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Abstract— Distance prediction algorithms use O(N) Round
Trip Time (RTT) measurements to predict the N2 RTTs among
N nodes. Distance prediction can be applied to improve the
performance of a wide variety of Internet applications: for
instance, to guide the selection of a download server from multiple
replicas, or to guide the construction of overlay networks or
multicast trees. Although the accuracy of existing prediction
algorithms has been extensively compared using the relative
prediction error metric, their impact on applications has not been
systematically studied.

In this paper, we consider distance prediction algorithms from
an application’s perspective to answer the following questions:
(1) Are existing prediction algorithms adequate for the applica-
tions? (2) Is there a significant performance difference between
the different prediction algorithms, and which is the best from
the application perspective? (3) How does the prediction error
propagate to affect the user perceived application performance?
(4) How can we address the fundamental limitation (i.e., inaccu-
racy) of distance prediction algorithms?

We systematically experiment with three types of representa-
tive applications (overlay multicast, server selection, and overlay
construction), three distance prediction algorithms (GNP, IDES,
and the triangulated heuristic), and three real-world distance
datasets (King, PlanetLab, and AMP). We find that, although us-
ing prediction can improve the performance of these applications,
the achieved performance can be dramatically worse than the
optimal case where the real distances are known. We formulate
statistical models to explain this performance gap. In addition,
we explore various techniques to improve the prediction accuracy
and the performance of prediction-based applications. We find
that selectively conducting a small number of measurements
based on prediction-based screening is most effective.

I. INTRODUCTION

In recent years, network distance (latency) prediction has
been proposed as an alternative to on-demand network mea-
surement. Distance prediction uses O(N) measurements of
Round Trip Time (RTT) to predict the N2 RTTs among N
nodes. It can be applied to improve the performance of a
wide variety of Internet applications, for instance, to guide
the selection of a download server from several replicas, or to
guide the construction of overlay networks or multicast trees.

Several approaches to predicting network distances
(e.g., [7], [8], [9], [16], [18], [29]) have been proposed. Most
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of these use synthetic coordinates in a geometric space to
characterize node locations in the Internet, and predict the
distance between two nodes as the distance between their
coordinates. Existing proposals for network distance prediction
have been shown to achieve a good overall prediction accuracy.
For example, the relative prediction error of GNP [16] can be
0.5 or less for up to 90% of predicted links.

Although the accuracy of existing prediction algorithms has
been extensively compared using the relative prediction error
metric, their impact on applications has not been systemati-
cally studied. Previous work has suggested using prediction
to guide the selection of nearby nodes [19], [24], [25], and
has shown performance gains over random selection. In this
paper, we will demonstrate that there still exists a significant
performance gap between prediction-based versions of the
applications and the optimal versions where the real distances
between nodes are known.

Specifically, we study three types of representative Internet
applications: overlay multicast, server selection, and overlay
construction. Our results suggest that entirely relying on pre-
dicted distances can lead to inferior application performance
due to the inaccuracy of the prediction. For instance, when
predicted distances are used to guide the construction of a
multicast tree, the cost of the tree can be several times higher
than that of the tree constructed based on real distances.
We show that this phenomenon is closely tied to the high
prediction error for short distances, which is found to be
intrinsic to existing prediction algorithms.

We formulate statistical models to analyze the impact of
the prediction error on the performance of the applications,
including nearest neighbor selection and multicast tree con-
struction. Our analysis reveals that, independent of the datasets
used in our evaluation, the performance gap between the
prediction-based versions of the applications and the optimal
versions is significant, given the accuracy of existing predic-
tion algorithms. The accuracy in selecting the shortest links
(or the closest neighbors) has a major impact on application
performance. However, existing prediction algorithms fail to
accurately predict short links.

After experimenting with various enhancements to exist-
ing prediction algorithms, such as smart landmark selec-
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tion [7] and alternative error functions, we find that selectively
conducting a small number of measurements based on the
prediction is most effective in improving the performance
of prediction-based applications. Specifically, the candidate
pool for the shortest link can be narrowed down based on
predicted distances, and then the shortest can be selected
based on measurements of the top candidates. Our evaluation
shows that selective measurement can bring the quality of the
predicted shortest link close to that of the actual shortest link,
and therefore allow the applications to perform comparably
to the optimal case. Moreover, with selective measurement,
recently proposed prediction algorithms (i.e., IDES [15] and
GNP [16]) perform similarly to each other. Even the simple
triangulated heuristic [11] proposed 11 years ago can achieve
a performance reasonably close to the more sophisticated
prediction algorithms.

The remainder of the paper is organized as follows. We first
give a brief overview of related work in section II. In sec-
tion III, we describe our evaluation methodology. We evaluate
the overall prediction accuracy of selected distance prediction
algorithms in section IV, and then evaluate the impact of the
prediction inaccuracy on overlay multicast in section V. We
formulate and analyze the propagation of distance prediction
error in section VI. We then study the selective measurement
mechanism and evaluate its effectiveness in remedying the
impact of prediction error in section VII. Section VIII studies
the impact of applying distance prediction on server selection
and overlay construction. We conclude the paper in section IX.

II. BACKGROUND

A number of systems have been proposed for network
distance prediction. The triangulated heuristic [11] estimates
network distance assuming that the triangle inequality holds.
Specifically, each node measures the distances to well-known
landmarks. The distance between two nodes can be lower
and upper bounded based on the triangle inequality; the lower
bound and upper bound can then be combined in various ways
to estimate the distance between the two nodes. In [19], each
node sorts the landmarks in order of increasing distances; two
nodes with the same landmark ordering can be estimated to
be close to each other. In [13], [26], a node coordinate is first
assigned as the distances to the landmarks; principal compo-
nent analysis (PCA) is applied to reduce the dimensionality of
the coordinates.

In GNP [16], the coordinates of the landmarks are first com-
puted by minimizing the error between the measured distances
and the estimated distances between the landmark nodes. An
ordinary host derives its coordinate by minimizing the error
between the measured distances and the estimated distances
to the landmarks. GNP uses the Simplex Downhill method
to compute node coordinates. NPS [17] builds a hierarchical
network positioning system based on GNP. In [7], different
strategies for choosing landmarks are studied, including using
random nodes, closest nodes, and a hybrid of both types. It
shows that choosing nearby nodes as landmarks can improve
the prediction accuracy for short links.

In Lighthouse [18], a new node can contact any nodes

already in the system to obtain a coordinate relative to these
nodes, and then convert this coordinate into the global coordi-
nate relative to the global landmarks through mapping between
coordinate spaces. Node coordinates are computed by solving
systems of linear equations.

In Mithos [28], the closest neighbors in the network are
selected as landmarks to compute the coordinate of a new
node, and this coordinate is assigned as the ID for the new
node. The spring relaxation technique is used to calculate
node coordinates. In [21], the Big-Bang simulation method is
used for embedding network distances in a multi-dimensional
space. In [22], the authors observe the curvature property of
the Internet and embed network distances in a hyperbolic space
with an optimal curvature. In [8], a new coordinate model that
consists of a Euclidean coordinate augmented with a height
value is proposed. This model is shown to better capture the
latency characteristics of the Internet.

In IDES (Internet Distance Estimation Service) [15], a
node is associated with both an incoming and an outgoing
coordinate vector; the distance between two nodes is estimated
as the inner product of the source’s outgoing vector and the
destination’s incoming vector. IDES is proposed to overcome
the limitations of the Euclidean space model, i.e., triangle
inequality and distance symmetry. Matrix factorization, i.e.,
Singular Value Decomposition (SVD) or Non-negative Matrix
Factorization (NMF), is used to compute node coordinates.

In contrast to coordinate-based prediction mechanisms,
IDMaps [9] exploits an infrastructure of servers and spe-
cialized hosts called tracers to provide distance estimation
service. The distance between two hosts is estimated as the
distance to their associated tracers plus the distance between
the two tracers. In [27], a set of specialized servers (mServers)
measure the distances between themselves; an ordinary host
measures the distances to these mServers and associates itself
with the closest one; the distance between two ordinary
hosts is estimated to be the distance between their assigned
mServers. For the purpose of scalability, the mServers are
organized into a cluster tree structure. Similarly in [5], hosts
are grouped into clusters based on several distance metrics;
the distance between a pair of hosts is estimated using intra-
and inter-cluster distance. Recently, Meridian [29] has been
proposed as a lightweight measurement-based framework for
performing node selection based on network location; it can be
used to address three commonly encountered node selection
problems, i.e., closest node discovery, central leader election,
and locating nodes satisfying target latency constraints.

Network distance prediction is potentially useful in many
Internet applications, e.g., building topology-aware overlay
networks and selecting the closest server [17], [19], [24], [25].
In a recent study [14], Lua et al. have observed the inadequacy
of the commonly used relative prediction error metric in cali-
brating the prediction quality. Alternative performance metrics,
such as relative rank loss and nearest neighbor loss, have been
introduced to better capture the prediction quality.
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III. EVALUATION METHODOLOGY

In this paper, we study the impact of using distance pre-
diction on Internet applications through both experimental
evaluation and theoretical analysis. In this section, we briefly
describe our evaluation methodology.

A. Distance Prediction Mechanisms

We have selected three distance prediction mechanisms,
i.e., the triangulated heuristic, GNP, and IDES, to conduct
the evaluations. (Due to space limitation, we omit the results
for other algorithms we have implemented, e.g., classical
multidimensional scaling.) We select these three because they
are representative in their classes. The triangulated heuristic
does not involve virtual coordinates; instead, the measured
distances to the landmarks are directly used for distance
estimation. GNP assigns a virtual coordinate for each node
based on measurements to the landmarks. In IDES, a node
is assigned two coordinates (incoming and outgoing) in order
to address the distance symmetry problem; in addition, the
distance between two nodes is computed using the inner
product of their coordinates to avoid the limitation of triangle
inequality. We compare the three prediction algorithms both
in terms of the overall prediction accuracy and the impact on
various applications. For each prediction mechanism, 20 nodes
are randomly selected as landmarks. The dimensionality of the
coordinate space is set to 10 for GNP and IDES.

In IDES, by default, each node computes its coordinate
based on the measured distances to and from the landmarks.
Given any dimension, the optimal coordinates can be derived
by factorizing the full distance matrix between all node pairs.
Although the full distance matrix is unavailable in practice,
the prediction from the optimal IDES coordinates indicates
the best accuracy that these three prediction systems can
achieve. Therefore, we plot the results from the optimal IDES
coordinates, referred to as “IDES optimal”, in some of our
graphs for comparison, while the results from the default IDES
prediction are simply labeled as “IDES”.

B. Internet Latency Datasets

We use three Internet latency datasets based on real-
world measurements. The first dataset (“King” dataset) is
from the P2PSim [2] project. It contains the pair-wise RTTs
between 1143 Internet DNS servers measured using the King
method [10]. (The original dataset contains more than 1143
servers but we exclude servers with incomplete measurements
in order to have a complete distance matrix.) The DNS servers
were obtained from an Internet-scale Gnutella network trace.
The average RTT between a node pair is about 144 ms and the
maximum is about 971 ms. The second dataset (“PlanetLab”
dataset) contains the pair-wise RTTs between 169 PlanetLab
nodes [23]. The average RTT is about 106 ms and the
maximum is about 1005 ms. The third dataset (“AMP” dataset)
is from the NLANR Active Measurement Project [1]. The 110
nodes in this dataset are connected to the high performance
connection (HPC) networks. The average RTT is about 55 ms
and the maximum is 373 ms.

Due to space limitation, we only show representative eval-
uation results from the three prediction mechanisms and the
three latency datasets. Interested readers should refer to an
extended version of this paper [30] for complete results.

IV. EVALUATION OF DISTANCE PREDICTION ACCURACY

In this section, we evaluate the performance of GNP, IDES,
and the triangulated heuristic in predicting network distances.
We measure the prediction accuracy using the relative pre-
diction error, which is defined as:

abs(predicted distance − measured distance)
measured distance

We first investigate the results over the King dataset. Fig. 1
shows the cumulative distribution function (CDF) of the rela-
tive prediction error. The three prediction algorithms achieve
similar prediction accuracy, although the IDES optimal coor-
dinates are more accurate. Fig. 2 shows the average prediction
error over links of various latencies. We can see that the
shortest links have the highest prediction error. Although the
IDES optimal coordinates generate more accurate predictions
for longer links, the predictions for links below 20 ms are
equally inaccurate.

The relative prediction error reflects the magnitude of the
prediction error. We want to take a closer look at the de-
gree of underestimation or overestimation by the prediction
algorithms. Therefore we measure the directional relative
prediction error, which is defined as:

predicted distance − measured distance

measured distance

Fig. 4 and 5 plot the directional prediction error of IDES and
IDES optimal respectively. The results from the triangulated
heuristic and GNP are similar to those from IDES (Fig. 4).
In this experiment, the links are first grouped based on their
distances; the ith group covers the distance range [50i, 50(i+
1)). For links within each group, we measure the 10th, 25th,
50th, 75th, and 90th percentile of the directional prediction
error. We observe that short links are likely to be overestimated
and long links are likely to be underestimated. Moreover, the
shortest links are overestimated to similar degrees by IDES
and IDES optimal.

Prediction inaccuracy, especially the high prediction inac-
curacy for short links, makes it difficult to correctly select
the closest node. Fig. 3 shows for each node the distance to
the closest node selected based on IDES prediction, versus
the distance to the actual closest node. The results are sorted
in ascending order of the real distance to the actual closest
node. The real distance to the IDES selected closest node can
be substantially higher. On average, the real distance to the
actual nearest node is 3 ms; the real distance to the closest
node selected based on IDES, however, is 117 ms. The results
for GNP and the triangulated heuristic are similar.

The prediction accuracy of the three prediction algorithms
over the PlanetLab dataset is similar to that over the King
dataset. Fig. 6 measures the prediction accuracy of the three
prediction algorithms over the NLANR AMP dataset. In
contrast to the King and PlanetLab datasets, the AMP dataset
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Fig. 6. CDF of relative prediction error (AMP)

can be predicted with high accuracy, even for short links
(see [30]). One possible explanation is that the distances in
the AMP dataset lie inside a small range with a maximum
distance of 373 ms, as opposed to around 1000 ms for the
King and PlanetLab datasets. Note that the three prediction
algorithms perform equally well for the AMP dataset.

In summary, the prediction accuracy of a distance prediction
algorithm can vary widely for different datasets. In addition,
for each of the three latency datasets, the differences between
the three prediction algorithms (GNP, the default IDES, and
the triangulated heuristic) are minor in terms of the overall
prediction accuracy. In the rest of the paper, we study the
effects of the prediction inaccuracy on the performance of
Internet applications.

V. EVALUATION OF THE IMPACT OF PREDICTION

INACCURACY ON OVERLAY MULTICAST

The first application we investigate is overlay multicast. Our
goal is to answer the following question: how good is an over-
lay multicast tree constructed based on predicted distances,
compared to the tree constructed based on measurements?

There exists a rich body of work on overlay multicast
(e.g., [3], [4], [6], [12]). An overlay multicast algorithm
usually seeks to optimize some performance metric or a com-
bination of metrics. Since our problem domain is distance pre-
diction, we only consider the latency metric here. Compared
to other applications, the performance of overlay multicast is
potentially more sensitive to the prediction inaccuracy. For
instance, a mistake made earlier in building the tree can
potentially alter the entire tree topology.

To focus on the impact of distance prediction rather than
the artifacts of any particular multicast algorithm, we study

three simple, abstract algorithms for overlay tree construction:
minimum spanning tree (MST), modified ESM [12], and
LGK [4]. The MST is constructed using Prim’s algorithm.
We selected MST for our study because it reflects the ability
to correctly select the shortest links in the network by the
distance prediction mechanism.

The modified ESM algorithm is a variant of the broadcast
ESM protocol [12]. Specifically, a new node to join a multicast
tree obtains a partial list of on-tree nodes, and selects one
of them as its parent. The parent selection algorithm in [12]
chooses the shortest widest path to an on-tree node. We do not
consider link capacity or node degree here, and hence a new
node selects the closest node in the partial list as its parent.
In our evaluation, each new node uses a random sampling of
30 on-tree nodes [12].

The third algorithm, LGK [4], constructs a k-ary tree by
exploring node location information. First, the root of the
multicast tree selects the closest k nodes as its direct children
on the tree. Next, the rest of the nodes are grouped with the
k children according to proximity: each remaining node is
assigned to the closest of the k children. Ties are broken by
load balancing: the node is assigned to the smallest group.
In this way, each of the k children is the root of a sub-tree
consisting of those nodes close to it. The multicast tree is
formed as each subtree repeats the two steps of child selection
and clustering. It has been shown that k = 2 gives the
best tradeoff between the delivery delay and overhead of the
multicast tree.

We believe that the above three algorithms capture the two
essential building blocks of most overlay multicast protocols,
namely, shortest link selection and proximity-based clustering.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.



For example, LGK shares several features with the NICE
protocol [3]: both build the multicast tree through recursive
clustering of closest nodes.

A. Evaluation Metrics

We use the tree cost to measure the overlay tree quality
for the MST and modified ESM algorithms. The tree cost is
defined as the sum of the latencies over all tree links. This
metric measures the error in identifying the shortest links
based on predicted distances, either from all the candidate
links (for the MST algorithm) or from a random candidate pool
(for the modified ESM algorithm). The LGK algorithm aims
to optimize the delivery delay instead of the overall cost of the
multicast tree. Therefore, we use the delay stretch to measure
the latency property as perceived by the on-tree nodes. Delay
stretch is defined as the ratio of the delay on the overlay
multicast tree and the delay of the direct unicast path between
the root and a tree node. Note that the delay stretch metric
is highly sensitive to the overlay tree topology, including the
depth of the tree. With all other settings equal, using a different
distance prediction mechanism is most likely to generate a
completely different tree topology. Although it is difficult to
quantify this impact of distance prediction, delay stretch allows
us to measure the overall impact on the performance of the
overlay multicast tree that might be experienced by the users.

B. Evaluation Results

We first report the results of building overlay trees using
distance prediction based on the King dataset. For each tree
size n, the tree construction experiment is repeated 100 times,
each time with n nodes randomly selected from the dataset.
The reported results are averaged over the 100 runs.

Fig. 7 shows the cost of MSTs built using real distances
and GNP predicted distances (labeled “measured” and “GNP”
respectively). The cost of GNP-based MSTs grows at a much
higher rate as the tree size increases from 50 to 400. Fig. 8
plots the cost of overlay trees built by the modified ESM
algorithm (labeled “measured” and “GNP”). The cost of GNP-
based trees again grows at a high rate. Note that the MST
algorithm produces trees with comparable qualities to the
modified ESM algorithm when GNP predicted distances are
used. Fig. 9 shows the average on-tree delay stretch for the
LGK algorithm (labeled “measured” and “GNP”). The delay
stretch of LGK trees built based on prediction is more than
twice that of LGK trees built based on measurement.

Overall, these results demonstrate that multicast trees con-
structed under the guidance of predicted distances can be
dramatically worse than trees constructed under the guidance
of measured distances. In section IV, we have shown that
short links tend to be overestimated. We are now interested in
quantifying the impact of the high prediction error for short
links on overlay tree construction.

We enhance each multicast algorithm with an oracle that
can tell the exact latencies for short links below a certain
threshold. The results are also reported in Fig. 7, 8, and 9.
In these figures, “shortest10” and “shortest50” indicate that
the latencies are precisely predicted by the oracle for all links

under 10 ms and 50 ms respectively. The links with latencies
under 10 ms account for 7% of all links; the links with
latencies under 50 ms account for 17% of all links. For the
MST and LGK algorithms, eliminating the prediction error
for links under 50 ms makes prediction-based trees almost as
good as measurement-based trees. The same effect is not as
notable for the ESM algorithm. In ESM, each node selects the
closest out of at most 30 candidates to be its parent. The small
candidate pool makes the oracle less effective since many of
the candidate links might be above 10 ms or 50 ms.

Fig. 10-12 report the results of applying IDES prediction
and the triangulated heuristic with the three tree construction
algorithms. As before, we observe severe degradation of the
tree quality, even with the optimal IDES coordinates. Experi-
ments from adding the oracle produce results (not shown here)
that are similar to the “shortest10” and “shortest50” curves in
Fig. 7-Fig. 9.

Experiments with the PlanetLab dataset yield results similar
to the King dataset, i.e., using prediction alone generates
overlay trees that are significantly worse. Fig. 13-15 show
the results for the AMP dataset. Although prediction-based
overlay trees also experience certain deterioration in terms
of the total tree cost or delay stretch, the differences from
measurement-based trees are small. For instance, the increase
in the cost of MSTs is below 50% using the three prediction
algorithms, which is probably acceptable in practice.

In summary, experiments over the three Internet latency
datasets suggest that the performance of overlay multicast
trees built based on predicted distances is dependent upon
the distance prediction accuracy, especially the prediction
accuracy of short links. Our study also indicates that, from
the application’s perspective, there is no clear winner among
the three prediction mechanisms; in some cases, the simple tri-
angulated heuristic is almost as good as the more sophisticated
GNP and IDES algorithms.

VI. ANALYSIS OF THE IMPACT OF PREDICTION

INACCURACY

In this section, we analyze the impact of the inaccuracy of
distance prediction on applications.

A. Analysis of the Impact of Prediction Inaccuracy on Nearest
Neighbor Selection

First, we analyze the quality of the nearest neighbor selected
by distance prediction algorithms. Suppose node N wants to
choose the nearest node out of a set M of nodes, and |M| = k.
For each node M ∈ M, let XM be the random variable that
denotes the actual distance between node M and node N in
the Internet, and let YM be the random variable that denotes
the predicted distance between node M and node N . Among
the k nodes in M, let A denote the actual closest node to
N , and B denote the closest node selected by the distance
prediction algorithm. The error introduced by the distance
prediction algorithm is then

Z(k) � XB − XA, (1)

which is again a random variable and Z(k) ≥ 0. Let hk(·)
denote the probability density function (PDF) of Z(k). As we
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tion (King)
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Fig. 9. Delay Stretch (LGK) based on GNP
prediction (King)
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Fig. 10. Tree cost (MST) based on IDES and
triangulated heuristic (King)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 50  100  200  400

tr
ee

 c
os

t

tree size

IDES
IDES optimal

triangulated
measured

Fig. 11. Tree cost (ESM) based on IDES and
triangulated heuristic (King)
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Fig. 12. Delay stretch (LGK) based on IDES
and triangulated heuristic (King)
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Fig. 14. Tree cost (ESM) based on prediction
(AMP)
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Fig. 15. Delay stretch (LGK) based on predic-
tion (AMP)

will soon see, the function hk(·) depends on the size k of
the candidate set, the distribution of real distances, and the
distribution of predicted distances.

We next describe our models for the distribution of real
distances and the distribution of predicted distances. (We will
specify particular forms for these distributions in section VI-
C based on real measurement data, but our analysis also
applies to the general model.) We assume that each node is
independently and identically distributed in the space. For an
arbitrary node in M, random variable X denotes the actual
distance to node N . Let f(x), x ≥ 0 denote the PDF of
X . Random variable Y denotes the predicted distance from
this node to node N . We assume that prediction errors are
independent. Let g(y|d) denote the PDF of Y given that
X = d. In Fig. 16, we draw g(y|d) according to a Gaussian
distribution, but again our analysis is generic and applies to
other distributions as well.

Recall that node A is the actual closest neighbor to node
N among the k nodes in M. Since we assume that the actual

distances from these k nodes to node N are independent from
each other, we obtain the PDF of the real distance between N
and its closest neighbor A as

pk
A(xA) = k · f(xA) · (Pr[X > xA])k−1, (2)

where

Pr[X > s] =
∫ ∞

s

f(x)dx (3)

is the probability that an arbitrary node in M is at more
than s distance away from N . In Equation (2), we ignore the
probability that some nodes in M are at the same distance
to N . For any practical f(x) and constant k, this probability
is a high-order term that has no impact on the results of our
analysis.

Assume that the real distance between A and N is XA = s,
s ≥ 0, and there is another node B ∈ M, B �= A that is at
a distance XB = s + e, e > 0 away from N . Thus, closest
neighbor selection introduces an error of e if it mistakenly
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Fig. 16. The distribution of predicted distances between node pairs (N, A),
(N, B), and (N, C) respectively. The peaks of the bell shapes are the real
distances between (N, A), (N, B), and (N ,C) respectively. Node B will be
mistakenly predicted as the closest node to N if the sample of the predicted
distance for B is the smallest among the three samples (see the dots in the
figure).

chooses B as the closest node to N . Next, we calculate the
probability for this to happen given XA = s and XB = s+ e.
Fig. 16 is an illustration of the analysis process.

Given XB = s + e, the PDF of YB , i.e., the predicted
distance between N and B, is given by

g(w|(s + e)), (4)

where w denotes the predicted distance between N and B.
The neighbor selection algorithm chooses B as the closest
node to N only if w is smaller than YA, the predicted distance
between N and A. Hence, given XA = s and YB = w, the
probability that B appears to be a closer neighbor than A
based on predicted distances, is given by

Pr[YA > w|XA = s] =
∫ ∞

w

g(yA|s) dyA. (5)

For any other node C ∈ M, C �= A and C �= B, the
real distance between N and C must be larger than the
real distance between A and N . Hence, given XA = s, the
conditional PDF of XC , i.e., the real distance between N and
C, is given by

fC(xC |XC > s) =
f(xC)

Pr[X > s]
, xC > s. (6)

The prediction algorithm chooses B as the closest node to N
only if w is smaller than YC , the predicted distance between
N and C. Given XC = r and YB = w, the probability that C
appears to be further away than B in the prediction space is,

Pr[YC > w|XC = r, YB = w] =
∫ ∞

w

g(yC |r) dyC .

Let PfarB(s, w) denote the probability that C appears to be
further away than B in the prediction space conditioned on
YB = w and XA = s. Then,

PfarB(s, w) = Pr[YC > w|YB = w,XA = s]

=
∫ ∞

s

f(r)
Pr[X > s]

∫ ∞

w

g(yC |r) dyC dr. (7)

Combining Equations (4), (5), and (7), and noting that there
are k − 2 nodes in M other than A and B, we obtain the
probability that B is chosen by the prediction algorithm as the
closest node to N conditioned on XA = s and XB = s + e:

PselB(s, e) = Pr[select B|XA = s,XB = s + e]

=
∫ ∞

−∞
g(w|s + e) · Pr[YA > w|XA = s]

·{PfarB(s, w)}k−2 dw. (8)

We next remove the conditioning on XB . Given XA = s,
the real distance between N and B must be larger than s since
A is the closest node to N . The conditional PDF of XB , i.e.,
the real distance between N and B, is thus given by

fB(xB |XB > s) =
f(xB)

Pr[X > s]
, xB > s. (9)

Noting that any of the k − 1 nodes in M other than A
can take the role of B in the above analysis, and combining
Equations (8) and (9), we have the PDF of introducing error
e when selecting the nearest neighbor from a candidate pool
of size k conditioned on XA = s as:

hk(e|XA = s) = (k − 1)PselB(s, e)fB(s + e|XB > s).

Hence, using Equation (2),

hk(e) =
∫ ∞

0

hk(e|XA = s)pk
A(s) ds. (10)

Finally, the expectation of the error Z(k) in nearest neighbor
selection is then,

E[Z(k)]

=
∫ ∞

0

e · hk(e) · de

=
∫ ∞

0

de

{
e

∫ ∞

0

ds

{
k(k − 1)f(s)f(s + e)

·
∫ ∞

−∞
dw

{
g(w|s + e)

{∫ ∞

w

dl · g(l|s)
}

·
∫ ∞

s

dr

{
f(r)

{∫ ∞

w

dl · g(l|r)
}}k−2

}}}
, (11)

which is a function of the size k of the candidate pool, the
distribution f(x) of real distances, and the distribution g(y|d)
of predicted distances.

B. Analysis of the Impact of Prediction Inaccuracy on Overlay
Multicast

In this section, we analyze the quality of multicast trees
created under the guidance of distance prediction algorithms.
As a baseline for comparison, we first analyze the tree cost for
the modified ESM protocol with two assumptions: (i) the real
distance between any two nodes is known; (ii) a new node has
full knowledge of all the on-tree nodes. Let random variable
T (n) denote the cost of an n-node tree built by this protocol.
Below we calculate the expectation of T (n).
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Let random variable D(k) denote the real distance between
a node N and its nearest neighbor selected out of k random
nodes. According to Equation (2), the expectation of D(k) is

E[D(k)] =
∫ ∞

0

s · pk
A(s) ds. (12)

During the process of building an n-node tree, nodes are
added into the tree one by one. On average, each step increases
the tree cost by E[D(k)]. Therefore, the expectation of the tree
cost T (n) is

T (n) =
n−1∑
k=1

E[D(k)], (13)

where n is the number of nodes in the tree.
In a prediction-based version of the baseline protocol, a

new node N has no knowledge of the real distances between
itself and the on-tree nodes. Instead, node N predicts the
distances to the on-tree nodes and selects the node that has the
shortest predicted distance as its parent. Suppose the current
tree consists of k nodes. When N joins, it adds a link that
is on average E[Z(k)] (see Equation (11)) longer than the
actual shortest link between N and an on-tree node. Therefore,
compared to the baseline protocol where real distances are
known, this prediction-based protocol introduces an additional
tree cost of

∑n−1
k=2 E[Z(k)], and results in a total tree cost of

T
′
(n) = T (n) +

n−1∑
k=2

E[Z(k)]. (14)

C. Models for Network Distances

The analysis in section VI-A represents real distances and
predicted distances as random variables X and Y with PDF
f(x) and conditional PDF g(y|d), respectively. The estimation
of f(x) and g(y|d), however, can be challenging. On the one
hand, sophisticated models with a large number of parameters
may approximate measured and predicted distances more
accurately. On the other hand, overly sophisticated models can
be a barrier for understanding the analysis results. Our goal
here is to develop simple models that approximate the real
data reasonably well.

Fig. 17(a)-(c) plot the CDF of the measured latencies for
the three datasets. To make the figures readable, we cut off
the latency on the x-axis at a certain level, i.e., excluding
extremely long latencies from the figures. Despite the fact
that the distribution of Internet latency is sophisticated, these
figures surprisingly suggest that the latency distribution is
close to a uniform distribution (note that an ideal uniform
distribution should be a straight line across the diagonal of
the figure). We therefore assume a uniform distribution for
f(x).

f(x) =
{

1/H if 0 ≤ x ≤ H
0 otherwise

(15)

The uniform distribution cannot model outliers with latencies
longer than H , but this error is tolerable since the fraction of
outliers is small and the applications we consider—server se-
lection, application-level multicast, and overlay construction—
tend not to use those outliers with long latencies.
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Fig. 17. CDF of measured network distances

Substituting Equations (15), (2), and (3) into Equation (12),
we obtain the expectation of the distance to the nearest
neighbor in a candidate pool of size k.

E[D(k)] =
H

1 + k
(16)

Equation (16) indicates that, for even a medium k, the
distance to the nearest neighbor is short. Given the fact that
existing prediction algorithms are not good at estimating short
distances, prediction alone cannot choose the nearest neighbor
with a high accuracy.

Substituting Equation (16) into Equation (13), we obtain the
expectation of the cost of a tree with n nodes.

T (n) =
n−1∑
k=1

E[D(k)] =
n−1∑
k=1

H

1 + k
(17)

Next, we develop a model for predicted distances. One
natural model for prediction error is the Gaussian distribution

g(y|d) =
1

σd

√
2π

exp{−(y − µd)2

2σ2
d

}, (18)

where µd and σd are functions of d. To further simplify the
model, we assume

µd = d + c (19)

σd = σ, (20)

where both c and σ are constants. We introduce the bias c
because we observe that existing prediction algorithms tend
to overestimate the distances over the range being considered
here (c > 0).

Fig. 18 shows the matching between the Gaussian model
and the predicted distances. The y axis is the CDF of distance
prediction error. The “real distribution” curve plots the differ-
ence between real distances and predicted distances by IDES
(using the King dataset). The Gaussian distribution in this fig-
ure corresponds to the function g(z) = 1

σ
√

2π
exp{−(z−c))2

2σ2 },
where σ = 22 and c=2.29 (see Equation (18) and note that
z = y − d is the prediction error). This figure suggests that
the Gaussian model accurately captures the distribution of
prediction error.

D. Numerical Solutions

As Equations (11), (13), and (14) cannot be calculated di-
rectly, we use the Monte Carlo method to develop an approxi-
mate solution for a given configuration. For each configuration,
our program generates 1,000,000 different instances for node
N and the candidate neighbor pool, and then computes the
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sampled values for real distance X and predicted distance Y .
Our program varies the standard deviation σ and the size k of
the candidate pool, while fixing H = 300 ms (Equation 15)
and c = 2.29 ms (Equation 19). Fig. 19-22 show the impact
of the inaccuracy of distance prediction on nearest neighbor
selection and overlay multicast. The curves correspond to
results extracted from Equations (11), (13), and (14).

The standard deviation σ indicates the accuracy of distance
prediction, which varies with different datasets. We have
measured the value of σ for the three prediction algorithms
over the three distance datasets. Using the IDES prediction,
30 < σ < 50 for the King dataset and the PlanetLab dataset,
and 8 < σ < 15 for the AMP dataset. σ also varies with
different choices of landmark nodes. The tree cost curves
in Fig. 21 under the corresponding σ values for the various
datasets show similar trends as the simulation results in the
previous section (e.g., Fig. 10-11 and Fig. 13-14). In addition,
these analysis results confirm that, independent of the datasets
used in our evaluations, given the accuracy of existing predic-
tion algorithms, the performance gap between the prediction-
based versions of the applications and the measurement-based
versions is significant.

VII. SELECTIVE MEASUREMENTS

In the previous sections, we have evaluated and analyzed
the impact of network distance prediction on overlay multicast.
Our study suggests that it is not advisable to solely rely on net-
work distance prediction in building an overlay multicast tree,
especially due to the high prediction error for short distances
and thus the high error in selecting the shortest links. We have

studied several enhancements to existing distance prediction
algorithms, including smart landmark selection [7], varying the
distance function and error function, and alternative techniques
to extract information from the measured distances (e.g.,
classical multidimensional scaling, neural networks, and linear
regression). (Detailed results are omitted here due to limited
space.) Although some of these enhancements improve the
prediction accuracy in certain cases, our experiments indicate
that they cannot fundamentally shrink the performance gap be-
tween the prediction-based applications and the measurement-
based applications.

One natural solution is to combine measurement with dis-
tance prediction. Then the question becomes how many and
which links to measure. In this section, we present a selective
measurement scheme that selectively performs a small number
of measurements to help choose the shortest links.

We first evaluate the ranking accuracy [16] of all
three prediction mechanisms to demonstrate that prediction
alone cannot rank the short links accurately. Assume that
PredictedLinksp and MeasuredLinksp denote the shortest
p links (p stands for a percentage) selected based on pre-
dicted distances and measured distances respectively. Ranking
accuracy is defined as |PredictedLinksp ∩ MeasuredLinksp|

|MeasuredLinksp| ,
where |X| denotes set X cardinality. Fig. 23 plots the ranking
accuracy as p varies from 0.01% to 50%. We observe that the
ranking accuracy for the shortest 5-10% links is fairly high
(around 50%).

Based on this observation, we devise a selective measure-
ment scheme as follows: each time the shortest link is to be
selected, we can first narrow down the candidates by selecting
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a small number of links with the lowest predicted latencies,
and then measure the actual latencies for those links to identify
the best one. In the simplest form, the number of measured
links can either be a constant m or a constant fraction p (e.g.,
5-10%) of the total candidate links.

A. Evaluation of Selective Measurement in Overlay Multicast

In this section, we evaluate the impact of selective mea-
surement on the quality of multicast trees constructed based
on predicted distances. For the MST algorithm, the original
candidate pool contains all links from the on-tree nodes to the
remaining nodes. The amount of measurements is bounded by
m(n − 1) if a constant number m of links are selected each
time. We also experiment with measuring a uniform fraction
p of the candidate links, which requires p

∑n−1
i=1 i(n− i) total

measurements. For the ESM algorithm, the candidate pool for
a new node is defined by the random subset of on-tree nodes.
The total number of measurements is m(n − 1), if each new
node is allowed m measurements. For the LGK algorithm,
during the k closest nodes selection step, the candidate pool
includes all the nodes in the subtree rooted at the current node
(subtree root). The total number of measurements varies with
the height of the tree (O(logkn)).

Fig. 24 depicts the impact of applying selective mea-
surement with GNP prediction on the MST algorithm. We
evaluate two selective measurement schemes: in the “uniform”
scheme, the 5% predicted shortest links from the candidate
pool are selected for measurement; in the “constant” scheme,
the 20 predicted shortest links are measured. We can see that
selectively measuring 5% shortest links can achieve tree costs
close to using pure measurement, and this scheme works well
for all tree sizes. On the other hand, the “constant” scheme
is not as effective for larger trees as the “uniform” scheme.
This can be explained by the larger candidate pools as the
tree size increases, since it is more difficult to make the right
selection for a smaller selection ratio (Fig. 23). Nevertheless,
even the “constant” scheme can reduce the tree cost growth
rate by about 50%.

For the ESM algorithm, the selective measurement scheme
selects the predicted closest 10 out of the 30 random sub-
set of on-tree nodes for measurement. Fig. 25 shows that
this configuration can bring the tree cost to near that of
measurement-based trees. Fig. 26 gives the results of using
selective measurement with the LGK algorithm. During the k-
children selection, the 20% closest nodes based on predicted
distances are chosen for measurement.

Fig. 27-29 show the effectiveness of applying selective
measurement with the triangulated heuristic. The results from
applying selective measurement with the IDES prediction
are similar (see [30]). Our experiments indicate that, when
combined with selective measurement, there exist no signif-
icant performance differences between the three prediction
mechanisms from the perspective of the application.

VIII. USING DISTANCE PREDICTION IN SERVER

SELECTION AND OVERLAY CONSTRUCTION

Thus far, we have studied the impact of using network
distance prediction on overlay multicast. In this section, we

investigate the impact of distance prediction on server selec-
tion and overlay construction.

A. Server Selection

First, we consider the problem of server selection and mea-
sure the selection accuracy using predicted distances against
using measured distances. Specifically, we randomly select a
number of nodes from each trace as the servers, and measure
the stretch of using prediction to select the closest server.
The stretch is defined as the distance to the closest server
selected based on prediction, divided by the distance to the
actual closest server.

Fig. 30 shows the average stretch using GNP, IDES, and
the triangulated heuristic over the King dataset. Although
using prediction can reduce the stretch considerably compared
to random selection, the results are far from optimal. For
instance, the average stretch is above 3.65 when selecting
from 32 servers and above 5.71 from 64 servers using IDES
prediction. The stretch is even higher for the PlanetLab dataset
(details in [30]). In contrast, for the AMP dataset (Fig. 32),
the stretch is below 2.6 for up to 40 servers. These results
closely match the analysis results on nearest neighbor selection
(curves with corresponding values of σ in Fig. 20). We can
see that the benefit from using distance prediction for server
selection is also highly sensitive to the prediction accuracy.
Similar to overlay multicast tree construction, server selection
can also benefit from selective measurement. For example, if
we allow 10 measurements based on the prediction (refer to
Fig. 31), we find that the stretch is closest server selection can
be reduced by more than 50%.

B. Overlay Construction

In this subsection, we study the impact of using distance
prediction on building overlay networks, including both un-
structured and structured overlay networks. We use the results
from the King dataset in our discussion.

We first investigate building unstructured overlays using
predicted distances. Our overlay construction protocol is sim-
ilar to the protocol proposed in [24]. Specifically, each node
maintains a number of random links to other nodes, and a
number of links to nearby nodes. In our experiment, each
node is connected to one randomly selected node. A previous
study [24] has shown that this configuration is sufficient to
guarantee the connectivity of the overlay network with a very
high probability. In addition, each node maintains up to 6
neighbors that are close in terms of network distance. We
measure the cost of the overlay, which is defined as the sum
of the cost over all overlay links. The results are reported in
Fig. 33. From the figure, prediction-based overlays have much
higher costs than measurement-based overlays. For overlays
of 1000 nodes, the total cost is increased by approximately 3
times using GNP or IDES prediction, and by about 4 times
using the triangulated heuristic. Fig. 34 illustrates the effects of
applying selective measurement with the prediction, in which
the 20 predicted closest nodes are measured each time the
close neighbors are selected. A comparison of Fig. 33 and
34 shows that selective measurement dramatically reduces the
overlay cost.
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Fig. 24. Tree cost (MST) based on GNP with
selective measurement (King)
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Fig. 25. Tree cost (ESM) based on GNP with
selective measurement (King)
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Fig. 26. Delay stretch (LGK) based on GNP
with selective measurement (King)
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Fig. 27. Tree cost (MST) based on triangulated
heuristic with selective measurement (King)
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Fig. 28. Tree cost (ESM) based on triangulated
heuristic with selective measurement (King)
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Fig. 29. Delay stretch (LGK) based on triangu-
lated heuristic with selective measurement (King)

In order to study the impact of distance prediction on struc-
tured overlays, we construct Pastry [20] networks based on
predicted distances. In Pastry, each node maintains a routing
table based on node identifier prefixes. When there is more
than one node satisfying the identifier prefix constraint, the
closest in terms of network distance can be selected (referred
to as “proximity-awareness”). For each Pastry overlay of size
n, n Ping messages are sent from randomly selected source
nodes towards randomly selected destinations. Fig. 35 reports
the average routing delay stretch when the Pastry overlay is
constructed using measured distances and predicted distances
respectively. The routing delay stretch is defined as the delay
along the overlay routing path divided by the delay of the
direct path from the source to the destination. The results
suggest that distance prediction works well in Pastry-like
structured overlay construction, as the increase in the routing
delay stretch is below 20%. The intuition behind this is as
follows. In Pastry, the latency of the last routing hop dominates
and the choices for the last hop routing are only a few at best.
Therefore, the prediction algorithms can do well in selecting
the shortest one from them. Our experiments with unstructured
and structured overlays further confirm that the outcome of
selecting the shortest links based on prediction varies with the
size of the candidate pool. All the three prediction mechanisms
work well when the candidate pool is small (as in structured
overlay construction).

IX. CONCLUSION

In this paper, we have considered Internet distance predic-
tion from an application’s perspective. We have studied the
impact of the inaccuracy of distance prediction algorithms
on Internet applications by systematically experimenting with
three types of representative applications (overlay multicast,

server selection, and overlay construction), three distance pre-
diction algorithms (GNP, IDES, and the triangulated heuristic),
and three Internet distance traces (King, PlanetLab, and AMP).
We have also developed an analytic framework to aid in
understanding the impact of the distance prediction error on
the application’s performance.

Our major findings can be summarized as follows.
• Existing distance prediction algorithms are inadequate for

the applications in terms of the prediction accuracy. The
performance of the prediction-based versions of the appli-
cations can be significantly worse than the measurement-
based versions.

• Both our analytical and experimental results suggest that
the prediction accuracy for short links has a major impact
on application performance. Unfortunately, existing pre-
diction algorithms are found to be inaccurate in predicting
these short links.

• Combining selective measurement with distance predic-
tion is very effective in improving application perfor-
mance. When selective measurement is used, we have
observed no major performance differences between the
selected distance prediction algorithms, and the choice of
the prediction algorithm itself becomes less important.

One possible direction for our future work is to study more
advanced distance prediction algorithms for improving the
prediction accuracy. We are also interested in solving practical
issues with distance prediction such as those discussed in [17].
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