk

i(k,t)(t) > 0, and W k
i(k,t)(t) = 0

otherwise, and set W k
i (t) = W k−1

i (t) for all i 6= i(k, t).
3) Stop if k equals n. Otherwise, increase k by 1 and repeat

step 2.

Remark: Note that both D-SSG and D-QSG aim to allocate

each server to a queue with the largest HOL delay. The

key difference between D-SSG and D-QSG is that D-SSG

iterates over the servers first while D-QSG iterates over the

packets/queues first. This key difference leads to the fact

that D-SSG is simpler to implement and has an even lower



complexity O(n2). Specifically, there are n rounds, and in each

round, it takes at most n times for a server to find a connected

queue with the largest HOL delay.

It should be noted that the queue-length-based counterpart

of D-SSG, called Q-SSG, has been studied in [3], [4]. Under

Q-SSG, each server iteratively chooses to serve a connected

queue that has the largest length. It has been shown that Q-SSG

not only achieves throughput optimality, but also guarantees

a positive (queue-length) rate-function. However, their results

have the following limitations: 1) a positive rate-function may

not be good enough, since the gap between the guaranteed

rate-function and the optimal is unclear; 2) good queue-

length performance does not necessarily translate into good

delay performance; 3) their analysis was only carried out for

restricted arrival processes that are not only i.i.d. across users,

but also in time. In contrast, in the following theorem, we show

that D-SSG achieves a rate-function that is not only positive

but also near-optimal (in the sense of (3)) for more general

arrival processes, while guaranteeing throughput optimality.

Theorem 5: D-SSG policy is throughput-optimal under As-

sumption 1, and achieves a near-optimal rate-function as given

in (3) under Assumptions 2 and 3.

Theorem 5 follows immediately from the following lemma,

which states that D-SSG is equivalent to D-QSG under the

tie-breaking rules specified in this paper.

Lemma 3: For the same sample path, i.e., same realizations

of arrivals and channel connectivity, D-QSG and D-SSG pick

the same schedule in every time-slot.

We prove Lemma 3 by induction, and provide the proof

in our online technical report [9]. Note that under D-SSG,

in each round, when a server has multiple connected queues

that have the largest HOL delay, we break ties by picking the

queue with the smallest index. Presumably, one can take other

arbitrary tie-breaking rules. However, it turns out that directly

analyzing the rate-function for a greedy policy from the server

side (like D-SSG) is much more difficult than that for a greedy

policy from the queue side (like D-QSG). For example, as

we mentioned earlier, the authors of [3], [4] were only able

to prove a positive (queue-length) rate-function for Q-SSG

in more restricted scenarios. Hence, our choice of the above

simple tie-breaking rule is in fact quite important to leading

to the equivalence property in Lemma 3, which plays a key

role in proving the rate-function near-optimality for D-SSG.

Nevertheless, we would expect that one can choose arbitrary

tie-breaking rules in practice.

So far, we have shown that our proposed low-complexity

greedy policies achieve both throughput optimality and rate-

function near-optimality. In the next section, we will show

through simulations that these greedy policies not only exhibit

a near-optimal rate-function, but also empirically are virtually

indistinguishable from the delay-optimal policy DWM in many

scenarios.

VI. SIMULATION RESULTS

In this section, we conduct simulations to compare schedul-

ing performance of our proposed greedy policies with DWM,

D-MWS, and Q-SSG. We simulate these policies in Java

and compare the empirical probabilities that the largest HOL

delay in the system in any given time-slot exceeds an integer

threshold b, i.e., P(W (0) > b).
For the arrival processes, we consider bursty arrivals that

are driven by a two-state Markov chain and that are correlated

over time. (We obtained similar results for i.i.d. arrivals, and

do not report them here due to space constraints.) We adopt

the same parameter settings as in [7]. For each user, there are 5

packet-arrivals when the Markov chain is in state 1, and there

is no arrivals when it is in state 2. The transition probability

of the Markov chain is given by the matrix [0.5, 0.5; 0.1, 0.9],
and the state transitions occur at the end of each time-slot.

The arrivals for each user are correlated over time, but they

are independent across users. For the channel model, we first

assume i.i.d. ON-OFF channels with unit capacity, and set

q = 0.75. We later consider more general scenarios with

heterogeneous users and bursty channels that are correlated

over time. We run simulations for a system with n servers and

n users, where n ∈ {10, 20, . . . , 100}. The simulation period

lasts for 107 time-slots for each policy and each system.

The results are summarized in Fig. 2, where the complexity

of each policy is also labeled. In order to compare the rate-

function I(b) as defined in Eq. (2), we plot the probability

over the number of channels or users, i.e., n, for a fixed value

of threshold b. The negative of the slopes of the curves can

be viewed as the rate-function for each policy. In Fig. 2, we

report the results only for b = 4, and the results are similar

for other values of threshold b. From Fig. 2, we observe that

both D-QSG and D-SSG are virtually indistinguishable from

DWM, which is known to be rate-function delay-optimal. This

not only supports our theoretical results that both D-QSG

and D-SSG guarantee a near-optimal rate-function, but also

implies that both D-QSG and D-SSG empirically perform very

well while enjoying a lower complexity. Further, we observe

that D-SSG consistently outperforms its queue-length-based

counterpart, Q-SSG, despite that in [3], it has been shown

through simulations that Q-SSG empirically achieves near-

optimal queue-length performance. This provides a further

evidence that good queue-length performance does not neces-

sarily translate into good delay performance. The results also

show that D-MWS yields a zero rate-function, as expected.

Further, we evaluate scheduling performance of different

policies in more realistic scenarios, where users are hetero-

geneous and channels are correlated over time. Specifically,

we consider channels that can be modeled as a two-state

Markov chain, where the channel is “ON” when the Markov

chain is in state 1, and is “OFF” when it is in state 2. This

type of channel model can be viewed as a special case of

the Gilbert Elliot model that is widely used for describing

bursty channels. We assume that there are two classes of

users: users with an odd index are called near-users, and users

with an even index are called far-users. Different classes of

users see different channel conditions: near-users see better

channel condition, and far-users see worse channel condition.

We assume that the transition probability matrices of channels
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Fig. 2. Performance comparison of different scheduling policies in the case
with homogeneous i.i.d. channels, for b = 4.
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Fig. 3. Performance comparison of different scheduling policies in the case
with heterogeneous users and Markov-chain driven channels, for b = 4.

for near-users and far-users are [0.833, 0.167; 0.5, 0.5] and

[0.5, 0.5; 0.167, 0.833], respectively. The arrival processes are

assumed to be the same as in the previous case.

The results are summarized in Fig. 3. We observe similar

results as in the previous case with homogeneous users and

i.i.d. channels in time. In particular, D-QSG and D-SSG

exhibit a rate-function that is the same as that of DWM,

although their delay performance is slightly worse. Note that

in this scenario, a rate-function delay-optimal policy is not

known yet. Hence, for future work, it would be interesting to

understand how to design rate-function delay-optimal or near-

optimal policies in general scenarios.

VII. CONCLUSION

In this paper, we developed low-complexity greedy schedul-

ing policies that not only achieve throughput optimality, but

also guarantee a near-optimal delay rate-function, for multi-

channel wireless networks. Our studies reveal that throughput

optimality is relatively easier to achieve in such multi-channel

systems, while there exists an explicit trade-off between com-

plexity and delay performance. If one can bear a minimal

drop in the delay performance, lower-complexity scheduling

policies can be exploited.

For future work, it would be interesting to explore whether

one can find low-complexity scheduling policies that can

guarantee both throughput and delay optimality. Further, it is

still unclear how to design scheduling policies (even with a

high complexity) that can guarantee optimal or near-optimal

delay performance in more realistic scenarios. Therefore, it is

important to investigate the scheduling problem in such multi-

channel systems with more general models, e.g., accounting

for multi-rate channels that are correlated over time, instead

of i.i.d. ON-OFF channels, as well as heterogeneous users and

channels with different statistics.
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