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Abstract—We consider the problem of designing a joint con-
gestion control and scheduling algorithm for multihop wireless
networks. The goal is to maximize the total utility and achieve
low end-to-end delay simultaneously. Assume that there are M
flows inside the network, and each flow m has a fixed route
with Hm hops. Further, the network operates under the one-hop
interference constraint. We develop a new congestion control and
scheduling algorithm that combines a window-based flow control
algorithm and a new distributed rate-based scheduling algorithm.
For any ǫ, ǫm ∈ (0, 1), by appropriately choosing the number of
backoff mini-slots for the scheduling algorithm and the window-
size of flow m, our proposed algorithm can guarantee that each
flow m achieves throughput no smaller than rm(1 − ǫ)(1 − ǫm),
where the total utility of the rate allocation vector ~r = [rm]
is no smaller than the total utility of any rate vector within
half of the capacity region. Furthermore, the end-to-end delay
of flow m can be upper bounded by Hm/(rm(1 − ǫ)ǫm). Since
a flow-m packet requires at least Hm time slots to reach the
destination, the order of the per-flow delay upper bound is
optimal with respect to the number of hops. To the best of
our knowledge, this is the first fully-distributed joint congestion-
control and scheduling algorithm that can guarantee order-
optimal per-flow end-to-end delay and utilize close-to-half of the
system capacity under the one-hop interference constraint. The
throughput and delay bounds are proved by a novel stochastic
dominance approach, which could be of independent value and be
extended to general interference constraints. Our algorithm can
be easily implemented in practice with a low per-node complexity
that does not increase with the network size.

I. INTRODUCTION

The joint congestion control and scheduling problem in

multihop wireless networks has been extensively studied in

the literature [1], [2]. Often, each user is associated with a

non-decreasing and concave utility function of its rate, and

a cross-layer utility maximization problem is formulated to

maximize the total system utility subject to the constraint

that the rate vector can be supported by some scheduling

algorithm. One optimal solution to this problem is known to be

the max weight back-pressure scheduling algorithm combined

with a congestion control component at the source [1], [2].

Further, significant progresses have been made in designing

distributed scheduling algorithms with provable throughput

and lower complexity than the back-pressure algorithm [3]–

[9]. However, most of the existing works on joint congestion

control and scheduling have only considered the throughput

performance metric and not accounted for delay performance

Fig. 1. A wireless network with linear topology.

issues. Although for flows with congestion control (e.g., file

transfer) the throughput is often the most critical performance

metric, packet delay is very important as well because practical

congestion control protocols need to set retransmission time-

out values based on the packet delay, and such parameters

could significantly impact the speed of recovery when packet

loss occurs. Packet delay is also important for multimedia

traffic, some of which have been carried on congestion-

controlled sessions.

There are two major issues on the delay-performance of the

back-pressure algorithm. Firstly, for long flows, the end-to-end

delay may grow quadratically with the number of hops. The

reason can be best explained by the following example [10].

Consider a long flow traverses a fixed route with H hops.

For each link that the long flow traverses, there is a short

flow that competes with the long flow as shown in Fig. 1.

Under the back-pressure algorithm, for the long flow to be

scheduled on a link, the queue difference of the long flow must

be larger than the queue length q of the competing short flow.

Therefore, when the joint congestion and scheduling algorithm

converges, the queue length of the long flow at each hop must

be around Hq, (H − 1)q, · · · , q, which leads to the total end-

to-end backlog of order O(H2). It then follows from Little’s

law that the end-to-end delay will also be of the order O(H2).
Note that a packet needs at least H time slots to reach the

destination. Hence, the optimal order should have been O(H).
Secondly, under the back-pressure algorithm it is difficult to

control the end-to-end delay of each flow. The main parameter

to tune a joint congestion control and scheduling algorithm

based on the back-pressure algorithm is the step size in the

queue update. A larger step size may lead to smaller queue

length; however, a smaller step size is needed to ensure that the

joint congestion control and scheduling algorithm converges to

close-to-optimal system throughput. Although one may use the

step sizes to tune the throughput-delay tradeoff, a change of

the step size on one node will likely affect all flows passing



through the node. Hence, it is difficult to tune the throughput-

delay tradeoff on a per-flow basis.

In this paper, we will provide a new class of joint congestion

control and scheduling algorithms1 that can achieve both

provable throughput and provable per-flow delay. Consider m
flows in a multihop network under the one-hop interference

model, and each flow m is given a fixed route with Hm hops.

Our algorithm consists of three main components: window-

based flow control, virtual-rate computation, and scheduling.

The main ideas are to tightly control the number of packets

inside the network and to schedule the packets by a rate-

based scheduling algorithm rather than a queue-length-based

algorithm. The key difficulty in analyzing the end-to-end

throughput and delay for window-based flow control is that

the services at different links are correlated. Hence, a Markov

chain analysis will no longer provide a closed-form solution.

We employ a novel stochastic dominance technique to circum-

vent this difficulty and derive closed-form bounds on the per-

flow throughput and delay. Specifically, for any ǫ, ǫm ∈ (0, 1),
by appropriately choosing the number of backoff mini-slots

for the scheduling algorithm and the window size of flow m,

our algorithm can guarantee that each flow m will achieve a

throughput no less than rm(1 − ǫ)(1 − ǫm), where the total

utility of the rate allocation vector ~r = [rm] is no smaller than

the total utility of any rate vector within half of the system

capacity region. Further, the end-to-end expected delay of flow

m can be upper bounded by Hm/(rm(1 − ǫ)ǫm). Therefore,

with a reasonable choice of the parameters of the algorithm,

our scheme can utilize a provable fraction of the total system

utility with per-flow expected delay that increases linearly with

the number of hops. Since a flow-m packet requires at least

Hm time slots to reach the destination, the order of the per-

flow delay upper-bound is optimal with respect to the number

of hops. Our proposed algorithm is fully-distributed and can be

easily implemented in practice. Further, the delay-throughput

tradeoff of each flow can be individually controlled. To the

best of our knowledge, this is the first fully-distributed cross-

layer control solution that can both guarantee order-optimal

per-flow delay and utilize close-to-half of the system capacity

under the one-hop interference constraint.

Recently, there have been a number of papers that quantify

the delay performance of wireless networks with or without

congestion control [10], [12]–[21]. In [10], [12], the authors

propose methods to reduce the delay of the back-pressure

algorithm. The algorithm proposed in [10] is a shadow back-

pressure algorithm, which maintains a single FIFO queue at

each link and uses multiple shadow queues to schedule the

transmissions. This method decouples the control information

from the real queues and hence reduces the delay. In our

simulation, this algorithm seems to achieve linear delay after

the algorithm converges. However, at the transient period, the

real queues will still follow the shadow queues, which leads to

1A related delay bound can also be shown for the scheduling algorithm
without congestion control, which will appear as a one-page abstract in [11].
However, the delay for joint congestion control and scheduling in this paper
is more difficult due to the closed-loop feedback.

a large queue backlog (see Fig. 4(c) in this paper and figures

in [10]). In [12], the authors propose another mechanism to

decouple the control signal from the real queues by injecting

dummy packets into the queues. However, until the algorithm

converges, it will be difficult to know the correct number of

dummy packets. Hence, the backlog at the transient period is

still difficult to control. In contrast, our proposed algorithm

tightly controls the end-to-end backlog at all times.

Our result is also different from other works in providing a

linear-order per-flow delay bound. First, [13], [14] only prove

delay bounds for single-hop flows rather than multihop flows.

Second, [15]–[17] consider the delay among all the flows

rather than the per-flow delay. Similarly, the results in [18] can

be used to construct a bound on the delay averaged over all

flows. However, it is still not a per-flow delay bound. Third, a

per-flow delay bound is provided in [19], but the bound scales

with the size of the network. Fourth, a single flow end-to-end

delay analysis is given in [20] based on an approximation of

the departure process for each hop. However, it is unclear how

to extend the analysis to multiple flows.

Our result is perhaps most comparable to that in [21],

where the authors provide a per-flow delay bound that scales

with the number of hops without considering congestion

control. However, the algorithm in [21] has a factor 5 loss

of throughput under the one-hop interference constraint, and

the algorithm is much more complicated, e.g., the per-node

complexity is O(N), where N is the number of nodes. In

contrast, our algorithm only requires O(1) complexity per-

node and can utilize close-to-half of the capacity.

Our contributions can be summarized as follows.

• We provide a new joint congestion control and scheduling

algorithm that can utilize close to half of the system

capacity, i.e., a factor 2 loss of throughput, and guarantee

a per-flow expected delay upper bound that increases

linearly with the number of hops.

• The congestion control algorithm is based on window

flow control. For each flow, this method determinis-

tically bounds the end-to-end backlog within the net-

work and prevents buffer overflows. Further, each flow’s

throughput-delay tradeoff can be individually controlled.

• Our algorithm is fully distributed and can be easily

implemented in practice with a low per-node complexity

that does not increase with the network size.

• We use a novel stochastic dominance method to analyze

the end-to-end delay. This method is new and can be

applied to general interference constraints [22].

The remainder of this paper is organized as follows. The

system model is presented in Section II. In Section III, we

propose the joint congestion control and scheduling algorithm

and present the main analytical results on per-flow throughput

and delay. Section IV is dedicated to the proof of a key

proposition by a novel stochastic dominance method. Imple-

mentation issues are discussed in Section V, and simulation

results are reported in Section VI. Then we conclude.



II. SYSTEM MODEL

We model a wireless network by a graph G = (V, E), where

V is the set of nodes, and E is the set of links. Each link ℓ ∈ E
consists of a transmitter node b(ℓ) and a receiver node d(ℓ).
Two nodes are one-hop neighbors if they are the end-points

of a common link. Two links are one-hop neighbors if they

share a common node. For each node v, let N(v) denote the

set of links that connect to the one-hop neighbors of node v.

We assume a time-slotted wireless system, where packet

transmissions occur within time slots of unit length. The

capacity of any link is normalized to 1. We say two links

interfere with each other, if they can not transmit data at the

same time slot. For ease of exposition, we assume that a link

will interfere with all its one-hop neighboring links (i.e., one-

hop interference constraint). This constraint has been used to

model wireless networks in [5], [6], [23], [24]. (We note that

our approach can be extended to a more general interference

model, where an interference set for each link is given, and a

link interferes with any other link in its interference set.) In our

system, there are M flows, and each flow is associated with

a source node, a destination node, and a fixed route between

them. The routes are given by the matrix [Lℓ
m], where Lℓ

m = 1
if flow m passes through link ℓ, and Lℓ

m = 0 otherwise.

We assume that each flow always has packets to transmit.

The congestion control algorithm will then determine the rate

with which packets are injected into the network [1]. Each

flow is associated with a utility function Um(Rm) [25], which

reflects the “satisfactory level” of user m with injection rate

Rm. We assume that Um(·) is strictly concave, non-decreasing,

and continuously differentiable. The capacity region Ω of a

wireless network is the set of all rate vectors ~R = [Rm]
such that there exists a network control policy to stabilize

the network. We then model the joint congestion control and

scheduling problem as:

max
Rm≥0

∑

m

Um(Rm), ~R ∈ Ω. (1)

The exact capacity region Ω is often difficult to characterize.

It is also well known that, under the one-hop interference

model, Ψ0/2 ⊆ Ω ⊆ Ψ0, where

Ψ0 =







~R
∑

ℓ∈N(v)

∑

m

Lℓ
mRm ≤ 1, for all nodes v







. (2)

Note that equation (2) simply states that, for each node v, the

total load must be no larger than 1. This is because a wireless

node can only communicate with one other node at a time slot.

In Section III, we will describe how we utilize the relationship

between Ω and Ψ0 to approximately solve problem (1). Since

we assume infinite backlog, the delay of a packet is computed

from the time it is injected to the network to the time it reaches

the destination. We are interested in the per-flow average delay.

III. JOINT CONGESTION CONTROL AND SCHEDULING

ALGORITHM

As we discussed in Section I, there are many approaches

available in the literature to solve problem (1), and most

of them do not consider delay performance. A typical opti-

mal solution can be obtained by a duality approach which

results into the back-pressure algorithm and a congestion-

control component at the source node [1], [2]. Further, a

considerable amount of effort has focused on developing low-

complexity and distributed scheduling algorithms that can

replace the centralized back-pressure algorithm and yet still

achieve provable good throughput performance [3]–[9]. Like

the back-pressure algorithm, these low-complexity scheduling

algorithms are usually also queue-length-based. The drawback

of these approaches, however, is that the end-to-end delay of

the resulting queue-length-based scheduling algorithm is very

difficult to quantify, and there are evidence that, under certain

cases, the back-pressure can have poor delay performance [10],

[26]. In this paper, we will use a window-based flow control

algorithm and a rate-based scheduling algorithm that are very

different from back-pressure. Our solution strategy is to first

approximately solve problem (1) and compute the decision

vector ~r = [rm]. However, the decision variables rm are NOT

directly used as the rates to inject flow-m packets. For this

reason, we refer to these variables rm as “virtual rates”. We

will use these virtual rates as the control variables in a new

class of rate-based scheduling algorithms. The actual end-to-

end throughput under our algorithm will be denoted as Rm.
As readers will see, for each flow, this new joint congestion

control and scheduling algorithm will guarantee both provable

throughput (close to rm) and provably-low delay. Also, they

are fully distributed and easy-to-implement in real systems.

A. Virtual-Rate Computation

We first briefly describe how to approximately solve prob-

lem (1). Since the true capacity region Ω is of a complex form,

instead of solving problem (1) directly, we solve the following

optimization problem: (we will make precise the relationship

between optimization problems (1) and (3) in Section III-D.)

max
rm≥0

∑

m

Um(rm), ~r ∈ Ψ0/2. (3)

Note that the optimization problem (3) is very similar to

the standard convex-optimization problem in wireline network

with linear constraints [27], [28]. Therefore, it is easy to apply

the approaches in [27], [28] to problem (3). We will not

elaborate on all the possible approaches to solve problem (3).

Instead, we only present one well-known distributed solution.

Specifically, associate a Lagrange multiplier (the dual variable)

λv ≥ 0 to each constraint in (3). Let cvm = 2 if v is an

intermediate node of flow m, cvm = 1 if v is the source node

or destination node of flow m, and cvm = 0 otherwise. The

objective function of the dual problem of (3) becomes:

D(~λ) := max
rm≥0

∑

m

Um(rm) −
∑

v

λv

(

∑

m

rmcvm −
1

2

)

.

We can then use the following gradient algorithm to minimize

D(~λ) and compute the optimal virtual-rates.

Virtual-Rate Computation Algorithm: At each time t,



1) The source node of flow m updates rm by equation:

rm(t) = U ′−1
m (

∑

v∈m

λv(t)cvm),

where v ∈ m indicates that node v is on flow m’s route.

2) Each node updates the dual variables by equation:

λv(t + 1) =

[

λv(t) + γv

(

∑

m:v∈m

rm(t)cvm −
1

2

)]+

,

where γv > 0 is the step size, and [·]+ denotes the

projection to [0,∞).

Using similar techniques as [27], one can show that as

long as γv are sufficiently small, the above algorithm will

converge to the optimal solution of (3). Note that as in [27],

this algorithm requires passing λv and rm among nodes in

the network. We will give a simple protocol to exchange

such information in Section V. As we emphasized earlier, the

variables rm are “virtual rates”, and they are not directly used

to inject flow-m packets under our proposed algorithm. We

choose not to directly use the virtual rates as the real injection

rates due to the following reasons. First, optimization problems

(1) and (3) are formulated as if the rates are immediately

passed to all links at the same time. In reality, a packet must

traverse the links in a hop-by-hop fashion, and a flow-control

algorithm is needed to regulate this hop-by-hop packet flow.

Second, the low-complexity virtual-rate computation algorithm

did not produce the schedule for link transmission. We still

need a scheduling algorithm to compute the schedule that can

support the virtual rate vector ~r = [rm].
Readers who are familiar with the literature will realize that

the back-pressure algorithm can again be used to answer the

above flow control and scheduling questions. However, we

would then return to our starting point that the end-to-end

delay of back-pressure is difficult to quantify and may be poor

[10], [26]. Hence, in the sequel, we will use very different

scheduling and flow-control components, for which we can

quantify both the throughput and the end-to-end delay on a

per-flow basis.

B. Scheduling Algorithm

We now present the scheduling algorithm, which is a modifi-

cation of the low-complexity distributed scheduling algorithm

in [9]. Each time slot consists of a scheduling slot and a

transmission slot. The links that are to be scheduled are

selected in the scheduling slot, and the selected links transmit

their packets in the transmission slot. The scheduling slot is

further divided into F mini-slots. Let aℓ(t) =
∑

m Lℓ
mrm(t),

which is the sum of the virtual rate over link ℓ, and let

xℓ(t) = max





∑

e∈N(b(ℓ))

ae(t),
∑

e∈N(d(ℓ))

ae(t)



 .

Rate-based Scheduling Algorithm: At each time t,

1) Each link ℓ first computes Pℓ = log(F )aℓ(t)/xℓ(t).
2) Each link then randomly picks the number of backoff

mini-slots (B) with distribution: P{B = F +1} = e−Pℓ

and P{B = f} = e−Pℓ
f−1

F − e−Pℓ
f

F , f = 1, · · · , F . If

F +1 is picked by link ℓ, it will not attempt to transmit

in this time slot.

3) When the backoff timer for a link expires, it begins

transmission unless it has already heard a transmission

from one of its interfering links. If two or more links that

interfere begin transmissions simultaneously, a collision

occurs, and both transmissions fail.

4) If a link begins transmission, it will randomly choose a

passing flow m to serve with probability rm(t)/aℓ(t).

Note that this scheduling algorithm only uses virtual rates

to compute Pℓ, which is different from the queue-length-

based algorithm studied in [9]. For simplicity, our performance

analysis will be based on this scheduling algorithm. On the

other hand, note that this algorithm can be easily improved

by letting each link attempt only if it has packets to transmit,

and if it starts transmission, it will randomly serve a flow

m with positive backlog (i.e., Qmℓ(t) > 0) with probability
rm(t)

∑

{m:Qmℓ(t)>0}
Lℓ

mrm(t)
, where Qmℓ(t) is the number of flow-

m packets at link ℓ at time t. It is easy to see that this improved

version will lead to higher throughput. Hence, the bound we

derive in Section IV also holds for this improved version.

C. Window-based Flow Control Algorithm

Now, we describe the congestion control component. Our

approach is to use window-based flow control. For each flow,

we maintain a window Wm at the source node, and we only

inject new packets to the queue at the source node when the

total number of packets for this flow inside the network is

smaller than the window size. This can be achieved by letting

the destination node send an acknowledgement (ACK) back

to the source node whenever it receives a packet. There are

two advantages for this approach. First, for each flow, we

can tightly control the maximum number of packets in each

intermediate node along the route. This will prevent buffer

overflows, which is an important issue as addressed in [18].

Second, as we will show in Section IV, each flow’s tradeoff

between throughput and delay can be individually controlled

by the window size. Note that when we present the analysis

in Section IV, we assume that there is a feedback channel

from the destination node to the source node at each time

slot. Through this feedback channel, the destination node can

send the ACK to the source node, and the source node can

then decide if it is possible to inject another packet at the next

time slot. In reality, each ACK will also go through the entire

route hop-by-hop in the reverse direction to reach the source

node. In Section V, we will discuss how this can be achieved

by piggy-backing the ACK after each packet transmission. As

readers will see, this method can be analyzed with the same

approach presented in Section IV, and this extra ACK delay

does not change the delay order of our result.

D. Performance Analysis

In this subsection, we will present the main steps of the

analysis and the bounds on the throughput and delay of the



above proposed scheme. Due to space constraints, we will omit

some proofs in this section and in Section IV. Details of these

proofs can be found in our online technical report [22]. We

first present a relationship between optimization problems (1)

and (3). Let [r∗m] be the optimal solution of (3), and let [r′∗m] be

the optimal solution of the following optimization problem:

max
rm≥0

∑

m

Um(rm), ~r ∈ Ω/2. (4)

Lemma 1:
∑

m Um(r∗m) ≥
∑

m Um(r′∗m).
In other words, if each flow achieves a throughput equal to

the optimal virtual rate r∗m, then the total system utility will

be no less than the maximum utility within Ω/2. Further, we

can show the following property of the scheduling algorithm.

Lemma 2: For any ǫ ∈ (0, 1), if flow m passes through link

ℓ, we can choose F large enough such that the probability

that link ℓ will schedule flow m at time t is no smaller than

rm(t)(1 − ǫ)/(2xℓ(t)).
This lemma implies that the scheduling algorithm will start

serving flow-m packets even before the virtual-rate computa-

tion algorithm converges. After the virtual-rate computation

algorithm converges2, the value of rm(t) will be equal to

the optimal solution r∗m. Furthermore, we have from the

constraints of optimization problem (3) that xℓ(t) ≤ 1/2. It

then follows from Lemma 2 that every hop along the path of

flow m will serve flow m with probability no smaller than

r∗m(1 − ǫ) independent across time slots. This observation

allows us to isolate flow m out of the network and view the

flow-m packets as passing through a virtual tandem network

of Hm queues. Intuitively, if the window size of flow m is

large, the end-to-end throughput of flow m, i.e., Rm, will be

at least r∗m(1 − ǫ); however, the end-to-end packet delay will

also be large. If we reduce the window size, although the delay

will decrease, the throughput of flow m will also decrease.

Clearly, the key is then to analyze the throughput and delay

as a function of the window size. The following proposition,

which will be proved in Section IV, is the key result of the

paper. Note that this analysis is difficult because Lemma 2 only

provides a lower-bounded marginal probability for services.

Further, the exact statistics of the correlation among links is

hard to characterize because of the interference constraint.

Proposition 3: After the virtual-rate computation algo-

rithm converges, for each flow m, our congestion control

and scheduling algorithm can achieve average throughput
r∗

m(1−ǫ)Wm

Wm+Hm−1 , where Wm is the window size of flow m, and

ǫ is chosen as in Lemma 2. Moreover, the average delay is

upper bounded by Wm+Hm−1
r∗

m(1−ǫ) .

This proposition has the following two implications. First,

for any ǫm ∈ (0, 1), let Wm be the smallest positive integer

such that Wm > (Hm − 1)(1 − ǫm)/ǫm. This implies that

Wm/(Wm +Hm−1) > (1−ǫm). It then follows from Propo-

sition 3 that the average throughput Rm will be lower bounded

2We note that a comparable bound on the probability of scheduling flow
m on link ℓ can also be obtained by assuming that rm(t) is within some
small neighborhood fo r∗

m
. For ease of exposition, we do not pursued this

direction further in this paper.

by r∗m(1−ǫ)(1−ǫm), which can be arbitrary close to r∗m. Note

that by Lemma 1, the total utility of the rate vector ~r∗ = [r∗m]
is no smaller than the total utility of any rate vector within

half of the capacity region. Second, since Wm is the smallest

positive integer such that Wm > (Hm − 1)(1 − ǫm)/ǫm, we

have that Wm ≤ (Hm − 1)(1 − ǫm)/ǫm + 1. Thus,

Wm + Hm − 1

r∗m(1 − ǫ)
≤

Hm + ǫm − 1

r∗m(1 − ǫ)ǫm

<
Hm

r∗m(1 − ǫ)ǫm

.

It then follows from Proposition 3 that the delay will be upper

bounded by Hm/(r∗m(1−ǫ)ǫm). As discussed in Section I, this

implies that our per-flow delay upper-bound is order optimal.

IV. PROOF OF PROPOSITION 3

Assume that the virtual-rate computation algorithm has

converged at time t. Thus, rm(t) = r∗m for the following time

slots. This implies that, for a particular flow, its service at every

hop is identically and independently distributed (i.i.d.) across

time. Furthermore, for ease of presentation, we assume that

there is a feedback channel from the destination node to the

source node for the window flow control at each time slot as

discussed in Section III-C. (This assumption will be removed

in Section V.) Now, we focus on a particular flow m. The

analysis for other flows is the same. To ease the notation,

we drop the index m from the notations Wm and Hm. We

can then model this flow as a H-hop closed tandem network.

Label the link along the route from 1 to H , where 1 is the link

closest to the source node. By the discussion after Lemma 2,

we know that

µℓ ≥ µ , r∗m(1 − ǫ), (5)

where µℓ is the probability that link ℓ will serve a flow-

m packet. Since we use window flow control, and flow

m always has packets to transmit, the number of flow-m
packets in the network will be W at each time slot. We can

thus use the discrete time Markov Chain (MC) analysis to

study the closed tandem network for flow m. Specifically, let
~Q(t) = (Q1(t), · · · , QH(t)) be the system state, where Qi(t)
is the number of flow-m packets at the ith hop at the beginning

of time t. Furthermore, let ~S(t) = (S1(t), · · · , SH(t)) be

the random schedule vector for flow m at time t, where

Si(t) = 1{link i is scheduled at time t}. Since ~S(t) is i.i.d. across

time slots, the state at time t + 1 will only depend on the

current state ~Q(t) and the schedule ~S(t). It can be verified

that this MC is ergodic [22].

Fig. 2. Left: The incoming and outgoing transitions to and from state

(2, 1, 2). Right: The distribution of the random schedule vector ~S(t).

Fig. 2 illustrates an example of the MC for a 3-hop closed

tandem network with 5 packets. If the MC is in steady state,



we can compute the actual throughput Rm as follows:

Rm = µH [1 − P{QH = 0}]. (6)

If we can compute the throughput, then the delay can be

obtained by Little’s law. Unfortunately, it appears impossible

to directly solve the MC. The reason is because the services

of different links are correlated. For example, link 1 and

link 2 will never be scheduled together due to interference,

and there is a chance that link 1 and link 3 will be served

together. Further, the exact statistics of such correlation is hard

to characterize. All that we know (from Lemma 2) is a lower-

bounded marginal probability µ that link ℓ is activated to send

a flow m packet. Hence, it is difficult to solve the MC directly.

To circumvent this difficulty, we next use a novel stochastic

dominance approach to derive the throughput lower-bound.

A. Overview of the Approach

We start with some definitions and assumptions. In the rest

of this section, when we refer to a particular system, we

mean a version of the H-hop closed tandem network with

window flow control and window size W . For each system, the

random schedule vector is always i.i.d. across time. Further, for

different systems, the initial condition for the packet placement

is the same. However, within a time slot, the distribution of the

schedule vector is different depending on the system that we

refer to. Since the only difference between two systems is the

distribution of the schedule, we abuse the notation and denote

a system by ~S(·) when the corresponding random schedule

vector is denoted by ~S(t). Furthermore, we denote T (~S(·))
and D(~S(·)) as the throughput and delay of system ~S(·).

Consider a system ~S(1)(·). Let the probability distribution

of ~S(1)(t) be P{~S(1)(t) = ~xi} = p′i, i = 0, · · · , I , where ~xi =
(xi1, · · · , xiH) is the ith schedule vector, xij = 1 if link j is

activated under the ith schedule vector, and xij = 0 otherwise.

We use the convention that ~x0 = ~0. Let Aℓ = {i|xiℓ = 1}.

Notice that µ′
ℓ ,

∑

i∈Aℓ
p′i is the marginal probability that link

ℓ is scheduled at one time slot. Assume that system ~S(1)(·)
satisfies the following property. (We will discuss in Section

IV-C how to treat the case when property (7) is not satisfied.)
∑

ℓ

µ′
ℓ =

∑

ℓ

∑

i∈Aℓ

p′i ≤ 1, and µ′
ℓ ≥ µ′. (7)

Recall that the key difficulty of analyzing the system is the

correlation of the services among links. We now introduce

a splitting procedure that convert a given system to another

system where links are less likely to be scheduled together.

Construct system ~S(2)(·) as follows. First, pick a schedule

vector of ~S(1)(t) with positive probability such that more than

two links are scheduled. Assume that this schedule vector is

~x1. Next, choose the smallest ℓ such that x1ℓ = 1. Let ~eℓ be

the schedule that only schedules link ℓ, and let ~x1 − ~eℓ be

the schedule that removes link ℓ from ~x1. The distribution of
~S(2)(t) is:

P{~S(2)(t) = ~x1 − ~eℓ} = p′1, P{~S(2)(t) = ~eℓ} = p′1,

P{~S(2)(t) = ~x0} = p′0 − p′1, P{~S(2)(t) = ~xi} = p′i, i ≥ 2.

Note that the schedule ~x1 is now splitted into two schedules

~eℓ and ~x1 − ~eℓ. Let |~xi| be the number of links scheduled by

~xi, and recall that |~x1| ≥ 2. We can then show that

p′0 − p′1 = 1 −
∑

i6=0 p′i − p′1 ≥ 1 −
∑

i 6=0 |~xi|p
′
i

= 1 −
∑

ℓ

∑

i∈Aℓ
p′i ≥ 0,

where the last inequality follows from the fact that ~S(1)(·)
has property (7). Thus, the probability distribution of ~S(2)(t)
is valid. We call ~S(2)(·) a split version of ~S(1)(·). The key

relationship between ~S(1)(·) and ~S(2)(·) is as follows.

Theorem 4: If we have an ergodic system ~S(1)(·) with

property (7), and an ergodic system ~S(2)(·), which is the

split version of system ~S(1)(·), then T (~S(1)(·)) ≥ T (~S(2)(·)).
Moreover, ~S(2)(·) has property (7).

In other words, with the same window-based flow control,

splitting will not increase the average throughput. To the best

of our knowledge, this important relationship has not been

reported in the literature. Clearly, if Theorem 4 holds, we

can iteratively perform further splitting procedures on system
~S(2)(·). After a finite number of iterations, we will reach a

system ~S(3)(·) such that each schedule vector only schedules

one link! The distribution of ~S(3)(t) is P{~S(3)(t) = ~eℓ} =
µℓ, ℓ = 1, · · · ,H and P{~S(3)(t) = ~x0} = 1 −

∑

ℓ µℓ. By

applying Theorem 4 in every iteration, we then have that

T (~S(1)(·)) ≥ T (~S(3)(·)). As we will see in Section IV-C,

the lower bound of T (~S(3)(·)) can be more easily calculated.

B. Proof of Theorem 4

To prove Theorem 4, we use a specific stochastic ordering

called supermodular ordering. We review the basic definitions

used in our proof, and readers are referred to [29], [30] for

other definitions and basic properties of stochastic ordering.

Definition 5: (Supermodular Function) A function φ(~x) :
Rn → R is said to be supermodular if, for any n-dimensional

vectors ~x1, ~x2, it satisfies that

φ(~x1) + φ(~x2) ≤ φ(~x1 ∧ ~x2) + φ(~x1 ∨ ~x2), (8)

where ∧ and ∨ mean componentwise minimum and maximum.

Definition 6: (Supermodular Ordering) Let F be the

class of all supermodular functions from Rn into R. For

two n-dimensional random vectors ~X and ~Y , ~X is said to

be smaller than ~Y in the supermodular order (denoted by
~X ≤sm

~Y ) if E[φ( ~X)] ≤ E[φ(~Y )], for all φ ∈ F .

An important relationship between ~S(1) and its split version
~S(2) is the following. (The proof is available in [22].)

Lemma 7: If we have a system ~S(1)(·) with property (7),

and another system ~S(2)(·), which is the split version of system
~S(1)(·), then ~S(1)(t) ≥sm

~S(2)(t).

Sketch of the Proof of Theorem 4: Fix a packet placement

at time 0. Under window flow control with window size W , let

f be a function that maps a given sequence of schedule vectors

to the total number of packets leaving queue H at the end of

time t. To prove Theorem 4, we first show that f is a super-

modular function with respect to the schedule vector at time



1.3 In other words, let Ti(t) = f(~zi, ~y(2), ~y(3), · · · , ~y(t)),
i = 1, · · · , 4, where ~z1 = ~z3 ∨ ~z4, ~z2 = ~z3 ∧ ~z4, and

~y(2), ~y(3), · · · , ~y(t) are a sequence of deterministic schedules.

We would like to show that

T1(t) + T2(t) ≥ T3(t) + T4(t). (9)

Notice that ~z1 < ~zi < ~z2, i = 3, 4, where < means compo-

nentwise larger. It is then intuitive that T1(t) ≥ Ti(t) ≥ T2(t),
i = 3, 4, because the throughput can only be higher if more

services are provided. (Details can be found in [22].) The non-

trivial result is the following:

Lemma 8: For any time t, 2T2(t) + 1 ≥ T3(t) + T4(t).

The intuition behind this lemma can be explained as follows.

Suppose that the service discipline of each queue is FIFO

(Notice that the service discipline does not change the total

number of departing packets from QH ). We label packets from

1 to W according to their distance to the destination and their

position in the current queue. A packet has a smaller index if

it is closer to the destination or it will be served earlier at the

current queue. We will use Yk, k = 1, · · · , 4 when we refer to

the dynamics of the system under the sequence of schedules

~zk, ~y(2), · · · , ~y(t). Our first observation is that if ~zk < ~zw,

then packet i in system Yk may be ahead of packet i in system

Yw. However, because the rest of the schedules are the same

for both systems, packet i (correspondingly packet 1) in system

Yk can never be ahead of packet i−1 (correspondingly packet

W ) in system Yw. This observation can be used to show that

the difference between Tk(t) and Tw(t) is at most 1. Second,

because ~z2 = ~z3 ∧ ~z4, for any given link ℓ either ~z3 or ~z4

will have the same service as ~z2. Again, because the rest of

the schedules are the same for all systems, we can then use

this fact to show that even though a packet i in Y2 may be

behind packet i in Y3 or Y4, but never both. With these two

observations, we can rigorously show that Lemma 8 holds.

Readers can refer to [22] for details. Now, we can prove (9).

Proof of inequality (9): Prove by contradiction. Assume

that T1(t) + T2(t) < T3(t) + T4(t). From T3(t) + T4(t) ≤
2T2(t) + 1, we know that T1(t) < T2(t) + 1. Since T1(t) ≥
T2(t), we have that T1(t) = T2(t). It then follows from

T1(t) ≥ T3(t) ≥ T2(t) that T3(t) = T2(t). Similarly, we can

show that T4(t) = T2(t). Thus, T1(t)+T2(t) = T3(t)+T4(t).
This contradicts the assumption.

Continue the proof of Theorem 4. By Lemma 7,
~S(1)(1) ≥sm

~S(2)(1). We can then use conditional expectation

and the fact that f is a supermodular function with respect to

the first variable to show that E[f(~S(1)(1), · · · , ~S(1)(t))] ≥
E[f(~S(2)(1), ~S(1)(2) · · · , ~S(1)(t))]. Similarly, we can

also show that E[f(~S(2)(1), ~S(1)(2), ~S(1)(3) · · · , ~S(1)(t))]
≥ E[f(~S(2)(1), ~S(2)(2), ~S(1)(3) · · · , ~S(1)(t))] because, by

conditional expectation, both sides have the same packet

3Readers may wonder why not show directly that f is a supermodular
function with respect to the entire sequences. Unfortunately, we can construct
counter examples to show that this is not true [22]. However, as readers will
see towards the end of Section IV-B, for Theorem 4 to hold, it is sufficient
to show that f is a supermodular function with respect to the first variable.

placement at the beginning of time 2, and the only difference

is the schedule at time 2. Iteratively, we then prove that

E[f(~S(1)(1), · · · , ~S(1)(t))] ≥ E[f(~S(2)(1), · · · , ~S(2)(t))].

By ergodic theory, limt→∞ E[f(~S(i)(1), · · · , ~S(i)(t))]/t=
T (~S(i)), i = 1, 2. (For details, please refer to [22].) Thus,

T (~S(1)) ≥ T (~S(2)). Finally, it is easy to see that ~S(2)(·) has

property (7). This ends the proof of Theorem 4.

C. Throughput Lower Bound and Delay Upper Bound

As discussed in Section IV-A, we can use Theorem 4 to

show that T (~S(1)(·)) ≥ T (~S(3)(·)). Consider another system
~S(4)(·). The distribution of ~S(4)(t) is P{~S(4)(t) = ~eℓ} =
µ′, ℓ = 1, · · · ,H and P{~S(4)(t) = ~x0} = 1 − Hµ′. It can

be verified that T (~S(3)(·)) ≥ T (~S(4)(·)) [22]. This result

is intuitive because, for every link ℓ, P{~S(3)(t) = ~eℓ} ≥
P{~S(4)(t) = ~eℓ}. Thus, the throughput of system ~S(3)(·)
should be no smaller than the throughput of system ~S(4)(·).
The throughput of system ~S(4)(·) has a closed-form solution,

i.e., T (~S(4)(·)) = µ′W/(W + H − 1) [22]. Therefore, we

have a throughput lower bound for system ~S(3)(·). Note that

the MC for system ~S(4)(·) is similar to that of a closed tandem

M/M/1 queues with identical service rates [31].

Until this point, we have assumed that system ~S(1)(·)
satisfies property (7). We now discuss how to treat the case

when the original system ~S(·) does not satisfy property (7).

Suppose that the distribution of ~S(t) is P{~S(t) = ~xi} =
pi, i = 0, · · · , I . Define system ~S(1)(·) as follows. For i 6= 0,

let p′i = pi/(
∑

ℓ µℓ), and p′0 = 1 −
∑

i 6=0 p′i. The distribution

of ~S(1)(t) is P{~S(1)(t) = ~xi} = p′i, i = 0, · · · , I . Recall that

Aℓ = {i|xiℓ = 1}. We can then show that
∑

ℓ µ′
ℓ =

∑

ℓ

∑

i∈Aℓ
p′i =

∑

ℓ

∑

i∈Aℓ
pi/(

∑

j µj)

=
∑

ℓ µℓ/(
∑

j µj) ≤ 1.

We also have from (5) that µ′
ℓ = µℓ/

∑

i µi ≥ µ/
∑

i µi , µ′.

Thus, system ~S(1)(·) has property (7). The relationship be-

tween T (~S(·)) and T (~S(1)(·)) is (
∑

ℓ µℓ)T (~S(1)(·))= T (~S(·))

[22]. This can be shown by noting that MC for ~S(·) and ~S(1)(·)
have the same steady state distribution. It then follows from

T (~S(1)(·)) ≥ T (~S(4)(·)) = µ′W/(W + H − 1) that

T (~S(·)) = (
∑

ℓ

µℓ)T (~S(1)(·)) ≥
µW

W + H − 1
.

By Little’s law, W = T (~S(·))D(~S(·)). Thus,

D(~S(·)) ≤ (W + H − 1)/µ.

This finishes the proof of Proposition 3.

V. IMPLEMENTATION ISSUES

In this section, we discuss some practical issues for imple-

menting our algorithm. We will address three components of

our scheme: window-based flow control, virtual-rate compu-

tation, and scheduling. First, the window-based flow control

requires a backward channel for communicating the ACKs.

This backward channel can be easily implemented as follows.



Immediately after a link transmits a flow m packet, the

receiving node will respond with an acknowledgement, which

piggy-backs an ACK for flow m that it has received from

the destination in the past. With this mechanism, each link

can be modelled as an upper queue for the forward direction

and a lower queue for the backward direction. The window-

based flow control for a given flow m can then be modelled

as a 2Hm-hop closed queueing network in Fig. 3. Note that

both the upper queue and the lower queue will be served with

probability bounded by Lemma 2. It is then easy to see that

we can again use the technique of Section IV to derive the

throughput and delay bounds. The only difference is that the

number of hops is changed from Hm to 2Hm, which does not

affect our order-optimal delay result.

Fig. 3. Upper (resp. Lower) tandem queues store packets (resp. ACKs).

Second, in the virtual-rate computation algorithm, each node

needs to collect the virtual-rate of each flow that passes

through itself, and each source node needs to collect the sum of

the dual variables along its route. In practice, such information

exchange can be easily achieved by piggy-backing the virtual-

rate information on each packet sent by the source node and

piggy-backing the sum of the dual-variables on each ACK sent

by the destination node. Note that although the virtual rates

and dual variables are updated asynchronously, our window-

based flow control algorithm guarantees an upper bound on

the expected delay of such information exchange. Hence, we

expect that the virtual-rate computation algorithm will still

converges with suitable choices of the step sizes [27], [32].

Finally, in the scheduling algorithm, each transmitting node

must collect the virtual-rates around the receiving node. Again,

this information can be piggy-backed on data packets and

ACKs. We note that the transmitter may now attempt with

outdated information, but it will not affect our delay bound.

This is because, after the virtual-rate computation algorithm

converges, the virtual-rate will not change significantly.

Readers can see that under our proposed algorithm, each

node only needs to perform a constant number of operations

with a constant time of F mini-slots. This complexity is

significantly lower than the algorithm in [21], which requires

O(N) per-node operations.

VI. SIMULATION RESULTS

We simulate our proposed algorithm using the linear topol-

ogy in Fig. 1 with H links under the one-hop interference

constraint. The simulation results using the grid topology

can be found in [22]. We use the improved version of our

scheduling algorithm as discussed in Section III-B and set the

number of backoff mini-slots F = 32. The window sizes of

each short flow and the long flow are 2 and 2H , respectively.

The utility function is H log(·) for the long flow and 5 log(·)
for each short flow. Hence, when we increase the number of

hops, the optimal rate assignment for the flows will be the

same. This will help us to observe the relationship between

average delay and the number of hops at a fixed throughput.

We first compare the performance of our proposed algorithm

with the standard back-pressure algorithm (for different step

sizes) and the shadow back-pressure algorithm proposed in

[10]. Fig. 4(a) shows that the average delay of our algorithm

increases linearly with the number of hops. On the other

hand, at all step sizes, the average delay of the back-pressure

algorithm increases quadratically with the number of hops.

Therefore, our algorithm outperforms the back-pressure algo-

rithm in the delay performance when H ≥ 7 even though the

back-pressure also utilizes centralized computation. Moreover,

our average delay curve is below the delay upper bound

derived in Section IV. This verifies our delay analysis result.

In Fig. 4(b), we plot the corresponding long-flow throughput

of our algorithm versus back-pressure and SBP. We can see

that the throughput of our distributed algorithm is indeed more

than half of the centralized and high-complexity back-pressure

algorithm. Another interesting observation is that when the

step size is large (BP-16), the throughput differs significantly

from those with smaller step sizes. This indicates that the delay

reduction (in Fig. 4(a)) of the back-pressure algorithm at such

a large step size is at the cost of losing its optimal control

capability. In contrast, the step size in our proposed algorithm

does not directly affect the delay. Finally, note that although

the average delay curve of shadow back-pressure algorithm

also shows linear-scaling, it requires roughly 10000 time slots

for the whole algorithm to converge, and the total queue length

inside the network will first rise to a very large value as shown

in Fig. 4(c). Therefore, the average delay of the first 1000
outgoing packets of the long flow is nearly 1000. In contrast,

because of the window-based flow control, the total queue

backlog of our algorithm is consistently the lowest throughout

the simulation at all time (even at the transient period).

In Table I, we demonstrate the per-flow controllability of

our scheme. We let the window size of the long flow be 2H ,

H = 7, and vary the window size of the short flows. As shown

in Table I, the performance of the long flow does not change

when the window size of the short flows changes.

TABLE I

short flow window size 2 4 6 8

long flow delay 290.37 291.53 290.97 294.62

long flow throughput 0.0480 0.0475 0.0478 0.0478

VII. CONCLUSION

In this paper, we propose a low-complexity and distributed

algorithm for joint congestion control and scheduling in

multihop wireless networks under the one-hop interference

constraint. The main ideas of the proposed algorithm are to

control the congestion with window-based flow control and



(a) (b) (c)

Fig. 4. BP-α represents the back-pressure algorithm with step size α. SBP-α represents the shadow back-pressure algorithm with step size α.

to use both virtual-rate information and queue information

(rather than just queue information) to perform scheduling.

Our scheduling algorithm is fully distributed and only requires

a constant time (independent of network size) to compute

a schedule [9]. We prove that our congestion control and

scheduling algorithm can utilize nearly half of the capacity

region and provide a per-flow delay bound that increases

linearly with the number of hops. Our analysis uses a novel

stochastic dominance approach to compare the throughput of

our system with another system, which we can compute the

exact throughput. We then use Little’s law to derive a per-

flow delay upper-bound. The methodology in this paper can

also be extended to more general interference models defined

by interference sets (see [22] for details). In our future work,

we will study how to extend this novel technique to the case

with dynamic routing.
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