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Abstract— We consider the problem of distributed scheduling
in wireless networks. We present two different algorithms whose
performance is arbitrarily close to that of maximal schedules, but
which require low complexity due to the fact that they do not
necessarily attempt to find maximal schedules. The first algorithm
requires each link to collect local queue-length information in
its neighborhood, and its complexity is independent of the size
and topology of the network. The second algorithm is presented
for the node-exclusive interference model, does not require
nodes to collect queue-length information even in their local
neighborhoods, and its complexity depends only on the maximum
node degree in the network.

I. INTRODUCTION

In this paper we consider the problem of distributed al-
gorithms for link scheduling in wireless networks. Since
interfering links in a wireless network cannot transmit at
the same time, a scheduling policy is required to resolve
the contention between various links attempting transmission.
The well-known max-weight and backpressure scheduling
algorithms introduced in [1], [2] are throughput-optimal, i.e.,
they achieve the maximum possible throughput. However,
they are centralized algorithms and have high computational
complexity. Using the max-weight or backpressure algorithms
for scheduling, a number of recent papers have studied the
problem of joint congestion control, routing, and scheduling
in multihop wireless networks [3]–[10]; see [11] for a survey.
The focus of this paper is on designing distributed schedul-
ing algorithms with low complexity and low implementation
overhead. We consider two simple collision models in this
paper: one where each link is associated with an interference
set such that the link cannot be scheduled if any other link in
its interference set is scheduled. The other model, called the
node-exclusive interference model, is a special case of the first
model where the interference set of a link consists of all links
that share a common node with the first link. The first model
covers a wide range of collision models that arise in practical
wireless networks while the second model is applicable to
Bluetooth or FH-CDMA type networks [12], [13].

The study of low-complexity scheduling algorithms has its
roots in the high-speed switching literature where maximal
matching has been studied as an alternative to the max-
weight algorithm. Upper bounds on the throughput loss due

to use of maximal matching have been derived in [14],
[15]. Recently, these ideas have been successfully applied to
wireless networks in [5], [16]–[18]. These papers show that
low-complexity maximal-matching-type algorithms achieve a
provably lower-bounded fraction of the maximum possible
throughput, where the lower bound is a function of the local
topology of the network. In particular, it was shown in [5], [16]
that the lower bound is 1/2 for the node-exclusive interference
model while [17], [18] show that the lower bound is the inverse
of the maximum number of links that can be simultaneously
scheduled in an interference set.

The main drawback of the algorithms in [5], [16]–[18] is
that they focus primarily on computational complexity but
do not consider distributed implementation. For example, in
the node-exclusive interference model, each valid schedule
is a matching. (A matching in a graph is a set of edges
such that no two edges share a common node). A maximal
matching can be found as follows: each node requests a
connection to one of its neighbors. A connection is accepted
if the node receiving the request is not already part of the
matching; otherwise, the node requests again. However, such
a process, if not implemented in a structured fashion, would
require many rounds of requests and incur a huge overhead,
negating the benefits of the simplicity of maximal matching.
This problem is unique to wireless networks since a matching
can be implemented by a central controller in many high-speed
switches. Even if a central controller is not available, input and
output ports are just one hop from each other and thus message
passing is relatively easy in high-speed switches.

In view of the discussion above, the goal of this paper
is to devise low-complexity, low-overhead distributed algo-
rithms for multi-hop wireless networks. We will present two
distributed algorithms which we summarize below:
(a) The first algorithm, which we call Q-SCHED, uses queue-
length information in a local neighborhood of each link to
perform scheduling. Q-SCHED is a randomized algorithm
which works in two phases: in the first phase, each link tosses
a coin to determine if it will participate in the schedule. In the
second phase, the links that decide to participate use a one-
step collision resolution protocol to determine if they will be
part of the schedule or not. Such a two-phase algorithm was



originally proposed in [19], but the key contribution in this
paper is to modify the algorithm to achieve dramatically larger
throughput. We will show that the complexity and overhead of
Q-SCHED is independent of the network size and throughput.
(b) The second algorithm, which we call BP-SIM (short for
bipartite simulation), is also a randomized algorithm but does
not require queue-length information. For ease of exposition
and notational simplicity, we present BP-SIM only for the
node-exclusive interference model. BP-SIM is an adaption of
the algorithm in [20], [21] for the case of wireless networks.
The algorithm proceeds by emulating a bipartite graph: each
node randomly decides to be a left or a right node. Then
connection requests are made from left to right nodes. The
key distinction between wireline networks considered in [20],
[21] and multi-hop wireless networks is that the connection
requests collide in the wireless networks and a contention
resolution protocol is required. We design such a protocol
and show that the overall complexity of BP-SIM is a function
only of the maximum node degree and not of the size of the
networks. Numerical examples based on analytical formulas
indicate that the complexity is quite low for moderately sized
networks (up to 225 nodes that we have simulated).

The assumption that we make in designing the above algo-
rithms is that time is slotted and synchronized in the network.
Synchronizing time slots in a large network used to be a
difficult problem, but recent advances in clock synchronization
algorithms have made it possible to synchronize clocks in large
networks with very low complexity, see [22], [23]. In addition
to scheduling, another important issue is power control which
we do not address in this paper. We refer the readers to [10]
for distributed implementation of power control in multi-hop
wireless networks.

The rest of the paper is organized as follows. In Section II
we present the network model that is used in the rest of
the paper. In Section III we present Q-SCHED scheduling
algorithm, provide its analysis and discuss a slight variation
of the algorithm that can be specifically used for the node-
exclusive interference model. In Section IV we present BP-
SIM scheduling algortihm, provide its analysis and discuss
simulation results. We then conclude in Section V.

II. MODEL

We consider a wireless network of N nodes. Let G(V,E)
be the directed connectivity graph of the network where V is
the set of nodes and E is the set of links. For each v ∈ V ,
another node v′ ∈ V is a neighbor of v if they are end points
of a link. Let N(v) be the set of neighbors of v. The degree
of node v, d(v), is defined as the number of neighbors of v,
i.e., d(v) = |N(v)|, where |K| refers to cardinality of the set
K.

For each link l ∈ E, let b(l) and e(l) denote the transmitter
node and receiver node, respectively. Two links are neighbors
if they share a common node. Every link l ∈ E interferes
with a set of other links. Let El be the interference set of l.
We adopt the convention that l ∈ El, i.e.,

El = [{l} ∪ {l′ : l′ ∈ E and l′ interferes with l}].

We assume that the interference relationship is symmetric,
i.e., if k ∈ El then l ∈ Ek. This interference set varies
with different communication models. In the node-exclusive
interference model, also known as the one-hop interference
model, El is the set of one-hop neighbors of l, including l. A
valid schedule in this model is a matching. This model has
been studied in [5], [13] and is a commonly used model for
bluetooth and FH-CDMA networks [12], [13].

We assume that time is divided into slots of equal length.
With each link l is associated a stochastic arrival process
{Al(n)}, where Al(n) is the number of packet arrivals to link
l in the slot n. The arrival processes are stationary and let
λl = E[Al(n)]. It is further assumed that the arrival process
is i.i.d. across time, i.e., A(n) := {A1(n), A2(n), ....A|E|(n)}
is i.i.d. across n. It is also assumed that the arrival process has
bounded second moments, i.e., Cov

(
Al(n), Ak(n)

)
< ∞. Let

Dl(n) denote the number of departures from link l in the time
slot n. The capacity of each link is the number of packets that
the link can serve in one time slot and is denoted by cl. Let
dl(n) be the indicator function that indicates whether link l
is scheduled or not. Then, Dl(n) = cldl(n). Also we define
al(n) := Al(n)/cl. The system state is defined as

Q(n) :=
(
q1(n), q2(n), ..., q|E|(n)

)
and the dynamics of ql(n) are given by

ql(n + 1) =
(
ql(n) + Al(n) − Dl(n)

)+
where ()+ denotes the projection to [0,∞).

III. ALGORITHM 1: Q-SCHED

For this algorithm, it is assumed that at the beginning of
each time-slot every link l has the knowledge about the queue-
lengths of all links k in its interference set El and also the
queue-lengths of all links in the interference sets of k ∈ El. A
slight variation of this algorithm for the node-exclusive model
will also be discussed where the queue-length information of
only the neighbors is required. We now present the algorithm.

A. Scheduling Policy

Each time slot is divided into two parts: a scheduling slot
and a data transmission slot. The links that are to be scheduled
are chosen in the scheduling slot and the chosen links transmit
their packets in the data transmission slot. The scheduling slot
is further divided into M mini-slots. For ease of exposition,
in what follows, we will drop the index n from the notation
qj(n) where there is no confusion. The algorithm proceeds
as follows: at the beginning of time-slot n, each link l first
computes

Pl = α

ql

cl

maxi∈El
[
∑

k∈Ei

qk

ck
]

, (1)

where α = log (M). Each link then picks a backoff time from
{1, 2, ....,M + 1} where picking M + 1 implies that the link



will not attempt to transmit in this time slot. The backoff time
(Y ) is chosen as follows:

Pr {Y = M + 1} = e−Pl , (2)

Pr {Y = m } = e−Pl
m−1

M − e−Pl
m
M , ∀m ∈ {1, 2, ...M}.

When the backoff timer for a link expires, it begins transmis-
sion unless it has already heard a transmission from one of
its interfering links. If two or more links that interfere begin
transmissions simultaneously, there is a collision and none of
the transmissions is successful. Further any links that hears
the collision will not attempt transmission in the rest of their
time-slot.

The Q-SCHED algorithm can be thought of as a two-phase
algorithm. In the first phase, each link l first decides whether
or not it would participate in the schedule for that time slot.
In the algorithm this corresponds to choosing {1, 2, ...,M} or
(M +1) respectively. In the next phase, each participating link
chooses a number between 1 and M and attempts to transmit
starting from that mini-slot. This backoff procedure serves to
reduce collision, and thus should lead to a higher capacity
compared with a policy without backoff, e.g. [24]. While data
transmission may start at any mini-slot, the length of each
packet is assumed to be smaller than the data transmission
slot so that a transmission ends within the time-slot. The idea
of using two phases is essential to getting O(1) complexity and
was introduced in [19]. Here the probabilities in (2) have been
modified to achieve a higher guaranteed throughput. Further,
we complete the proof in [19] by establishing stochastic
stability.

B. Analysis

We now proceed to analyze this scheduling policy. Define
the Lyapunov function

V (n) = max
i∈E

∑
l∈Ei

ql(n)
cl

.

Lemma 1: Q-SCHED scheduling policy guarantees that for
any ε > 0 and constants C1, C2 > 0, there exists a constant
R such that if V (n) ≥ R and

∑
l∈Ek

ql

cl
≥ V (n) − C1 − C2ε

then∑
l∈Ek

Pr{Link l is scheduled} ≥ 1 − log(M) + 1
M

− ε.

Proof: See Appendix I
We present the following proof for the special case of

bounded arrivals, i.e., we assume that there exists a constant
θ such that Al(n) ≤ θ ∀l, n. The proof can be extended to
cover more general arrival processes by upper-bounding the
number of arrivals in a time-slot with high probability.

Lemma 2: Q-SCHED scheduling policy guarantees that for
any δ > 0, there exists a positive integer constant H and a
positive constant B, such that if V (n) ≥ B and

∑
l∈Ek

λl

cl
<

1 − log(M)+1
M − 4ε ∀k ∈ E, then in the time-slot n + H

Pr{
∑
l∈Ek

ql(n + H)
cl

≤ V (n) − Hε} ≥ 1 − δ ∀k ∈ E.

Proof: See Appendix II
We now prove the stability of Q-SCHED.

Theorem 1: Consider the Markov chain {Q(n)}. Under
Q-SCHED scheduling algorithm this Markov chain is positive
recurrent if for some ε > 0∑

k∈El

λk

ck
< 1 − log(M) + 1

M
− 4ε ∀l.

Proof: Note that from Lemma 2 we also infer that for
any δ > 0 there exists a constant B and a positive integer
constant H such that if V (n) ≥ B, then for any δ > 0,

Pr{V (n + H) − V (n) ≤ −Hε} ≥ 1 − Lδ

where L is the total number of links in the network.
Since the arrival and departure processes are both upper-

bounded, there exists a constant C such that
∑
l∈Ek

ql(n + 1)
cl

−
∑
l∈Ek

ql(n)
cl

 ≤ C ∀n,∀k. (3)

This implies that V (n+1)−V (n) ≤ HC. Denoting EX [·] =
E[·|X], we have

EQ(n)

[
V (n + H) − V (n)

] ≤ −Hε(1 − Lδ) + HCLδ

= H
(
(C + ε)Lδ − ε

)
.

Thus if δ ≤ ε
2(C+ε)L we get

EQ(n)

[
V (n + H) − V (n)

] ≤ −Hε

2
< 0

whenever V (n) > B. Since the set B = {Q(n) : V (n) ≤ B}
is bounded, by Foster’s theorem [25] we have proved that the
Markov chain {Q(n)} is positive recurrent.

C. A Special Case

The scheduling algorithm discussed above is valid for any
interference model including the node-exclusive interference
model, as long as the symmetry conditions are satisfied.
However in the special case of node-exclusive interference
model, an even simpler variant of this algorithm can be
used. The only difference in the scheduling policy is in the
calculation of the term Pl. For the new scheduling policy each
link l computes

Pl = α

ql

cl

max[
∑

k∈Fb(l)

qk

ck
,
∑

k∈Fe(l)

qk

ck
]

where Fj is the set of links incident on j. The nodes b(l) and
e(l) are the transmitter and the receiver nodes, respectively, of
link l. In this case we choose α = log (2M)/2.

Thus in this scheduling policy each link requires a knowl-
edge of the queue-lengths of only those links that interfere
with it. We can prove that in this case if∑

l∈Fi

λl

cl
< 1/2 − log(2M)

2M
∀i ∈ V,

then Q(n) is positive recurrent and the system is queue-length
stable.



The factor of 1/2 appears because the set Fi where i ∈ V
is on an average about half the size of the set El where
l ∈ E. However the performances of the two algorithms are
comparable. We do not provide the proof since it is very
similar to the proof in Section III-B.

Similar results have been obtained in [26] using a different
approach. However, we complete the proof by establishing
stochastic stability and we also provide an alternative al-
gorithm, in the next section, which does not require nodes
to collect any queue-length information from its neighbors.
Such an algorithm is especially useful when collecting queue-
length information is not feasible, as discussed in the following
section.

IV. ALGORITHM 2: BP-SIM

While Q-SCHED is an O(1) complexity algorithm, it re-
quires knowledge of queue-length information. This may or
may not be difficult to obtain. At moderate loads, queue-
lengths will not be very large; thus, queue-lengths can be
transmitted using a small number of bits along with the data
packets. Even if the queue-lengths are large, changes in queue-
lengths can be transmitted using a small number of bits if the
arrival process is bounded. However, in practice such queue-
length information exchange normally needs to be performed
asynchronously and thus may reduce the performance of the
algorithm. In this section, we present an alternative algorithm
that requires no queue-length information. As in the case of Q-
SCHED, BP-SIM does not attempt to find maximal schedule
but rather ensures that, for backlogged link l, the probability
that a link in El is scheduled is high. This stems from the key
observation that the proof in [17] for the stability of maximal
schedules can be adapted easily even when the schedule
is not precisely maximal. While BP-SIM is not on O(1)
complexity algorithm, our analysis followed by numerical
examples indicate that the complexity of the algorithm is low
for networks with even a few hundred nodes.

BP-SIM is presented for the node-exclusive interference
model. Further it is assumed that the maximum degree of
any node in the network is upper-bounded by d∗, i.e., ∀v ∈
V, d(v) ≤ d∗. The algorithm proceeds in rounds. There are K
rounds in the algorithm, where K is a constant to be chosen
later.

A. Scheduling Policy

As in Q-SCHED, each time slot is divided into two parts:
a scheduling slot and a data transmission slot. The links that
are to be scheduled are chosen in the scheduling slot and the
chosen links transmit their packets in the data transmission
slot. The scheduling slot is further divided into K × M
mini-slots, where each round requires M of these mini-slots.
Initially none of the links are in the schedule. In each round a
matching Mi is formed by adding links from the graph G to
the matching Mi−1.The matching MK is the final schedule.

In the first round, to find M1, BP-SIM emulates a bipartite
graph, each node randomly deciding to be left or right. The
round proceeds as follows: each node having at least one

neighbor in G decides to be left or right with probability 1/2
independently. If a node, say vl, becomes left then it chooses
a partner, say vlr, from one of its backlogged neighbors in G
uniformly at random. The node vlr is backlogged with respect
to vl if the link from vl to vlr has a backlog greater than or
equal to the capacity of the link. A node that does not have
a backlogged neighbor does not become a left node. Node
vl randomly and independently chooses a mini-slot between
1 and M uniformly, and requests vlr in that mini-slot to be
scheduled for that time-slot.

If a node, say vr, becomes right then it waits for a request to
be scheduled from one of its neighbors. Node vr acknowledges
the request from the node that first requested it. If at the first
time when vr received a request, there was a collision due to
simultaneous requests from more than one neighbor, then vr

does not acknowledge any request in that round.
If vr acknowledges the request of vl then vr and vl are

matched. The matching M1 then consists of vl and vr and of
the link between them. Scheduling requests from a left node
to a left node are not acknowledged.

In the subsequent rounds, same process is repeated except
that the nodes which are already a part of Mi−1 neither
become left nor they acknowledge requests from any other
nodes. This ensures that the links added to Mi−1 will also
appear in matching Mi. In all the rounds left nodes choose
a partner from one of their neighbors in G and hence do not
need to know which of their neighbors are already scheduled.

After the K rounds, the links that are scheduled begin
transmission in the data transmission slot.

This algorithm is an extension of the maximal matching
algorithms discussed in [20] and [21]. The novel feature of BP-
SIM is the contention resolution protocol that is necessary in
a wireless network to reduce the chance of collisions between
the connection requests. We also observe that even when
no collisions occur due to simultaneous requests to a node,
the time to compute perfect maximal matching increases as
log(n), where n is the number of nodes. In contrast, in our
algorithm the scheduling time depends only on d∗ and not on
n as we will see later.

B. Analysis

We now proceed to the analysis of this scheduling policy.
Lemma 3: For any κ ∈ (0, 1) there exists a constant K

that depends on d∗, κ, and M but is independent of network
size, such that for each backlogged link l the probability that
at least one backlogged link in El is scheduled after K rounds
is greater than or equal to κ.

Proof: See Appendix III
We prove the stability of BP-SIM.
Theorem 2: Consider the Markov chain {Q(n)}. For a

node-exclusive interference model under the scheduling policy
BP-SIM this Markov Chain is positive recurrent if∑

k∈El

λk

ck
< κ,



where κ ∈ (0, 1) and K is appropriately chosen according to
Lemma 3.

Proof: Define the Lyapunov function

V (n) =
∑

l

ql(n)
cl

(∑
k∈El

qk(n)
ck

)
.

This is the same Lyapunov function as the one used in [17].
Using the results in [17] we get

V (n + 1) − V (n)

= 2
∑

l

ql(n)
cl

(∑
k∈El

(ak(n) − dk(n))

)

+
∑

l

(al(n) − dl(n))

(∑
k∈El

(ak(n) − dk(n))

)
,

from which we get

EQ(n)(V (n + 1) − V (n))

≤ 2
∑

l

ql(n)
cl

(∑
k∈El

λk(n)
ck

− E

[∑
k∈El

dk(n)

])
+ B

= 2
∑

l:ql>0

ql(n)
cl

(∑
k∈El

λk(n)
ck

− E

[∑
k∈El

dk(n)

])
+ B

≤ 2
∑

l:ql>0

ql(n)
cl

(∑
k∈El

λk(n)
ck

− κ

)
+ B1

≤ −2ε
∑

l:ql>0

ql(n)
cl

+ B1,

where B,B1 > 0 are some constants and ε = κ −
maxl

∑
k∈El

λk

ck
. Thus using [17, Th. 1], the system is queue-

length stable if∑
k∈El

λk(n)
ck

< κ, ∀ l ∈ E.

C. Numerical examples and Simulations

Theorem 2 shows that by choosing K large enough the
throughput of BP-SIM can be arbitrarily close to that of
maximal schedule. We next present some numerical results
on how large K needs to be for practical choice of κ.

According to the numerical evaluations based on analytical
functions derived in Appendix III when d∗ = M = 5, we
require K ≥ 7 for κ = 0.9. Therefore in 35 (K × M) mini-
slots BP-SIM guarantees that for any link l at least one link
in its interference set is scheduled with a probability greater
than or equal to 0.9. If d∗ = M = 10 we require K ≥ 8 to
achieve κ = 0.9.

We have simulated the scheduling policy BP-SIM to ana-
lyze its scheduling efficiency. Simulations were performed on
networks of four different sizes. The number of nodes(n) in
the four cases were 30, 60, 120 and 225. The maximum node
degrees (d∗) in the four cases were 5, 8, 8 and 17 respectively.
The nodes were placed randomly on a rectangular area , i.e.
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Fig. 1. Scheduling Efficiency of BP-SIM: Curves for all fours cases are
close in the figure, thus showing the nice scaling property of the algorithm.

there x and y were chosen randomly and independently. The
radius of transmission of the nodes was chosen so as to make
the graph connected.

In Figure 1 we plot the minimum success probability of a
link versus number of rounds. Success probability of a link
here refers to the probability that either the link or one of its
interfering links is scheduled. Minimum success probability is
the lowest success probability for all links in the network. The
maximum backoff time in each case was M = 4.

In each case shown in Figure 1 we only needed K = 6
rounds for the minimum success probability to be greater than
0.9. Thus in a total of 24 (K ×M) mini-slots each link in the
network reaches a success probability greater than 0.9.

The above simulation results show that in practice BP-SIM
works much better than the minimum performance guarantees
we have proved. This is indeed true as our bounds are very
conservative and we do not take into the account that when
links are scheduled in one round, BP-SIM performs better in
the next round since the degrees of nodes decrease.

V. CONCLUSION

We have presented two low-complexity distributed algo-
rithms for scheduling in multi-hop wireless networks. The al-
gorithms approximate the performance of maximal matching-
type scheduling arbitrarily closely. However, a key feature
that allows the two algorithms to have low complexity is that
neither algorithm attempts to find a perfect maximal matching.
With high probability, Q-SCHED schedules links in those
interference sets where the total queue-length is large. BP-
SIM ensures that the probability that a link is scheduled in
the interference set of each link is high. Q-SCHED is an O(1)
complexity algorithm, i.e. , its complexity is independent of
the network size. On the other hand, the complexity of BP-
SIM depends only on the maximum node degree. One may
argue that in random radio networks, the node degree should
be O(log(n)) for connectivity. If this is the case, for n = 200,
log(n) is smaller than 10 and our simulations indicate that
the number of mini-slots required to guarantee a throughput
at least equal to 0.9 times that of maximal schedules is 24. On
the other hand our analysis upper-bounds the number of mini-



slots to be 80. A mini-slot can be thought as the contention slot
in 802.11. In today’s standard the number of mini-slots varies
from 32 to 1024. Thus, both algorithms have small overheads
and can provide guaranteed throughput in ad hoc networks as
shown in Theorems 1 and 2.

APPENDIX I
PROOF OF LEMMA 1

Proof: Consider a link j ∈ Ek. We will first find a lower
bound on the probability that j is scheduled.

Link j gets scheduled when it attempts transmission and
each of the other attempting links in its interference set
chooses a bigger backoff time. Let Sj be the event that j
is scheduled and let Yl be the backoff time chosen by a link
l. Then we get

Pr{Sj} ≥
M∑

k=1

Pr{Yj = k}
∏

h∈Ej

h�=j

Pr (Yh > k)

=
M∑

k=1

(
e−Pj

k−1
M − e−Pj

k
M

) ∏
h∈Ej

h�=j

e−Ph
k
M (4)

=
(
e

Pj
M − 1

) M∑
k=1

e−Pj
k
M

∏
h∈Ej

h�=j

e−Ph
k
M

=
(
e

Pj
M − 1

) M∑
k=1

e
(− k

M

∑
h∈Ej

Ph)
(5)

where (4) is obtained by using the probability distribution
described in Section III-A. We now find the upper bound on
the term

∑
h∈Ej

Ph that appears in (5).

∑
h∈Ej

Ph = α
∑
h∈Ej

qh

ch

maxl∈Eh

∑
k∈El

qk

ck

(6)

≤ α
∑
h∈Ej

qh

ch∑
k∈Ej

qk

ck

= α. (7)

To obtain (7) we recall from the definition of an interference
set that if h ∈ Ej , then j ∈ Eh. This implies that the
denominator in (6) is never less than

∑
k∈Ej

qk

ck
. Using (7)

and (5) we get

Pr{Sj} ≥ (ePj
M − 1

) M∑
k=1

e(−α K
M ) ≥ Pj

M

M∑
k=1

e(−α K
M ).

Hence summing over all j ∈ Ek, we have

∑
j∈Ek

Pr {Sj} ≥
M∑

k=1

e(−α K
M )
∑
j∈Ek

Pj

M
. (8)

Now from the probability distribution given in Section III-A

Pj = α

qj

cj

maxm∈Ej
[
∑

k∈Em

qk

ck
]
≥ α

qj

cj

V (n)
(9)

where (9) follows from the definition of V (n). Now summing
over all j ∈ Ek we get∑

j∈Ek

Pj ≥ α

∑
j∈Ek

qj

cj

V (n)
≥ α

V (n) − C1 − C2ε

V (n)
(10)

= α

(
1 − C1 + C2ε

V (n)

)
(11)

where (10) follows from the assumption
∑

l∈Ek

ql

cl
≥ V (n) −

C1 − C2ε. Using (11) in (8) we get

∑
j∈Ek

Pr {Sj} ≥ α

M

M∑
k=1

e(−α K
M )

(
1 − C1 + C2ε

V (n)

)
=

α

M

1 − e−α

1 − e−
α
M

e−
α
M

(
1 − C1 + C2ε

V (n)

)
.

Since α = log (M) and M > 1, we can see that∑
j∈Ei

Pr {Sj} ≥
(

1 − log (M) + 1
M

)(
1 − C1 + C2ε

V (n)

)
.

Now if V (n) ≥ R then C1+C2ε
V (n) ≤ C1+C2ε

R . Thus for a

sufficiently large R we have C1+C2ε
V (n) ≤ ε and this gives∑

j∈Ei

Pr{Sj} ≥
(

1 − log (M) + 1
M

)
(1 − ε)

≥ 1 − log (M) + 1
M

− ε.

This ends the proof of Lemma 1.

APPENDIX II
PROOF OF LEMMA 2

Proof: For any given H and with C as defined in (3), if∑
l∈Ek

ql(n)
cl

≤ V (n) − H(C + ε)

then

Pr{
∑
l∈Ek

ql(n + H)
cl

≤ V (n) − Hε} = 1.

This can be seen from the fact that
∑

l∈Ek

ql

cl
cannot increase

by more than C in a single time-slot. Thus in this case the
Lemma holds trivially.

In the other case, i.e. , if
∑

l∈Ek

ql(n)
cl

> V (n)−H(C + ε),
then for all t ∈ [n + 1, n + H] we have∑

l∈Ek

ql(t)
cl

≥ V (n) − H(C + ε) − C(t − n)

≥ V (t) − 2C(t − n) − H(C + ε)
≥ V (t) − 2HC − H(C + ε)
= V (t) − H(3C + ε)

Thus using Lemma 1 there exists a positive constant B (as a
function of H) such that if V (n) ≥ B then∑

l∈Ek

Pr{Sl} ≥ 1 − log(M) + 1
M

− ε (12)



for all t ∈ [n + 1, n + H] where Sl is the event that link l is
scheduled. Note that we did not need to impose a condition on
each V (t) separately because V (t) ≤ V (n)+C(t−n) for all
t. Thus a sufficiently large B would guarantee the condition
of Lemma 1 for all V (t).

We define the event Xt such that Xt = 1 if at least one
service occurs in the time-slot t and Xt = 0 otherwise. Then
using (12) we get

Pr{Xt = 1} ≥ 1 − log(M) + 1
M

− ε.

Let Y =
∑n+H

t=n+1 Xt. Using Chernoff bounds we can now
show that there exists a constant τ1 > 0 such that

Pr
{

Y ≤ H

(
1 − log(M) + 1

M
− 2ε

)}
≤ e−Hτ1 . (13)

Similarly we can show that the aggregate arrivals Z =∑
l∈Ek

∑n+H
t=n+1 Al(t) must satisfy

Pr
{

Z ≥ H

(
1 − log(M) + 1

M
− 3ε

)}
≤ e−Hτ2 (14)

for some τ2 > 0. Thus from (13) and (14) we have

Pr

{∑
l∈Ek

ql(n + H)
cl

≤ V (n) − Hε

}
≥ Pr{Z ≤ Y − Hε}

≥ 1 − e−Hτ1 − e−Hτ2 .

Thus, by choosing a large enough H and correspondingly
large enough B, we get

Pr

{∑
l∈Ek

ql(n + H)
cl

≤ V (n) − Hε

}
≥ 1 − δ.

This ends the proof of Lemma 2.

APPENDIX III
PROOF OF LEMMA 3

Proof: The proof is divided into two parts. We first find
lower bounds on the probability that a link or one of the links
in its interference set is scheduled and then analyze the bound.
In the discussion that follows we only consider backlogged
links since links with zero backlog do not participate in the
schedule for that round.

A. Bounds

In a graph G̃(Ṽ , Ẽ), for a vertex A ∈ Ṽ , another vertex
B ∈ Ṽ is a neighbor of A if there is an edge between A and
B. An edge e ∈ Ẽ is equivalently represented as AB if it
connects the two vertices A and B.

For the analysis we need to find the lower bound on PEAB
,

the probability that in a given stage at least one edge from
EAB is matched.

Let MA be the event that vertex A is matched and MAB

the event that the edge AB is matched in the given stage. Let
PA be the probability of the event MA. Then

PEAB
= Pr (MA or MB) ≥ max (PA, PB).

To find the lower bound we need to consider different degrees
of the vertices A and B. Let x1 = d(A) and x2 = d(B).
We know 1 ≤ x1, x2 ≤ d∗. The case in which either of the
degrees is one is a special case since the vertex with degree
1 always acknowledges a request, i.e., there is no contention
at its end.

Before we proceed it is helpful to define two terms F1(x)
and F2(x) for x ≥ 2, as follows:

F1(x) =
x−1∑
j=1

(
x − 1

j

)(
1
2

)x−1
(

1 − 1
M

M∑
l=1

(
1 − l

M

)j
)

and

F2(x) =
x∑

j=2

(
x

j

)(
1
2

)x
(

1 − j

M

M∑
l=1

(
1 − l

M

)j−1
)

.

The term F1(x) is the upper bound on the probability that
when a given vertex, say vl, chooses to request another vertex,
say v, it is not acknowledged, where d(v) = x. The event
is broken down into cases when j of the remaining x − 1
neighbors of v become left.

The term F2(x) is the upper bound on the probability that
a vertex, say v, with degree d(v) = x receives two or more
requests and acknowledges none, given that v is right. The
event is broken down into cases when j of the neighbors of v
become left.

To obtain these probabilities we observe that the prob-
ability that among m contending nodes, a particular node,
say r, wins (chooses the unique lowest backoff time) is
1
M

∑M
l=1

(
1 − l

M

)m−1
. Here l is the backoff time selected

by the link r (which happens with probability 1
M ) and(

1 − l
M

)m−1
is the probability that the remaining contenders

choose a larger backoff time. The probability than any one
of them wins is simply m times this. In deriving the upper
bounds we have assumed that the left neighbors of v always
request v.

Now we will proceed to find a lower bound on PEAB

considering different values of x1 and x2.
Case 1 : x1 = x2 = 1

In this case the edge AB has no neighbor. It is straightfor-
ward that PEAB

= 0.5.

Case 2 : x1 = 1, x2 ≥ 2
In this case we first find a lower bound on PA. Let R be

the set of all nodes that become right and L the set of nodes
that become left.

PA = Pr (MA | A ∈ R) Pr (A ∈ R)
+ Pr (MA | A ∈ L) Pr (A ∈ L)

=
1
2
(Pr (MA | A ∈ R) + Pr (MA | A ∈ L)). (15)

Let M c
A be complement of the event MA, then

Pr (M c
A | A ∈ R) = Pr (B ∈ R | A ∈ R)

+ Pr (B does not request A | B ∈ L,A ∈ R)
× Pr (B ∈ L | A ∈ R).



Since B has x2 neighbors, it will request A with 1
x2

probability. Thus we get

Pr (M c
A | A ∈ R) =

1
2

+
1
2
(1 − 1

x2
) = 1 − 1

2x2
. (16)

Similarly,

Pr (M c
A | A ∈ L) = Pr (B ∈ L | A ∈ L)

+ Pr (M c
A | A ∈ L,B ∈ R)

× Pr (B ∈ R | A ∈ L)

=
1
2

+
1
2

Pr (M c
AB | A ∈ L,B ∈ R).

When A requests B, which is right, B does not acknowledge
the request if some other neighbor of B requests it before or
in the same mini-slot as A. If N is a set of vertices then LN

is defined as LN = L∩N . Similarly RN = R∩N . We break
the event into cases where j of the neighbors of B are left.
Thus,

Pr (M c
AB | A ∈ L,B ∈ R)

=
x2−1∑
j=1

[
Pr (M c

A | A ∈ L,B ∈ R, |LE(B)| = j + 1)

× Pr (|LE(B)| = j + 1 | A ∈ L,B ∈ R)
]
.

Therefore, Pr (M c
AB | A ∈ L,B ∈ R) ≤ F1(x2) which

along with (15) and (16) gives

PA ≥ 0.25 +
1

4 x2
− 1

4
F1(x2).

Now we find the lower bound on PB . If B ∈ R then B
is not matched if it does not receive a request from one of
its neighbors or when it receives, it receives more than one
request. As in previous case

Pr (M c
B | B ∈ R) = Pr (All neighbors of B are either

right or do not request B)

+
x2∑

j=2

(
x2

j

)(
1
2

)x2

Pr (M c
B | B ∈ R, |LE(B)| = j).

This implies that

Pr (M c
B | B ∈ R) ≤ 1

2

(
1 − 1

2 d∗

)x2−1

+
x2∑

j=2

(
x2

j

)(
1
2

)x2

Pr (M c
B | B ∈ R, |LE(B)| = j).

When j of the neighbors of B are left some of them request
B with probabilities depending on their degrees. The worst
case assumption is that each of them always requests B so
that there is maximum contention. With this assumption,

Pr (M c
B | B ∈ R) ≤ 1

2

(
1 − 1

2 d∗

)x2−1

+
x2∑

j=2

(
x2

j

)(
1
2

)x2
(

1 − j

M

M∑
l=1

(
1 − l

M

)j−1
)

which implies that

Pr (M c
B | B ∈ R) ≤ 1

2

(
1 − 1

2 d∗

)x2−1

+ F2(x2). (17)

When B becomes left, let C be the vertex that B decides
to request. Then

Pr (M c
B | B ∈ L) = Pr (C ∈ L) | B ∈ L)

+ Pr (M c
B | B ∈ L,C ∈ R)

× Pr (C ∈ L | B ∈ R)

=
1
2

+
1
2

Pr (M c
B | B ∈ L,C ∈ R).

The probability that C = A, i.e. , the probability that B
chooses A, is 1

x2
. Since x1 = 1 whenever A is requested by

B, A acknowledges. Thus

Pr (MC
B | B ∈ L) =

1
2

+

x2 − 1
2x2

Pr (M c
B | B ∈ L,C ∈ R,C �= A).

Since d(C) ≤ d∗, the worst case assumption is that
d(C) = d∗ because the higher the value of d(C), lower is
the probability that the time-slot chosen by B is the first one
and unique. Thus

Pr (M c
B | B ∈ L) ≤ 1

2
+

x2 − 1
2x2

F1(d∗). (18)

Thus using (17) and (18) we get

PB ≥ 3
4
− 1

4

(
1 − 1

2 d∗

)x2−1

− 1
2
F2(x2) − x2 − 1

4x2
F1(d∗).

Case 3 : x1, x2 ≥ 2
Similar to the expression for PB in the previous section we

have

Pr (M c
B | B ∈ R) ≤

(
1 − 1

2 x1

)(
1 − 1

2 d∗

)x2−1

+ F2(x2)

The extra factor appears because x1 �= 1 and the probability
that A is either right or does not request B is

(
1 − 1

2 x1

)
rather than 1

2 . Similarly we have

Pr (M c
B | B ∈ L) ≤ 1

2
+

x2 − 1
2x2

F1(d∗) +
1

2x2
F1(x1).

The extra term appears because even if B requests A, it might
not be matched because A has other neighbors that could be
requesting it too. Thus we have

PB ≥ 3
4
− 1

4

(
1 − 1

2x1

)(
1 − 1

2d∗

)x2−1

− 1
2
F2(x2)

−
(

x2 − 1
4x2

)
F1(d∗) − 1

4x2
F1(x1).

Similarly

PA ≥ 3
4
− 1

4

(
1 − 1

2x2

)(
1 − 1

2d∗

)x1−1

− 1
2
F2(x1)

−
(

x1 − 1
4x1

)
F1(d∗) − 1

4x1
F1(x2).



B. Analysis

The way we have defined F1(x) it is not defined for x = 1.
Similarly F2(x) is not defined for x = 1 too. Let us define
F̃1(x) and F̃2(x) as

F̃1(x) =
x−1∑
j=0

(
x − 1

j

)(
1
2

)x−1
(

1 − 1
M

M∑
l=1

(
1 − l

M

)j
)

and

F̃2(x) =
x∑

j=1

(
x

j

)(
1
2

)x
(

1 − j

M

M∑
l=1

(
1 − l

M

)j−1
)

.

With this definition F̃1(x) = F1(x) when x ≥ 2 and F̃1(1) =
0 and likewise for F̃2(x). Let

P̃A =
3
4
− 1

4

(
1 − 1

2 x2

)(
1 − 1

2 d∗

)x1−1

− 1
2
F̃2(x1) − x1 − 1

4x1
F̃1(d∗) − 1

4x1
F̃1(x2)

and

P̃B =
3
4
− 1

4

(
1 − 1

2 x1

)(
1 − 1

2 d∗

)x2−1

− 1
2
F̃2(x2) − x2 − 1

4x2
F̃1(d∗) − 1

4x2
F̃1(x1).

Then PA ≥ P̃A and PB ≥ P̃B . Since PEAB
≥ max (PA, PB)

we get
PEAB

≥ max (P̃A, P̃B).

Thus for any edge AB we have

PEAB
≥ min

x1,x2∈[1,d∗]
max (P̃A, P̃B).

Let
p∗ = min

x1,x2∈[1,d∗]
max (P̃A, P̃B),

then PEAB
≥ p∗. The bound is useful as long as p∗ > 0, which

we can ensure by choosing M sufficiently large. For a given
value of d∗ and M , p∗ is a constant and thus K stages where

K = min
K≥1

{k : (1 − p∗)k ≤ 1 − κ}

will guarantee that with a probability greater than κ each link
or one of its neighbors is matched. Note that K is also a
constant, depending only on d∗ and M . It is independent of
the network size and of the network topology as long as the
maximum degree requirement is satisfied.
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