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Abstract—Not too bad. A rate allocation that is subopti-
mal with respect to a utility maximization formulation still
maintains the maximum flow-level stability when the utility
gap is sufficiently small, and provides a minimum size of
stability region otherwise. Utility-suboptimal allocation may also
enhance other network performance metrics, e.g., it may increase
network throughput and reduce link saturation. Quantifying
these intuitions, this paper provides a theoretical support for
turning attention from optimal but complex solutions of network
optimization to those that are simple even though suboptimal.

I. INTRODUCTION

The framework of Network Utility Maximization (NUM)
has been very extensively studied over the last decade since
[1]. Formulating many resource allocation problems as max-
imization of an increasing and concave utility function over
a convex constraint set, a large number of publications have
developed iterative, distributed algorithms that converge to the
optimum. Achieving optimality is clearly nice. Not only it
attains the benchmark of the highest value of network utility,
it also guarantees flow-level stochastic stability. The number
of flows varies over time as they are randomly generated by
users and served by the network. This system can be viewed as
a queuing network where the service rate depends on the rate
allocation policy (or, in general terms, the resource allocation
policy) employed by the network. For convex NUM, Markov
arrival, and fast-time solution of NUM, it has been shown that
for all rate allocation policies maximizing α-fair utilities with
α > 0, flow-level stochastic stability can be achieved if and
only if the traffic intensity lies within the rate region, see, e.g.,
[2], [3], [4], [5]. In other words, rate region in the α-fair utility
maximization problem is also the maximum stability region
under arrival and departure dynamics. Utility-optimality and
flow-level stability are strong benefits of optimizing NUM.

But in practice it may not be easy to solve NUM optimally.
There are many situations where only suboptimal solutions to
the utility maximization problem are realistically computable.
First, rate allocation algorithms require certain convergence
time to compute the optimal rate allocations. If the network
configuration (e.g., the number of active users) changes faster
than the convergence time, the rate allocations will never
be optimal. Second, solving some NUM problems for rate
allocation may require solving non-convex scheduling prob-
lems even if the resulting feasible rate region is convex. For
example, when the feasible rate region of a network is obtained
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by time-sharing among different subsets of users, a non-convex
multi-user scheduling problem still needs to be solved in order
to find the exact rate region achieved by time-sharing [6].

Between optimality and simplicity, which one should we
pick? Driven by the practical need for simple yet suboptimal
solutions, we try to address the question in the title of this
paper, by investigating the effects of utility-gap on flow-level
stability and on other important network performance metrics
such as total throughput and link saturation.

In [7], the authors show that for a class of rate allocation
algorithms based on the so-called dual solutions, the optimal
stability region can be achieved even if the algorithm does
not converge to the optimal rate allocation at any time.
Similar observations have also been made in switching [8]
and scheduling [9] problems. In this work, we take a different
approach. We characterize the capability of a rate allocation
algorithm by the gap between its utility and the optimal utility,
and we study stability as a function of the utility gap. Thus,
our results are not restricted to one type of rate allocation
algorithms. Consider a network model with Poisson arrivals
and exponential file-size distributions. We first investigate the
flow-level stochastic stability for networks with suboptimal
rate-allocation policies. Intuitively, one would think that the
maximum stability region may be retained if the utility gap is
‘small’, while only a reduced stability region can be achieved
if the utility gap is ‘large’. This is indeed true. In Section III,
we show that when the ratio of utility gap (caused by a subop-
timal rate allocation policy) to the maximum utility approaches
zero as queue length tends to infinity, the maximum stability
region can be retained. When the utility gap is in proportion
to the maximum utility, only a reduced stability region can be
achieved. We can still provide a lower bound for the achievable
stability region under rate allocation policies satisfying the
utility gap condition. These results characterize the stability
of a broad class of suboptimal rate allocation policies.

On the other hand, since suboptimal rate allocations with
a small enough utility gap is capable of achieving the maxi-
mum stability region, we investigate the potential benefits of
allowing such a utility gap. It is clear that by deliberately
under-optimizing an α-fair utility, we can achieve network
performance improvement in other metrics. However, it is
unclear how much improvement we can possibly achieve by
under-optimizing the utility with a given allowable gap. We
formulate the potential performance improvement as a function
of given utility gap, and derive a first-order approximation
for these tradeoff curves based on local sensitivity (shadow
price) analysis. This formulation generalizes that in [14],



which considered the tradeoff between total throughput and
an α-fairness parameter, and assumed that optimality always
holds. Our result not only illustrates the potential benefits
of under-optimizing an α-fair utility, but also quantitatively
characterizes the tradeoff between sacrificing utility value and
improving other network performance metrics, especially the
total throughput and link saturation.

Proofs of the main results are collected in the Appendix.
Vectors are denoted in small letter, e.g., x, with their ith
component denoted by xi. Matrices are denoted by capitalized
letters, e.g., A, with Aij denoting the {i, j}th component. Vec-
tor inequalities denoted by x � y are considered component-
wise. We use D(x) to denote a diagonal matrix whose diagonal
elements are the corresponding components from vector x.
Subscripts (·)T denotes the matrix transpose. We use R to
denote a set of vectors and Ř for its interior.

II. UTILITY MAXIMIZATION AND GAP

Consider a communication network shared by a set of data
flows, which belong to N distinctive flow classes. All flows
within the same class have the same resource requirements.
Let xi denote the number of flows of class i that remain in
the system. We refer to the vector x = [x1, . . . , xN ] as the
network state. The problem of network rate allocation is to
determine the total rate allocated to class-i flows in state x,
denoted by φi(x). Rate φi(x) is equally shared by all class-i
flows, each assigned a rate φi(x)/xi. We refer to the vector
φ(x) = [φ1(x), . . . , φN (x)] as the rate allocation in state x.
The allocation vector φ(x) is constrained to lie in a set R ⊂
R

N
+ .
The set R represents the physical, technological, and eco-

nomic constraints of the network under consideration. A rate
allocation φ(x) is feasible if φ(x) ∈ R, i.e., there exists a
resource allocation and routing policy that can support the
network under flow-class rate φ(x). In this paper, we only
require the set R to be convex, which holds in many settings,
e.g., [4], [6].

Various network rate control policies can be derived as
solving some utility maximization problem with different
utility functions. Given a parameter α ≥ 0, the α-fair rate
allocation [10] is the solution to the following optimization
problem

maximize
∑

i

xiUi(
φi

xi
) (1)

subject to φ ∈ R
variables φ

where

Ui(y) =

{
y1−α

1−α , α �= 1
log y, α = 1

(2)

Parameter α ≥ 0 is a fixed constant modulating the level
of fairness, which includes several special cases such as
proportional fairness and max-min fairness.

Let φopt(x) denote the optimal solution for the rate alloca-
tion problem (1) at state x. It has also been shown in [2], [3],
[5] that such rate allocation achieves the maximum stability
region (i.e., the interior of the feasible rate region). However,
in practical networks, due to the issues of convergence time
and complexity of computing the optimal resource alloca-
tion, such as schedules, we accept the possibility that only
suboptimal solutions to the utility maximization problem (1)
may be practically computable, thus the resulting suboptimal
rate allocation could possibly reduce network stability and
performance. For an arbitrary suboptimal solution φ(x), we
consider a utility gap defined by

∆(x) =
∑

i

xiUi(
φopt,i

xi
) −

∑
i

xiUi(
φi

xi
) (3)

The gap ∆(x) measures the difference between suboptimal
rate allocations and the optimal allocation.

III. UTILITY GAP AND STABILITY

We first investigate how flow-level stability will be affected
by utility gap. Consider a network where class-i flows arrive
as a Poisson process of intensity λi ≥ 0 and have i.i.d.
exponential file sizes of mean 1/µi. Let ρi = λi/µi be
the traffic intensity of class-i flows. This is the traffic load
generated by class-i flows per unit time. Assume that flows
remain in the network until they have transferred their given
file size. The evolution of network state can be described by a
Markov process x(t), where xi(t) the number of class-i flows
remaining in the system at time t. For a certain rate allocation
policy φ(x), the transaction rates are given by

xi → xi + 1, with rate λi (4)

xi → xi − 1, with rate µiφi(x) (5)

We say the network is stable if the Markov process x(t) is
positive-concurrent, in which case the queue length does not
blow up to infinity. If the feasible rate region R is compact
and convex, a necessary stability condition has been given
in [2], [3], [5]: The traffic intensity vector must belong to the
interior of the feasible rate region (ρ ∈ Ř). Furthermore, it has
also been shown that all α-fair rate allocations with arbitrary
α > 0 maximize the flow-level stability region, i.e., assigning
rates φopt(x) achieves the maximum stability region, which is
equal to Ř. In other words, ρ ∈ Ř is a sufficient condition for
stability with φopt(x) as the optimal rate allocation policy.

In practice, when only suboptimal solutions are computable,
a positive utility gap ∆(x) > 0 exists. In the next section,
we will derive a sufficient condition for achieving maximum
stability. When the condition is not satisfied, we prove that the
network is unstable and the achievable stability region may be
strictly smaller than the feasible rate region. The main results
on stability are stated in Theorem 1 and 2.

A. A Sufficient Condition for Maximum Stability

Theorem 1: For an arbitrary suboptimal rate allocation pol-
icy φ(x) and any positive α > 0, if the order of the utility gap



∆(x) in (3) is less than the order of the optimal utility when
the number of active flows grows large, i.e.,

lim
maxi xi→∞

∆(x)∣∣∣∑i xiUi(
φopt,i

xi
)
∣∣∣ = 0 (6)

then the network is stable if the traffic condition ρ ∈ Ř is
satisfied, i.e., the maximum stability region can be obtained.

Remark 1: If the utility gap ∆(x) is upper bounded by a
constant for all states x, the maximum stability region can be
achieved. This is simply a special case of Theorem 1 and can
be easily proved by verifying utility gap condition (6). The
statement holds for all α-fair utilities with α > 0.

Remark 2: Theorem 1 shows that for achieving the maxi-
mum stability region, solving the optimal solution to the utility
optimization problem (1) is not required. Thus, in practice,
suboptimal rate allocation policies that may only require a
much lower computational complexity or operate on a larger
time-scale than that of the optimal policies could still stabilize
the network, as long as the utility gap condition (6) is satisfied.
The sufficient condition in Theorem 1 characterizes a class of
suboptimal rate allocation policies that retain the maximum
network stability.

B. A Lower Bound on Achievable Stability Region

When the condition (6) in Theorem 1 is not satisfied and the
utility gap ∆(x) is on the same order as that of the optimal
utility, the achievable stability region could be smaller than
the feasible rate region.

Proposition 1: There exists a suboptimal rate allocation
policy such that the utility gap is the same order as the order
of the optimal utility, i.e., for some constant η ∈ (0, 1),

lim sup
maxi xi→∞

∆(x)∣∣∣∑N
i=1 xiUi(

φopt,i

xi
)
∣∣∣ ≤ η, (7)

but the achievable stability region is strictly smaller than Ř,
even if φ(x) is Pareto-optimal (i.e., φ(x) lies on the boundary
of the feasible rate region).

Proposition 1 implies that there exists a suboptimal rate
allocation policy whose achievable stability region is strictly
smaller than the feasible rate region. Raised from this example,
a challenge is to answer the question: what is the minimum
stability region that a suboptimal rate allocation policy can
achieve given that condition (7) is satisfied?

Theorem 2: For an arbitrary suboptimal rate allocation pol-
icy φ(x) and any positive α �= 1, if the order of the utility gap
∆(x) is the same as that of the optimal utility, i.e.,

lim sup
maxi xi→∞

∆(x)∣∣∣∑N
i=1 xiUi(

φopt,i

xi
)
∣∣∣ ≤ η (8)

then the achievable stability region is lower bounded by (1−
η)

1
|1−α| Ř. There also exists a suboptimal rate allocation policy

whose stability region is exactly (1−η)
1

|1−α| Ř, i.e., the lower
bound is tight.

Remark 3: Theorem 2 provides a lower bound for achiev-
able stability regions. Of course, under condition (8), there
might still exist certain suboptimal rate allocation policies that
are capable of achieving the maximum stability. However, the
lower bound in Theorem 2 is tight in the sense that there exists
a suboptimal rate allocation policy (see Equation (45)) and its
stability region is exactly (1 − η)

1
|1−α|R. Proposition 1 and

Theorem 2 together characterize the stability of a broad class
of suboptimal rate allocation policies.

C. Numerical Examples

Consider a simple network with routing matrix:

R =
(

1 1 0
1 0 1

)
(9)

The linear network consists of L = 2 unit-capacity links with
x0 > 0 active flows on route 0, which crosses both links, and
xi active flows on route i, which uses link i alone, for i = 1, 2.
For α > 0, it is easy to compute the optimal rate allocation
policy φopt(x) as follows:

φopt,0(x) =
x0

x0 + (xα
1 + xα

2 )
1
α

(10)

φopt,i(x) = 1 − φopt,0(x), for i = 1, 2 (11)

In order to obtain a suboptimal rate allocation policy φ(x)
that satisfies the utility gap condition (6) in Theorem 1, we
randomly perturb the optimal rate allocation at each state x,
such that the utility gap remains bounded by a constant β, i.e.,

∆(x) =
N∑

i=1

xiUi(
φopt,i

xi
) −

N∑
i=1

xiUi(
φi

xi
) ≤ β (12)

According to Remark 1, suboptimal rate allocation policy φ(x)
achieves the maximum stability region that equals to the fea-
sible rate region R = {φ ∈ R

N
+ : φ0 + φ1 ≤ 1, φ0 + φ2 ≤ 1}.

Figure 1 examines the stability of the suboptimal rate allo-
cation policy φ(x) by plotting the average total queue length
under the suboptimal rate allocation policy, with varying traffic
load. The arrivals to the three flow classes are independent,
Poisson distributed with equal traffic intensity ρi = ρ0 for
i = 1, 2. We assume proportional fairness of α = 1. The
curve under the suboptimal policy φ(x) approaches that under
the optimal policy when the utility gap decreases.

IV. UTILITY GAP AND NETWORK PERFORMANCE

Section III showed that when the utility gap is small enough,
the stability of networks will remain unaffected. Therefore,
a suboptimal rate allocation policy that under-optimizes the
utility may still achieve the maximum stability region. On the
other hand, since α-fair utility functions are designated for
fairness objectives, it is clear that allowing a utility gap (or,
equivalently, under-optimizing the utility) gives us freedom to
potentially improve other network performance metrics, such
as total throughput and maximum link saturation. Thus there
exists a tradeoff between utility gap and the maximum network
performance improvement we can potentially achieve. In this
section we first provide a formulation of this tradeoff, then
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Fig. 1. This figure plots the average delay characteristics of three rate
allocation policies corresponding to different β. It is shown that the two
suboptimal rate allocation policies with β > 0 still stabilize the queue for
normalized traffic intensity ρ/c < 1, although their delay performances in
terms of the average queue length are worse compared to that of the optimal
rate allocation policy with β = 0.

develop a quantitative approximation of the tradeoff curve
based on local sensitivity analysis, assuming the utility gap is
small. Our results in this section answer the following question
related to utility gap: what is the maximum performance
improvement we can possibly achieve by under-optimizing an
α-fair utility with gap ∆?

We consider a major special case of the network model
described in section III and define the feasible rate regions of
wireline networks as follows. Consider a network of L links,
indexed by l, each with a finite link capacity cl. It is shared by
N flow classes. Again we use φi to denote the total data rate
of class-i flows. Then the feasible rate regions are defined by
R = {φ : Rφ � c}, where c is the vector of link capacities and
R is the L×N routing matrix: Rli = 1 if class-i flows uses link
l and 0 otherwise. At each state x, the optimal rate allocation
is obtained by solving problem (1) with α-fair utility, i.e.,

maximize
N∑

i=1

xα
i

φ1−α
i

1 − α
(13)

subject to Rφ � c, φ � 0 (14)

variables φ

Let φopt be the optimal rate allocation that solves the
maximization problem (13). Any suboptimal rate allocation
φ �= φopt only achieves a utility value less than the maximum
utility. We say a rate allocation φ under-optimizes the α-fair
utility by a gap ∆ if

∆ = Uopt −
N∑

i=1

xα
i

φ1−α
i

1 − α
(15)

where Uopt =
∑N

i=1 xα
i φ1−α

opt,i/(1 − α) is the optimal utility

achieved by rate allocation φopt. Since the α-fair utility is
designated for achieving fairness, under-optimizing the α-
fair utility with a gap ∆ relaxes the maximization problem
(13). Thus it gives freedom to system designers to potentially
improve other network performance objectives, such as total
throughput and maximum link saturation. However, it is un-
clear how much performance improvement we can achieve
by under-optimizing the α-fair utility with a given allowable
gap. For example, if we prepare to sacrifice 5% of the utility,
how much is the throughput improvement we could expect in
return? In the next section, we formulate this type of tradeoff
functions and provide a local sensitivity analysis based on
examining the Karush-Kuhn-Tucker (KKT) conditions at the
optimum allocation.

A. Utility Gap and Total Throughput

First we consider the tradeoff between utility gap and total
throughput. For a rate allocation policy φ, total throughput T
is simply defined as the sum-rate of all flow classes:

T =
N∑

i=1

φi. (16)

We are interested in characterizing the tradeoff between the
utility gap and the maximum total throughput. More pre-
cisely, we compute the maximum total throughput that can
be achieved by under-optimizing the utility with a designated
gap. Thus maximum total throughput T is formulated as a
function of the utility gap ∆. With some abuse of notation,
we refer to this tradeoff function as T (∆), which is defined as
the maximized objective value of the following optimization
problem:

maximize
N∑

i=1

φi (17)

subject to Rφ � c, φ � 0
N∑

i=1

xα
i

φ1−α
i

1 − α
≥ Uopt − ∆

variables φ.

Thus gap ∆ is the input and function T (∆) gives the maxi-
mum possible total throughput under the utility gap constraint.

Remark 4: For the tradeoff function defined by (17), it is
easy to see that increasing utility gap relaxes the constraint
set of the optimization problem, and leads to a higher optimal
objective value. Maximum total throughput T (∆), defined by
the optimization in (17), is a monotonically increasing function
of the utility gap ∆.

Since the α-fair utility functions are concave and the to-
tal throughput is linear, we conclude that the maximization
problem (17) is convex. Thus we can numerically solve it
and compute the maximum-throughput-versus-utility tradeoff
curve using any convex optimization solvers. Furthermore,
according to the results in section III, a suboptimal rate
allocation policy with small enough utility gap can still retain
the maximum stability region. When the utility gap is small,



we can quantitatively approximate the maximum-throughput-
versus-utility tradeoff function using its first order expansion:

T − T0 =
[

dT

d∆

∣∣∣
∆=0

]
∆ + o(∆) (18)

where T0 =
∑N

i=1 φopt,i is the total throughput at ∆ = 0.
In the context of convex optimization, the first order deriva-

tive dT/d∆, also known as shadow price, can be obtained by
a local sensitivity analysis, if we make the assumption that
the active constraint set in the problem (17) is unchanged
or is perturbed locally, so that routing matrix R is fixed and
independent of the input variable ∆. Further, we assume that
the routing matrix R consists only of ‘bottleneck’ links. These
two conditions guarantee that the tradeoff function T (∆)
is continuous and differentiable at a given ∆. These local
sensitive analysis can provide a good approximation of the
maximum-throughput-versus-utility tradeoff, when the α-fair
utility is slightly under-optimized.

Theorem 3: The maximum-throughput-versus-utility trade-
off function T (∆) has the following first order gradient
(shadow price) at ∆ = 0:

dT

d∆

∣∣∣
∆=0

= −
1T · A ·

(
xα

φα
opt

)
(

xα

φα
opt

)T

· A ·
(

xα

φα
opt

) , (19)

where A = D−1−D−1RT
(
RD−1RT

)−1
RD−1 and D = α·

diag
{

[φ−α−1
opt,1 ; . . . ;φ−α−1

opt,N ]
}

is a diagonal matrix. The vector

division and power xα/φα
opt are component-wise.

B. Utility Gap and Maximum Link Saturation

In this section, we consider the maximal link saturation as
a network performance metric, defined by

Z = max
l∈L

∑
i Rilφi

cl
. (20)

By under-optimizing the α-fair utility, it is possible to reduce
the maximal link saturation and then balance the network
traffic over all links. Moreover, reducing Z could potentially
minimize the occurrence of ‘bottleneck’ links in the network,
and also make the network more robust to link capacity
fluctuation and traffic bursts.

We characterize the optimal tradeoff between the utility
gap and the maximum link saturation, i.e., we compute the
minimum Z that can be achieve by under-optimizing the α-
fair utility with a designated gap. This tradeoff function Z(∆)
can be formulated as follows

Z(∆) = minimize max
l∈L

∑
s Rilφi

cl
(21)

subject to Rφ � c, φ � 0
N∑

i=1

xα
i

φ1−α
i

1 − α
≥ Uopt − ∆

variables φ

Remark 5: For the tradeoff function defined by (21), it is
easy to see that increasing utility gap relaxes the constraint
set of the optimization problem, and leads to a smaller
optimal objective value. Thus maximum link saturation Z
is a monotonically decreasing function of the utility gap ∆.
Furthermore, it is easy to verify that the optimization problem
(21) is convex. The saturation-gap tradeoff can be numerically
computed.

Now we conduct a local sensitivity analysis for the
saturation-gap tradeoff defined by optimization problem (21).
Again, we make the assumption that the active constraint set in
the problem (17) is unchanged or is perturbed locally, so that
routing matrix R is fixed and independent of the input variable
∆. The main result is summarized in the next theorem. Its
proof is very similar to that of Theorem 3. Let Z0 be the link
saturation at ∆ = 0. We have Z0 = 1 since the rate allocation
policy φopt must be Pareto-optimal at ∆ = 0.

Theorem 4: When the utility gap is small, the saturation-
utility tradeoff function can be approximated using its first
order expansion:

Z − Z0 =
[

dZ

d∆

∣∣∣
∆=0

]
∆ + o(∆). (22)

The first order derivative (shadow price) of the saturation-
utility tradeoff function is given by

dZ

d∆

∣∣∣
∆=0

= − 1

cT (RD−1RT )−1
c
, (23)

where D = α·diag
{

[xα
1 φ−α−1

opt,1 , . . . , xα
Nφ−α−1

opt,N ]
}

is diagonal.

C. Numerical Examples

In this section, we plot the two tradeoff curves and their
gradient approximations obtained in Section IV.A and Section
IV.B, for the linear network in Section III.C. Assume all links
have unit capacity of ci = 1.

Let xi denote the number of active flows for source i. We
can solve the two convex optimization problems (17) and (21)
for an arbitrary gap ∆ and thus obtain the exact tradeoff curves
T (∆) and Z(∆), which are plotted in Figure 2 and Figure 3 in
solid line. In both figures, we assume that the number of active
flows are x0 = 10 and xi = 5 for i = 1, 2. The proportional
fairness utility with α = 1 is considered.

When the utility gap ∆ is small, the maximum-throughput-
versus-utility and the saturation-gap tradeoff curves can be
approximated by their first order expansions given by (18) and
(22) respectively. Using the close form solutions in Theorem
3 and Theorem 4, we compute the first order gradients as
follows dT

d∆

∣∣∣
∆=0

= 1.1899 and dZ
d∆

∣∣∣
∆=0

= −0.0697. Thus the
two tradeoff curves can be approximated by

T (∆) ≈ T0 + 1.1899∆ (24)

Z(∆) ≈ Z0 − 0.0697∆ (25)

In Figure 2 and Figure 3, we also plot the corresponding linear
approximations for the maximum-throughput-versus-gap and
the saturation-gap tradeoff curves in dashed line.
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Fig. 2. Throughput-Gap tradeoff curve and its first order approximation.
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Fig. 3. Saturation-Gap tradeoff curve and its first order approximation.

Figure 3 shows that the saturation-gap tradeoff defined in
Section IV.B can be well approximated by its first order
expansion, given by the closed-form expressions in Theorem
4, while such an approximation is accurate for the throughput-
gap tradeoff only when the utility gap is very small (Fig-
ure 2). These two tradeoff curves indicates the performance
improvement we can achieve by under-optimizing the utility
with a designated small utility gap. For example, if we under-
optimize the utility by 3‰, i.e., ∆ =3‰|Uopt| = 0.04,
it is clear from equation (24) and equation (25) that a
maximum total throughput increase of T − T0 = +0.05
(equivalently +3.3%T0) and a link saturation reduction of
Z −Z0 = −0.003 (equivalently −0.3%Z0) could be expected
in return. This result not only illustrates the potential benefits
of under-optimizing an α-fair utility, but also quantitatively
characterizes the tradeoff between sacrificing utility value
and achieving network performance improvement. Whether
this particular tradeoff is worth making or not depends on
operator’s preference, but it is important to provide the choices
of tradeoff through the results like those in this section.

V. CONCLUDING REMARKS

Suboptimal resource allocation with a utility gap is simply
an inevitable phenomenon in practical networking. Fortu-
nately, it may still be able to maintain stability region and
even enhance other network performance metrics. Intuition
on stability and utility–versus-throughput and utility-versus-
saturation tradeoff are quantified with closed-form expressions
in this paper. There are still open questions to the study of
suboptimal solutions to network optimization, e.g., degradation
on fairness due to utility gap and global sensitivity analysis,
before we fully understand “how bad is suboptimal rate
allocation”.

APPENDIX: PROOFS

A. Proof of Theorem 1.

Proof: The network is stable if the Markov process x(t)
is positive-recurrent. According to the Foster’s criterion [4],

this is true if for some finite set A ⊂ Z
N
+ , some non-negative

function f and some positive constant κ > 0,

∀x /∈ A, df(x) =
∑
y �=x

q(x, y) [f(y) − f(x)] ≤ −κ (26)

where q(x, y) is the transition rate from state x to state y.
Toward this end, we first prove an important lemma for all
suboptimal rate allocations satisfying (6).

Lemma 1: Consider any traffic intensity ρ ∈ Ř. There exist
positive constants ε and γ, such that for any suboptimal rate
allocation φ(x) satisfying (6) and any network state satisfying
maxi xi/ρi > γ, the following inequality holds:

∑
i:xi≥1

xα
i ρ−α

i [(1 + ε)ρi − φi] ≤ 0 (27)

Proof: First, we consider the case that 0 < α < 1 and
thus the optimal utility is positive. Under the traffic condition
ρ ∈ Ř, there exist ε ≥ 0 and δ ≥ 0 such that rate vector
(1+ ε)(1− δ)−

1
1−α ρ satisfies the feasible rate constraints, i.e.,

(1 + ε)(1 − δ)−
1

1−α ρ ∈ R (28)

According to the condition (6), we can conclude that there
exists a positive γ such that for maxi xi/ρi > γ and δ ≥ 0,

∆(x) ≤ δ

∣∣∣∣∣∑
i

xiUi(
φopt,i

xi
)

∣∣∣∣∣ (29)

Let u ∈ R be an arbitrary rate vector and δ0 = (1 − δ)
1

1−α .
Since the optimal utility is positive, in view of (3) we obtain



the following inequalities:

0 ≤
N∑

i=1

xiUi(
φi

xi
) + ∆(x) −

∑
i

xiUi(
φopt,i

xi
)

≤
N∑

i=1

xiUi(
φi

xi
) − (1 − δ)

∑
i

xiUi(
φopt,i

xi
)

≤
N∑

i=1

xiUi(
φi

xi
) − (1 − δ)

∑
i

xiUi(
ui

xi
)

=
N∑

i=1

[
(φi − δ0ui)U

′
i (

δ0ui

xi
) +

(φi − δ0ui)2

2xi
U

′′
i (

yi

xi
)
]

≤
N∑

i=1

[φi − δ0ui] U
′
i (

δ0ui

xi
)

where yi is a proper scalar between δ0ui and φi. The third
step follows since φopt is the optimal rate allocation that
maximized the α-fair utility. The forth equation is from the
Taylor’s Formula and the last step is due to the fact that utility
function Ui(·) is concave. In view of (2), this becomes

N∑
i=1

xα
i

(δ0ui − φi)
δ0uα

i

≤ 0 (30)

Choosing u = 1+ε
δ0

ρ and applying the previous inequality, we
get

N∑
i=1

xα
i ρ−α

i [(1 + ε)ρi − φi] ≤ 0 (31)

This is exactly (27) since flow classes with zero flow don’t
contribute to the summation. Similarly, when α > 1 and
the optimal utility is negative, there exist ε ≥ 0 and δ ≥ 0
such that rate vector (1 + ε)(1 + δ)

1
α−1 ρ satisfies the feasible

rate constraints. Using the same proof technique and choosing
u = (1 + ε)(1 + δ)

1
α−1 ρ, we can show that condition (31) is

also satisfied when α > 1 and maxi xi/ρi > γ. For α = 1,
choosing u = [(1 + ε)ρ]

1
1−δ leads to the same result. Thus the

lemma holds for any positive α > 0.

Now we prove the Foster’s drift condition. For a suboptimal
rate allocation policy φ(x), transition rates of the network
states are given by equation (4) and (5). We consider a positive
function f(x) defined on the set of all network states by

f(x) =
N∑

i=1

xi∑
n=1

µ−1
i

nα

ρα
i

(32)

Then we obtain

df(x) =
N∑

i=1

[
λi

µi

(xi + 1)α

ρα
i

− φ
xα

i

ρα
i

]
(33)

=
∑

i:xi≥1

xα
i

ρα
i

[(
1 +

1
xi

)α

ρi − φi

]
+
∑

i:xi=0

ρ1−α
i

Given α > 0, it is easy to see that there exists a positive
constant Kα > 0 such that for all xi ≥ 1,(

1 + 1
xi

)α

≤ 1 + Kα
1
xi

(34)

Plugging this result into (33), we obtain:

df(x) ≤
∑

i:xi≥1

xα
i

ρα
i

[(
1 +

Kα

xi

)
ρi − φi

]
+
∑

i:xi=0

ρ1−α
i

Let n =argmaxi xi/ρi. In view of Lemma 1, for all network
states satisfying xn/ρn ≥ γ, the drift df(x) is bounded by

df(x) ≤
∑

i:xi≥1

xα
i

ρα
i

(
Ka

ρi

xi
− ρiε

)
+
∑

i:xi=0

ρ1−α
i

≤ −ρnε
xα

n

ρα
n

+
∑

i:xi≥1

xα
i

ρα
i

(
Ka

ρi

xi

)
+
∑

i:xi=0

ρ1−α
i

≤ −ρ0ε
xα

n

ρα
n

+ NKα
xα−1

n

ρα−1
n

+
∑

i:xi=0

ρ1−α
i

≤ xα−1
n

ρα−1
n

(
NKα − ερ0

xn

ρn

)
+
∑

i:xi=0

ρ1−α
i

where ρ0 denotes the minimum component of traffic intensity
ρ. With straight forward computation, it is easy to show that
df(x) → −∞ as xn/ρn → +∞. Thus there exists positive
constants ξ and κ, such that for xn/ρn > ξ, we have df(x) <
−κ.

We define the set A in the Foster’s criteria as follows

A �
{
x ∈ R

N
+ : x ≤ ρ · max (γ, ξ)

}
(35)

Then we deduce that the negative draft condition holds for all
x /∈ A, i.e., df(x) < −κ, for all x /∈ A. The process x(t)
is positive-concurrent. This implies that the suboptimal rate
allocation policy φ(x) stabilizes the network when the utility
gap condition (6) is satisfied.

B. Proof of Proposition 1.

Proof: We construct a counter-example. Consider a net-
work with two classes of users and a feasible rate region
depicted in Figure 4. For α = 1/2, let φopt(x) denote the

A

B

2

1

C

Fig. 4. The feasible rate region under consideration.

optimal rate allocation at state x. We define a suboptimal rate
allocation by

φ(x) =

 φopt(x), if φopt doesn′t lie on ÂB
φA, otherwise, if x1 > x2

φB , otherwise, if x1 ≤ x2

(36)



where ÂB denotes the boundary of the rate region between
point A and B, and φA and φB are the rates at point A and B
respectively. First, we show that the gap is on the same order
as that of the optimal utility, i.e.,

lim sup
maxi xi→∞

∆(x)∣∣∣∑N
i=1 xiUi(

φopt,i

xi
)
∣∣∣

=

(
1 − lim sup

maxi xi→∞

√
x1φ1 +

√
x2φ2√

x1φopt,1 +
√

x2φopt,2

)
· 1{φopt∈ÂB}

≤ 1 − lim sup
maxi xi→∞

√
x1φB,1 +

√
x2φA,2√

x1φA,1 +
√

x2φB,2

≤ 1 − max

(√
φB,1

φA,1
,

√
φA,2

φB,2

)
Therefore, condition (8) is satisfied.

Next, we show that for small enough ε > 0, the network is
unstable under traffic intensity ρ = (1 + ε)φC . To prove this,
we define a Lyapunov function by

f(x) = µ−1
1 w1x1 + µ−1

2 w2x2 (37)

where w1 = φB,2 − φA,2 and w2 = φA,1 − φB,1 are positive.
Then we prove that the drift is always positive for traffic
intensity ρ = (1 + ε)φC with a small enough ε > 0, i.e.,

df(x) =
∑
x�=y

q(x, y) [f(y) − f(x)]

= ε(w1φC,1 + w2φC,2) + w1(φC,1 − φ1)
+w2(φC,2 − φ2)

≥ ε(w1φC,1 + w2φC,2) > 0

where the third step holds since the suboptimal rate allocation
φ(x) always lies below the line AB. Thus, for the choice
of Lyapunov function (37), the drift is always positive. This
implies that the network is unstable.

C. Proof of Theorem 2.

Proof: We use the same proof technique as in Theorem
1, and show that provided the traffic condition is satisfied, the
network is stable.

Lemma 2: Consider any traffic intensity ρ ∈ (1− η)
1

1−α R.
There exist positive constants ε and γ, such that for any
suboptimal rate allocation φ(x) satisfying (8) and any network
state satisfying maxi xi/ρi > γ, the following inequality
holds: ∑

i:xi≥1

xα
i ρ−α

i [(1 + ε)ρi − φi] ≤ 0 (38)

Proof: First, we consider the case that α < 1 and thus
the optimal utility is positive. Under the traffic condition ρ ∈
(1 − η)

1
1−α Ř, there exist ε ≥ 0 and δ ≥ 0 such that rate

vector (1 + ε)[1 − (1 + δ)η]−
1

1−α ρ satisfies the feasible rate
constraints, i.e.,

(1 + ε)[1 − (1 + δ)η]−
1

1−α ρ ∈ R (39)

According to the condition (8), we can conclude there exists
a positive γ such that for maxi xi > γ and δ ≥ 0,

∆(x) ≤ η(1 + δ)

∣∣∣∣∣
N∑

i=1

xiUi(
φopt,i

xi
)

∣∣∣∣∣ (40)

Let u ∈ R be an arbitrary rate vector and δ0 = [1 − (1 +
δ)η]

1
1−α . Since the optimal utility is positive, we obtain

0 ≤
N∑

i=1

XiUi(
φi

Xi
) + ∆(X) −

N∑
i=1

XiUi(
φopt,i

Xi
)

≤
N∑

i=1

XiUi(
φi

Xi
) − [1 − (1 + δ)η]

N∑
i=1

XiUi(
ui

Xi
)

≤
N∑

i=1

[φi − δ0ui] U
′
i (

δ0ui

Xi
)

where yi is a proper scalar between δ0ui and φi and the last
step follows since the α-fair utility function Ui(·) is concave.
In view of (2), the above inequality can be rewritten as

N∑
i=1

Xα
i

(δ0ui − φi)
uα

i

≤ 0 (41)

Choosing u = 1+ε
δ0

ρ ∈ R, we obtain

N∑
i=1

Xα
i ρ−α

i [(1 + ε)ρi − φi] ≤ 0 (42)

This is exactly (38) since flow classes with zero active flows
are allocated rate zero.

Similarly, when α > 1, there exist ε ≥ 0 and δ ≥ 0 such
that rate vector (1+ ε)[1+(1+ δ)η]

1
α−1 ρ satisfies the feasible

rate constraints. Using the same proof technique and choosing
u = (1 + ε)[1 + (1 + δ)η]

1
α−1 ρ, we can show that condition

(42) is also satisfied for α > 1 and maxi xi > γ.

To prove stability, again we consider the Lyapunov function
defined by

f(x) =
N∑

i=1

xi∑
n=1

µ−1
i

nα

ρα
i

(43)

Using the results in the proof of Theorem 1, we conclude
that there exist positive constants ξ and κ, such that for
maxi(xi/ρi) > max(ξ, γ), the negative drift condition holds:

df(x) =
N∑

i=1

[
λiµi

(xi + 1)α

ρα
i

− φ
xα

i

ρα
i

]
≤ xα−1

n

ρα−1
n

(
NKα − ερ0

xn

ρn

)
+
∑

i:xi=0

ρ1−α
i

≤ −κ (44)

Then the Foster’s criteria is satisfied on set A �{
x ∈ R

N
+ : x ≤ ρ · max (γ, ξ)

}
. The suboptimal rate alloca-

tion policy φ(x) stabilizes the network given that the utility
gap condition (6) is satisfied.



To show that there exists a suboptimal rate allocation policy
whose stability region is exactly (1 − η)

1
1−α R, we assume

α < 1 and construct a suboptimal policy as follows

φi(x) = (1 − η)
1

1−α φopt,i(x) (45)

Then we compute the utility gap as

∆(x) =
∑

i

xiUi(
φopt,i

xi
) −

∑
i

xiUi(
φi

xi
)

= η
∑

i

xiUi(
φopt,i

xi
) (46)

Therefore, the utility gap is exactly η proportion of the optimal
utility. Condition (8) is satisfied. Furthermore, it is not difficult
to see that rate allocation φ(x) actually maximizes the utility
on a reduced rate region (1 − η)

1
|1−α|R. The achievable

stability region is indeed (1− η)
1

|1−α|R. The proof for α > 1
is similar and will be omitted here. We complete the proof of
Theorem 2.

D. Proof of Theorem 3.

Proof: As the first step, we form the Lagrangian for the
optimization problem (17) as

L(φ, p, q) =
N∑

i=1

φi + pT (c − Rφ) + q(V (φ) + ∆ − Uopt)

where V (φ) =
∑N

i=1 xα
i φ1−α

i /(1−α) is the achievable utility
of a rate allocation φ. Vector p and scalar q are Lagrangian
multipliers for the two constraints in (17) respectively. At the
optimal point of (17), the KKT conditions for optimality are
given by

Rφ = c, V (φ) = Uopt − ∆ (47)

RT p − q
dV (φ)

dφ
− d(

∑N
i=1 φi)
dφ

= 0 (48)

From the implicit function theorem, variables φ, p and q can
be viewed as implicit functions of c and ∆, which are uniquely
defined by the KKT conditions (47) and (48). We define two
vectors y = [φ; q; p], w = [c;∆] and a residual

G(y, w) =

 Rφ − c
Uopt + ∆ − V (φ)
RT p − q dV (φ)

dφ − 1

 (49)

where 1 is a N × 1 vector consisting of all one’s. Then the
KKT conditions can be rewritten as G(y, w) = 0. The first
order derivative of the residual G(y, w) can be obtained as
follows

∂G

∂y
=

 R 0 0
−dV (φ)

dφ 0 0
qD −dV (φ)

dφ RT

 =
(

R̂ 0
qD R̂T

)
(50)

and

∂G

∂w
=

 −I 0
0 1
0 0

 (51)

where R̂ = [R;−dV (φ)/dφ] is an extended routing matrix
and D is a diagonal matrix of the form

D = α · diag
{
[φ−α−1

1 ; . . . ;φ−α−1
N ]

}
(52)

Let e = [0; . . . ; 0; 1]. From the implicit function theorem,
we obtain

dy
dw = −

(
∂G

∂y

)−1
∂G

∂w
,

=
(

R̂ 0
qD R̂T

)−1

·
 −I 0

0 1
0 0

 ,

=

 ∗ D−1R̂T
(
R̂D−1R̂T

)−1

e

∗ ∗
∗ ∗

 (53)

This implies

∂T
∂V =

d
(∑N

i=1 φi

)
dφ

· dφ

d∆
= 1T D−1R̂T

(
R̂D−1R̂T

)−1

e

Plugging the expression for R̂ and performing some matrix
manipulation, we derive the desired result.
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