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Abstract—This paper develops a novel business model to enable
virtual storage sharing among a group of users. Specifically, an
aggregator owns a central physical storage unit and virtualizes
the physical storage into separable virtual storage capacities that
can be sold to users. Each user purchases the virtual storage
capacity, and schedules the charge and discharge of the virtual
storage to reduce his peak power consumption. We formulate the
interaction between the aggregator and users in each operation
horizon as a two-stage problem. At the beginning of the operation
horizon, the aggregator first determines the unit price of virtual
storage capacity to maximize her profit in Stage 1, and users
decide the capacities to purchase and the storage scheduling
during the operation horizon in Stage 2. Since the closed-form
solution is not available and the decisions are coupled across the
two stages, we characterize the solutions of the two-stage problem
based on parametric linear programming. Simulation results
show that compared to the case where each user acquires his
own physical storage, storage virtualization reduces the overall
physical capacity needed for all users by 34.9%, and the overall
physical power rating by 45.1%.

I. INTRODUCTION

Energy storage is becoming a crucial element to ensure the
stable and high performance of the new generation of power
system. While the benefits of the energy storage at the grid side
have been well-recognized (e.g., for generation backup, trans-
mission support, voltage control, and frequency regulation) [1],
there is also an increasing interest to leverage energy storage at
the end-user side to store energy from distributed generations,
shave the peak load, and reduce the electrical bill [1]. Because
of this, some recent storage products such as Tesla Powerwall
have emerged targeting at residential customers [2], but often
with a price tag that is quite high [3]. As such a consumer
storage product can last for years, it can be challenging for a
user to decide the optimal storage sizing due to the uncertainty
of future energy demand. This further discourages the user to
purchase such a product and enjoy the benefit. This motivates
us to study the following key problem: What would be an
economical business model that promotes efficient utilization
of the storage by end users?
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The business model for end-user storage deployment is
relatively under-studied in the literature. Most of the prior
results considering storage-based demand management (e.g.,
[4]) assumed that users own the storage. They did not consider
the impact of high storage cost on users’ decisions. Studies in
[5], [6] considered central storage platforms shared by a group
of users. AlSkaif et al. in [5] designed a reputation-based
policy to allocate energy in the storage to users. Mediwaththe
et al. in [6] proposed a framework enabling users to trade
energy with the central storage. Both [5] and [6] assumed that
users need to have local renewable generations in order to
share the energy in the storage. Furthermore, none of the above
literature developed a clear business model for allocating
central storage resources to users.

In this paper, we develop a business model that enables users
to effectively share a central storage unit. We draw an analogy
to the practice of cloud service providers, where users share the
computing resources in a virtualized fashion [7]; in the power
system, we can also envision that an aggregator owns and
operates a central physical storage unit, who then virtualizes
the storage into separable virtual storage capacities and sells
them to different users. Specifically, we divide the time into
many operation horizons. At the beginning of each operation
horizon, the aggregator sets the unit price of the virtual
capacity, and users decide their choices of the virtual capacities
as well as storage charge and discharge schedules during
the operation horizon. Users report their decisions to the
aggregator, and the aggregator dispatches the central storage
for them accordingly. Across different operation horizons, the
aggregator and users can update their decisions. We formulate
a two-stage problem for the interaction between the aggregator
and users in each operation horizon, where the aggregator
maximizes her profit and users minimize their costs. We will
demonstrate that virtualization of storage will lead to more
efficient use of the physical storage capacity, compared with
the case where each user acquires his own physical storage.

The contributions of this paper are as follows:
• Storage virtualization: In Section II, we develop a virtual

storage sharing framework. To the best of our knowledge,
this is the first work that considers the virtualization of
the central storage and allocates virtual storage capacities
to serve users through a pricing mechanism.

• Modelling and solution method: In Section II, we model



the interaction between the aggregator and users as a
two-stage problem. However, the decisions across the
two stages are coupled, and it is also difficult to derive
users’ closed-form decisions in Stage 2. In Section III, we
characterize the solutions of the two-stage problem based
on the theory of parametric linear programming. We also
propose a penalty term to resolve the multi-optima issue
of the users’ decision, without affecting the precision of
the solution of the overall two-stage problem.

• Simulation and benefits: In Section IV, we show that
storage virtualization can significantly reduce the cost of
ownership. Specifically, compared to the case where each
user acquires his own physical storage, storage virtualiza-
tion reduces the overall physical capacity needed for all
users by 34.9%, and the overall physical power rating1

by 45.1%.

II. SYSTEM MODEL

Figure 1 illustrates the system structure, where the main
grid, a storage aggregator with a central storage unit, and
a set of users are connected together. The set of users
I = {1, . . . , I} include both residential and commercial ones,
whose load profiles can be different.2 To satisfy his demand,
a user purchases energy from the main grid, and purchases
virtual storage capacity from the storage aggregator to per-
form demand management. Next, we introduce the economic
interactions among various entities in the system.

Fig. 1. System structure.

We assume that the main grid charges both commercial and
residential users by a demand charge tariff [8]. Consider a
billing cycle T ∗ = {1, 2, ..., T ∗} of T ∗ time slots. If user i’s
electricity consumption from the main grid is pgi [t] in time slot
t ∈ T ∗, user i’s electricity bill in T ∗ is [9]:

πb
∑
t∈T ∗

pgi [t] + πpmax
t∈T ∗

pgi [t], (1)

where πb is the unit price for total energy consumption in
a billing cycle, and πp is the unit price for the peak power
consumption per slot in a billing cycle. To reduce the system
peak, the utility company usually sets πp much higher than πb
[8]. Based on the demand charge tariff in (1), there is a clear
incentive for a user to shave the peak load.

1Power rating indicates the highest power that can flow in/out the storage.
2We leave the impact of renewable generation in our future work.

Fig. 2. Operation horizon.

We assume that an aggregator owns and operates the central
storage. The aggregator virtualizes the physical storage into
separable virtual capacities and sells them to users. Users pur-
chase the virtual capacities to shave their peak load. Users can
proactively charge their storage by purchasing more energy
from the grid and discharge their storage to meet their peak
load, thus reduce their peak consumption of the electricity
bill. Since users can’t control the central storage directly, they
report their charge and discharge decisions to the aggregator,
and the aggregator will dispatch the central storage on behalf
of users accordingly. Note that the aggregator only cares about
the net power flowing in and out the storage. As some users
may choose charge while others choose discharge in the same
time slot, part of the requests will cancel out at the aggregator’s
side. This suggests that even if all users are fully utilizing their
virtual storage capacity, it is possible to support the needs of
users by using a smaller central storage (comparing with the
total virtual storage capacities). This is the key insight behind
the benefit of storage virtualization. Furthermore, since users’
storage is virtual, they can update their purchase flexibly over
time based on their varying load profiles, which is difficult to
realize if users own physical storage.

In the next two subsections, we show how the aggregator
allocates the virtual storage to users through a pricing mech-
anism. We formulate the interaction between the aggregator
and users as a two-stage problem.

A. Virtual storage allocation through pricing

We denote an operation horizon by T = {1, 2, ..., T} (e.g.,
it could represent one day with the time slot length of one
hour). We assume that users can predict their load profiles for
the entire operation horizon at the beginning of the horizon.3

The aggregator and users will make their pricing, purchase,
and virtual storage schedule decisions for the whole operation
horizon at the beginning of the horizon. Figure 2 illustrates
the decision timing in more details. At the beginning of each
operation horizon, the aggregator determines the unit price q
of virtual capacity for this horizon and announces it to users.
Each user i decides the virtual storage capacity xi and storage
schedule decision psi [t] for each time slot t ∈ T , and reports
them to the aggregator. Here psi [t] > 0 means that user i
requests to charge his storage in time slot t, and psi [t] < 0
means discharge. Since users’ storage is virtual, we assume
that the virtual storage has 100% charge or discharge efficiency
and 0% energy leakage rate. The aggregator, however, will
incur the extra energy loss during the charge and charge of
the physical storage. To satisfy all users’ requirement, the

3We leave the study on the impact of prediction error in the future work.



aggregator aggregates all users’ charge and discharge decision∑
i p
s
i [t], which corresponds to the net charge and discharge

operation of the central storage in time slot t. We assume
that the central storage is close to users, hence the energy
transmission loss is negligible [10].

In the next subsection, we formulate the interaction between
the aggregator and users as a two-stage problem.

B. Two-stage formulation

We formulate a two-stage problem for the interaction be-
tween the aggregator and users as shown in Figure 3:

Fig. 3. Interaction between the aggregator and users.

1) Stage 2: User i’s optimization problem: Given the unit
price q determined by the aggregator, each user i decides the
optimal virtual capacity xi and storage schedule psi [t] in time
slot t to minimize his cost, which includes the virtual storage
payment qxi and the electricity bill. If user i’s original load
profile is P li [t] in time slot t,4 his total energy purchase from
the grid in time slot t becomes P li [t] + psi [t], therefore his
overall electricity bill is given by

πb
∑
t∈T

(P li [t] + psi [t]) + πpmax
t∈T

(P li [t] + psi [t]). (2)

We then discuss various constraints that the user needs to
satisfy. We assume that the aggregator requires each user’s
total charge amount to be equal to the total discharge amount
over the entire operation horizon. This ensures the independent
operation of the virtual storage across different horizons [11].∑

t∈T
psi [t] = 0. (3)

Furthermore, user i’s charge and discharge decision psi [t]
should satisfy the constraint of the virtual capacity xi:

Ei[t] = Ei[t− 1] + psi [t],∀t ∈ T , (4)
0 ≤ Ei[t] ≤ xi,∀t ∈ T ′, (5)

where Ei[t] denotes the energy level in user i’s virtual storage
in time slot t. We let T ′ = {0}

⋃
T = {0, 1, 2, ..., T}, and

introduce the variable Ei[0] for the initial energy level of user
i. Since the user’s storage is virtual, we allow user i to optimize
Ei[0] in each operation horizon. We assume that the aggregator
can provision the initial energy level of the physical storage
to satisfy users’ requirement in each operation horizon.

We formulate the optimization problem for users:

4We assume the original load is fixed and there is no demand response.

Stage 2: User i’s optimization problem UPi:

min qxi + πb
∑
t∈T

(P li [t] + psi [t])

+ πpmax
t∈T

(P li [t] + psi [t])

subject to: (3), (4)− (5),

variables: xi; {psi [t],∀t ∈ T }; {Ei[t],∀t ∈ T ′},

where the unit price q is assumed to be fixed in Stage 2.
We denote the optimal solutions to problem UPi as x∗i (q),
psi [t]

∗(q) and Ei[t]∗(q).
2) Stage 1: Aggregator’s optimization problem: The aggre-

gator determines the virtual storage unit price q to maximize
her profit, which includes user’s total payment q

∑
i x
∗
i (q) and

storage operation cost. The charge and discharge operation∑
i p
s
i [t]
∗(q) may cause the degradation of the storage. Fur-

thermore, each charge or discharge will incur some energy
loss, which the aggregator must compensate for. We adopt the
linear operation cost model in the literature [11] [12]:

c
∑
t∈T
|
∑
i∈I

psi [t]
∗(q) |, (6)

where c is the unit cost of charge and discharge amount.
We formulate aggregator’s optimization problem as follows:
Stage 1: Aggregator’s optimization problem AP:

max
q>0

q
∑
i∈I

x∗i (q)− c
∑
t∈T
|
∑
i∈I

psi [t]
∗(q) |,

where x∗i (q), p
s
i [t]
∗(q) are optimal decisions of user i by

solving Problem UPi.

III. SOLVING TWO-STAGE PROBLEM

To solve the two-stage problem, we first characterize the
optimal solution of each user i’s problem UPi under the
price q, and then incorporate users’ optimal solutions into the
aggregator’s problem to determine the optimal pricing.

A. Solution of Stage 2

For Stage 2, we prove that the optimal virtual capacity x∗i (q)
that user i purchases is stepwise non-increasing in price q.
However, for some values of q, the optimal capacity and charge
and discharge profile may have multiple optimal solutions. To
resolve this issue, we impose a small penalty term on the user
i’s optimization problem to ensure the unique solutions. We
show that we can make the penalty term arbitrarily small such
that it affects the user’s choice of optimal capacity little.

We first analyze how the optimal capacity x∗i (q) changes
with the price q, which leads to the following proposition:

Proposition 1 (Stepwise of virtual capacity): The optimal ca-
pacity x∗i (q) of Problem UPi is a non-increasing and stepwise
correspondence of the price q.

Specifically, we denote the set of threshold prices as Qi =
{q1i , q2i , ..., q

Ki
i } of Ki elements, then we have



x∗i (q) =


x0i , q ∈ (0, q1i ),

x1i , q ∈ (q1i , q
2
i ),

...

xKi
i , q ∈ (qKi

i ,∞),

where x0i > x1i > · · · > xKi
i = 0. For any q = qki ∈ Qi,

x∗i (q) can be any value in the set [xki−1i , xki ].

Figure 4(a) illustrates Proposition 1. We can see that as the
price q increases, a user purchases a smaller virtual storage
capacity. If the price is higher than the threshold qKi

i , user
i will buy none. Between two adjacent threshold prices, the
user’s optimal choice of the virtual capacity remains the same.
Furthermore, at a threshold price, the optimal capacity x∗i (q)
is not unique. Even when we fix the value of x∗i (q), there may
also be multiple corresponding psi [t]

∗(q) and Ei[t]∗(q) as the
solutions of Problem UPi. The reason is that user can have
multiple charge and discharge profiles as long as the profiles
satisfy the capacity constraint. We prove Proposition 1 based
on parametric linear programming [13].

The possibility of multiple optimal decisions in Stage 2 will
make it difficult to solve the aggregator’s problem in Stage 1,
as the aggregator cannot accurately predict the users’ behaviors
under a given price. To address this issue without significantly
changing the solution structure, we impose a penalty term
on the user’s Problem UPi based on user i’s charge and
discharge amount as ε

∑
t(p

s
i [t])

2, where ε > 0 is a small
value. Modifying the objective function of Problem UPi, we
obtain Problem UPPi as follows:

min πb
∑
t∈T

(P li [t] + psi [t]) + πpmax
t∈T

(P li [t] + psi [t])

+ qxi + ε
∑
t∈T

(psi [t])
2

subject to: (3), (4)− (5),

variables: xi; {psi [t],∀t ∈ T }; {Ei[t],∀t ∈ T ′}.

We denote the optimal solutions to users’ optimization
Problem UPPi as x?i (q, ε), p

s
i [t]

?(q, ε) and Ei[t]
?(q, ε) for

any ε > 0. We show the uniqueness of each user’s decision:

Proposition 2 (Uniqueness): For any ε > 0, and any q,
x?i (q, ε), p

s
i [t]

?(q, ε), and Ei[t]?(q, ε) are unique.

Next, we show that as ε is sufficiently small, the optimal
capacity x?i (q, ε) of Problem UPPi approaches x∗i (q) of
Problem UPi in Theorem 1:

Theorem 1 (Asymptotic optimality): For any fixed q /∈ Qi
and δ > 0, there exists an ε0 > 0, such that for any ε ∈ (0, ε0),
we have | x?i (q, ε)− x∗i (q) |< δ.

For the rest of discussion, we adopt the optimal solutions
x?i (q, ε), p

s
i [t]

?(q, ε) and Ei[t]?(q, ε) to Problem UPPi as user
i’s best choice of virtual storage given the unit price q.

(a) (b)

Fig. 4. (a) The optimal capacity x∗
i (q) of Problem UPi; (b) Revenue

q
∑

i x
∗
i (q).

B. Solution of Stage 1

At the aggregator’s side, each price q will lead to users’
best choice of x?i (q, ε), p

s
i [t]

?(q, ε) and Ei[t]
?(q, ε), and the

aggregator can calculate her profit from user’s payment and
the operation cost accordingly. We will prove that with a
sufficiently small penalty coefficient ε on the users’ problems
in Stage 2, the aggregator’s profit has a piecewise linear
property and the optimal price q? of Problem AP occurs
around one of the threshold prices.

First, we consider the optimal solutions to Problem UPi. We
show how the aggregate optimal capacity

∑
i x
∗
i (q) changes

with the price q. By aggregating all users’ threshold price set
Qi and optimal capacity set {x0i , x1i , ..., x

Ki
i } for each i ∈ I,

we can show that
∑
i x
∗
i (q) is also non-increasing stepwise

correspondence of the price q. We denote the threshold price
set by Qa =

⋃
iQi = {q1a, q2a, ..., qKa

a }, and the corresponding
optimal capacity set {x0a, x1a, ..., xKa

a }. Similarly, x0a > x1a >
· · · > xKa

a = 0 and for any q = qka ∈ Qa,
∑
i x
∗
i (q) can be any

value in the set [xk−1a , xka]. We then discuss the relationship
between the aggregator’ revenue q

∑
i x
∗
i (q) and the price q.

Since the aggregate capacity
∑
i x
∗
i (q) is stepwise in price

q, the corresponding revenue q
∑
i x
∗
i (q) is piecewise linear

in price q as illustrated in Figure 4(b): the revenue increases
linearly from one threshold price and then decreases vertically
at the next threshold price. It repeats this process until the
revenue is zero. The maximum revenue is achieved at one of
the threshold prices.

Next, we consider the optimal solution of Problem UPPi.
Similar to Theorem 1, we can show that when ε is very small,
aggregator’s revenue q

∑
i x

?
i (q, ε) approaches q

∑
i x
∗
i (q).

Furthermore, when ε is sufficiently small, the operation cost
c
∑
t |

∑
i p
s
i [t]

?(q, ε) | also has a stepwise property over the
threshold price set Qa as illustrated by C∗(q) in Figure 5(a).
We show the property in Proposition 3:

Proposition 3 (Operation cost): There exits C∗(q),

C∗(q) =


C0, q ∈ (0, q1a),

C1, q ∈ (q1a, q
2
a),

...

CKa , q ∈ (qKa
i ,∞),



(a) (b)

Fig. 5. (a) C∗(q) in the price q; (b) q
∑

i x
∗
i (q)− C∗(q) in the price q.

where C0, C1, ..CKa−1, CKa = 0 are constant. For any fixed
q /∈ Qa and δ > 0, there exists ε0 > 0, such that for any
ε ∈ (0, ε0), we have

| c
∑
t∈T
|
∑
i∈I

psi [t]
?(q, ε) | −C∗(q) |< δ.

Further, combining the revenue and operation cost, we
have that if ε is sufficiently small, the aggregator’s profit
approaches q

∑
i x
∗
i (q) − C∗(q) which has the piecewise

linear property as illustrated in Figure 5(b).5 We show the
property in Proposition 4:

Proposition 4 (Profit) : For any fixed q /∈ Qa and δ > 0,
there exists ε0 > 0, such that for any ε ∈ (0, ε0), we have

| q
∑
i∈I

x?i (q, ε)− c
∑
t∈T
|
∑
i∈I

psi [t]
?(q, ε) |

− (q
∑
i∈I

x∗i (q)− C∗(q)) |< δ.

Due to the space limit, we present the detailed proofs of all
theorems and propositions in the online technical report [14].

Utilizing the properties of the objective function of Problem
AP that we have obtained so far, we can obtain the optimal
price q? through a search algorithm. Basically, the aggre-
gator communicates with users in an iterative fashion. The
aggregator increases q by a small increment in each iteration
until no capacities can be sold out,6 and accordingly, each
user i solves Problem UUPi under the price q to determine
the purchased capacities and the storage schedule over the
operation horizon. Finally, the aggregator chooses the optimal
q? that maximizes her profit. Note that the aggregator only
observes users’ decisions without knowing their load profiles,
which protects the users’ privacy. Due to the space limit, we
present the algorithm in the online technical report [14].

IV. SIMULATION RESULT

In this section, we conduct simulation based on four types of
typical load profiles. We compute aggregator’s optimal pricing,
and users’ optimal choices of virtual storage. We will then

5Note that if the price q is too low, the revenue approaches zero. Since the
operation cost is positive, the aggregator’s profit will be negative.

6Note that the choice of increment ∆q should tradeoff between the accuracy
and the computational burden.

(a) (b)

(c) (d)

Fig. 6. Four types load: (a)(b)(c) residential load of Type 1, 2, 3; (d)
commercial load of Type 4.

show the benefits of the storage virtualization in terms of
reducing the storage ownership cost.

A. Parameter

In the simulation, we consider one day as the operation
horizon, which is equally divided into T = 24 time slots.
For residential users, we consider 3 types of load profiles
on a typical weekday [15], and each type has 10 users. For
commercial users, we consider 1 type of load profile [16], with
only 1 user. These load profiles are the “original load” P li [t]
during an operation horizon as shown in Figure 6. Among
the 3 types of residential load, Type 1 has one peak in the
early evening (around 19:00), Type 2 has one peak in the
late evening (around 22:00), and both Type 1 and 2 have one
small peak in the morning(around 9:00). Comparing with Type
1 and 2, Type 3 consumes less energy and has a smaller load
variation in one day. The commercial user of Type 4 consumes
much more energy than residential users, and his load profile
has the peak around noon.

We choose the price of electricity charged to the users based
on [10], where the peak demand charge per month is πp =
10.28$/kW, and the energy charge is πb = 0.034$/kWh. Since
our simulation is for one day, in order to make the comparisons
fair, we scale the demand charge to a day by setting πp =
10.28/30 = 0.34$ /kW. That way, πb can remain unchanged.
We choose a sufficiently small ε = 0.003 cents/(kWh)2. We
set the operation cost c = 1 cents/kWh [11].

B. Optimal solution of the two-stage problem

We search the price to find the optimal price q?=4.7
cents/kWh that maximizes the aggregator’s profit. The optimal
capacities x?i that users purchase are as follows: Type 1-
3.61kWh; Type 2-2.88kWh; Type 3-0.98kWh; Type 4-28kWh.



We notice that a Type-3 residential user buys a much smaller
capacity than users of other types as his load profile is lower.
The commercial user buys a much larger capacity due to the
high load. Each user’s total energy purchase from the grid
P li [t] + psi [t] during an operation horizon is shown in Figure
6 as the “shaved load”. Comparing with the original load in
Figure 6, we can see that a user will discharge to shave the
peak when the original load is high. Since we require that each
user’s total charging amount equals the discharging amount
during an operation horizon, he has to charge his storage when
the original load is relatively low.

C. Benefits of reducing ownership cost

We show that through virtualization, a physical storage
unit can support users’ need of a much larger virtual
storage. Based on the central storage’s schedule

∑
i p
s
i [t],

we define as follows the minimal effective physical capacity
Xmin and minimal power rating Pmin to support this schedule:

Definition 1 (Xmin): The minimal effective physical capacity
to support the given schedule

∑
i p
s
i [t] is :

Xmin = max
t∈T

t∑
τ=1

∑
i∈I

psi [τ ]−min
t∈T

t∑
τ=1

∑
i∈I

psi [τ ]. (7)

Definition 2 (Pmin): The minimal power rating to support the
given schedule

∑
i p
s
i [t] is:

Pmin = max
t∈T
|
∑
i∈I

psi [t] | . (8)

In other words, the power rating Pmin is the maximum value
of the aggregate charging or discharging power across all time
slots. The effective capacity Xmin is obtained by the difference
between the maximum energy level and the minimal energy
level in the storage of all time slots. We present the detailed
explanation in the online technical report for (7) and (8) [14].

We compare the minimal physical size (measured in Xmin

and Pmin) and total allocated virtual storage size at different
prices in Figure 7. Intuitively, as the price increases, users will
purchase less amount of virtual storage, which will also reduce
the required physical storage size. At the optimal price q?=4.7
cents/kWh, the minimum physical capacity Xmin is reduced by
34.9% comparing with the total virtual capacity

∑
i x

?
i , and the

minimum power rating Pmin is reduced by 45.1% comparing
with the total virtual power rating

∑
imaxt | psi [t]? |. This

indicates that central storage virtualization will lead to more
efficient use of the physical storage capacity, which will
potentially benefit both users and aggregator.

V. CONCLUSION

In this paper, we proposed a pricing-based virtual storage
sharing scheme among a group of users. An aggregator owns
the central storage and virtualizes the storage into separable
virtual capacities, which can be sold to serve different users.
We formulated a two-stage problem for the interaction between
the aggregator and users. Simulation results showed that com-
pared to the case where each user acquires his own storage,

(a) (b)

Fig. 7. (a) Required physical capacity/allocated virtual capacity; (b) Required
physical power rating/allocated virtual power rating.

storage virtualization reduces the overall physical capacity
needed for all users by 34.9%, and the overall physical power
rating by 45.1%. For future work, we aim to further explore
the benefits of storage virtualization in terms of renewable
energy generation and frequency regulation support.
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