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Abstract—This paper studies a nanosensor coordination
scheme to effectively deliver nanosensors to deep targets. Deep
targets are far away from the main patrolling paths of nanosen-
sors (e.g. blood vessels) and hence the delivery ratio relying on
natural diffusion can be very low. Inspired by the communication
and motility capability of bacteria, we devise a decentralized
coordination strategy so that once the deep target is identified
by a small number of nanosensors, they can effectively recruit
far-away nanosensors towards the target. Note that since the
target is deep, patrolling nanosensors are typically outside the
direct communication range of those nanosensors at the location
of the target. Therefore, multi-hop communication is required to
recruit replenishing agents from the main paths. We demonstrate
that the proposed strategy can successfully pull the patrolling
nanosensors to the deep target when the model parameters are
properly selected. This suggests a potential solution to the open
problem in cancer treatments that therapeutic agents are kept
away from the central necrotic core of tumors.

Index Terms—Nanosensor coordination, local-decision rule,
target detection, swarm robotics

I. INTRODUCTION

Many complex behaviors observed in various animal species
are actually formed by simple local interactions. Some notable
examples include the navigation of birds [1], swarming of fish
[2], and biofilm formation and bioluminescence in bacteria
[3], [4]. As the emergence of nanomachines has become
promising in recent years [5], [6], communication and coor-
dination among them to achieve more complex objectives has
received increased attention [7]–[12]. Indeed, learning from
the behaviors of existent species may provide us with insights
into designing local decision rules for such nanomachines so
that they can collectively perform complex tasks efficiently.

In this work, we study how to design such local deci-
sion rules for coordinating nanosensors so that they can be
efficiently delivered to deep targets inside the human body,
which is an important but challenging problem in applying
nanosensors for medicine. An example of a deep target inside
the human body is a tumor. Typically, therapeutic agents
are carried through blood vessels. They are kept away from
necrotic cores of tumors due to leaky vessels. As a result,
therapeutic agents are attached mainly to tumor surfaces and
hence become less effective. Although certain bacteria have
been found to have a tendency to stay around tumor regions
and can thus be genetically engineered for targeting treatments
[13]–[16], the actual drug delivery rate is still too low to put
into clinical practice. It is therefore important to investigate
new ways to recruit more therapeutic agents towards deep-
target regions.

Some prior work for delivering therapeutic agents to deep
targets assumes that the positions of the deep targets are
already known. For example, in [17], they constructed a
signaling-receiving module to recruit more agents to the target
position via nanoparticles. The signaling module, e.g. gold
nanorods, are pre-delivered to the tumor site and heated to
cause damage to blood vessels in the tumor, as shown in
Fig. 1. This will activate the coagulation cascade process and
recruit the receiving particles that carry therapeutic cargo.
It is shown the proposed system in [17] achieves 40 times
higher doses of chemotherapeutics delivered to tumors than
non-communicating controls. However, in many cases, since
not all deep targets are known when the therapy is delivered,
the above methodology does not always apply.

Ideally, we wish the nanosensors to detect deep targets
autonomously, e.g., [18] uses bacteria as the tool for sensing
unknown target positions. However, since the targets are deep,
only a few nanosensors can reach the deep targets. Thus, it
is highly desirable that those few agents reaching the target
can recruit more nanosensors afterwards. The prior work in
nanosensor coordination mainly focuses on recruiting agents
that are initially surrounding the targets. In [11], [19], [20], the
authors proposed coordination schemes using two chemicals,
repellents and attractants, for efficient target tracking and
detection. In [12], the authors proposed using two types of
nanomachines in a non-diffusion based environment to detect
targets. Besides chemical signaling, [10] also proposed the
usage of acoustic waves to coordinate nanomachines for detec-
tion purposes. However, because of the limited communication
capability of nanosensors, the number of nanosensors that can
be recruited in the immediate neighborhood is usually low.

In order to increase the effectiveness, it is therefore imper-
ative to be able to use multi-hop communications to recruit
nanosensors from far away. An early attempt to devise non-
deterministic local rules on nanomachines to recruit nodes to
target positions can be found in [7]. They proposed using
three different chemicals to attract the nanomachines located
near target locations. Some nanomachines differentiate into
signal repeater stations when sensing type-1 chemical released
from the target location. They then release type-2 chemical to
propagate the detected signal. Similarly, some nanomachines
that sensed type-2 chemical will release type-3 chemical.
Three chemicals are used to avoid the confusion of movements
for those nanomachines moving toward the target. Although
the strategy can successfully recruit nanomachines in 3-hop
distance from the target, its generalization requires n different
chemicals to attract nanomachines n hops away for deep-target



Figure 1: Illustration of signaling particles broadcasting the tumor
location to receiving particles, modified from [17].

detection. The requirements of releasing, sensing, and reacting
to n different chemicals for the nanomachines lead to high im-
plementation complexity. Therefore, the problem of effectively
gathering therapeutic agents towards these abnormal targets
using a small number of chemicals remains open.

In this paper, inspired by the coordination mechanism
of bacteria, i.e. quorum sensing [4] for population-density
detection and chemotaxis [21] for agent navigation, we devise
a decentralized rule to gather nanosensors towards deep targets
using two chemicals. These targets, typically far from the main
patrolling paths of nanosensors, may only be detected by a
small number of nanosensors through natural diffusion alone.
However, we demonstrate that our proposed strategy allows the
few agents reaching the target to successfully recruit faraway
patrolling nanosensors via multi-hop signal-cascading paths.

The rest of the paper is organized as follows. In Section II,
we describe the system model and the design challenges for
node coordination. Section III presents our proposed strategy
and justifications. Numerical results are shown in Section IV.
Finally, we summarize the contributions and future work in
Section V.

II. SYSTEM MODEL AND DESIGN CHALLENGES

A. Communication Channel Model

In this work, we assume a chemical can be sensed by
a nanosensor if its distance to the closest releasing source
(which is another nanosensor) is within the effective range
of the chemical. Denote RA and RB as the effective ranges
of the two chemicals Chm-A and Ch-B, respectively. We
use δAj (t) and δBj (t) as indicator functions representing that
nanosensor j has detected Chm-A and Chm-B above the
sensitivity thresholds at a specific time t. That is, let NA ⊂ N
denote the set of nanosensors releasing Chm-A. The rest of the
nanosensors j ∈ N \ NA would update δAj (t) as

δAj (t) =

{
1, min

i∈NA,i6=j
||xj(t)− xi(t)|| ≤ RA

0, otherwise,
(1)

where xj(t) is the location of nanosensor j at time t and N is
the set of all nanosensors. The indicator δBj (t) is determined
similarly. The released chemicals are assumed to diffuse away
after a short amount of time. Therefore, constant updates of
δaj (t) and δBj (t) are necessary.

The above model is suitable for our setting for the following
two reasons. First, the nanosensors are sparse in our region of

interest. Therefore, the chemical accumulation effect is less
crucial, which allows us to model the detection of released
chemicals as a function of distances. Second, in our pro-
posed strategy, nanosensors only release guiding chemicals
when they are in sparsely populated regions. As a result,
the effective range of chemicals is not much affected by
chemical accumulations from other nanosensors due to fast
decay of chemical concentrations with respect to the distance
(see Remark below). The benefit of this model is that it
simplifies the analysis for the proposed strategy without loss
of generality.

Remark. If each nanosensor releasing an impulse of chem-
icals is assumed to be a point source, the evolution of
concentration can be described by Fick’s Law as in [22]

C(r, t) =
N

(4πDt)3/2
e−r

2/4Dt, (2)

where N is the total number of released molecules and r is
the distance from the releasing source. Thus, one can calculate
the value of RA and RB based on a threshold for detecting
the chemical.

B. Navigation of Nanosensors

Each nanosensor is assumed to be capable of sensing two
chemicals, Chm-A and Chm-B, and deciding whether to stay
or propel in the direction of high chemical concentration. This
is indeed mimicking communication in bacteria communities,
in which the collective behavior is synchronized via quorum
sensing, and the motility of bacteria is based on the chemotaxis
mechanism [21], which drives them toward higher concentra-
tions of beneficial chemicals, referred to as attractants.

Here, Chm-A serves the same purpose for attractants, while
Chm-B serves a similar purpose as autoinducers in quorum
sensing. In other words, Chm-A is the “path indicator” chem-
ical to identify the direction of movement for neighboring
nanosensors, while Chm-B is used for nanosensors to sense
the population density in their neighborhood. Based on the
detected boolean values of δAj (t) and δBj (t), each nanosensor
takes action aj(t) ∈ A = {Monitor, Move, Broadcast, Idle},
based on the decision rule ρ

(
δAj (t), δ

B
j (t)

)
. Each operation

mode in the action set A is described below:
• Monitor: Update δAj (t) or δBj (t) based on (1).
• Broadcast: Release Chm-A molecules at its location.
• Move: Propel to the nearest broadcasting neighbor within

detectable range.
• Idle: Remain idle until next command.

Our goal is therefore to design a local rule ρ such that
the collective behavior of the system can recruit nanosensors
towards deep targets continuously.

The time is discretized so that at each time step, the position
of nanosensors are updated based on their targeted positions
and environmental perturbations, which are modeled by addi-
tive Gaussian noise. Specifically, the position of nanosensor j
is updated according to

xj(t+ 1) = x̂j(t+ 1) + η, (3)



where η ∼ N (0, σ2
x) and the targeted position at time t + 1,

x̂j(t+ 1), is given by

x̂j(t+ 1) =

{
xj(t), aj(t) 6= Move,
xk∗(t), aj(t) = Move, (4)

where k∗ is the index of nanosensors which release Chm-A
and have the shortest distance to xj(t) within RA. That is,

k∗ = arg min
i∈Nj

||xj(t)− xi(t)||, (5)

where

Nj = {d : d 6= j, ||xj(t)− xd(t)|| ≤ RA,

ad(t) = Broadcast}.
(6)

Note that we do not consider the volume occupied by each
nanosensor (a.k.a. volume exclusion principle). Also, we as-
sume that nanosensors are synchronized and they have suffi-
cient molecules to release throughput the process.

C. Environment Setup

We assume that the target is located at the center of a
square monitoring area M. For ease of demonstration, we
also assume the nanosensors are initially distributed uniformly
with density λ in the 2D space when the target is found. To
model the replenishing source of nanosensors from the main
patrolling path, we assume new nanosensors enter the system
with a rate of µ from the upper-right corner ofM, which then
follow the dynamics of (3).

D. Design Challenges

The design of local decision rules to achieve deep-target
nanosensor delivery using only two chemicals involves two
main challenges:

1) The selection of agents to stay stationary is critical for
paths to the deep target being formed autonomously. As
we will see later, this can actually be accomplished by
quorum sensing via Chm-B.

2) Relay nodes for guiding paths should coordinate intelli-
gently (using local information) so that nanosensors can
swarm towards the target directions instead of moving in
opposite directions. This requires a more careful design
as detailed in Section III.

When too many nanosensors move towards the target, fewer
of them are left for relaying target location information. The
lack of relays could limit the long-term number of nanosensors
recruited to the target due to broken guidance paths. On the
contrary, if too many nanosensors stay stationary for relay
purposes, the number of nanosensors reaching the target will
be low as well. Therefore, it is important for the strategy to
be robust and balanced between these two objectives.

III. PROPOSED STRATEGY

A. Overview

Our proposed strategy is designed based on the following
principles. Conceptually, we can categorize nanosensors into
two categories based on their intended objectives:

Figure 2: Illustration of “targeting” and “path marker” nanosensors.
The center node is a “path marker” in Broadcast mode, who wishes
to recruit “targeting” nodes. The nodes on the left sense higher con-
centration of Chm-B, and thus some of them will become ”targeting”
nodes. The nodes on the right sense lower concentration of Chm-B,
and thus become new ”path markers.”

1) “Targeting” nanosensors: having the tendency of moving
towards target locations so that the target can be treated.

2) “Path marker” nanosensors: broadcasting the target loca-
tion information to recruit new nanosensors to the targets.

The role of “path marker” or “targeting” nanosensors does not
remain unchanged for a given nanosensor. Rather, it is very
likely that later coming nanosensors become “path markers”
and the previous “path markers” turn into “targeting” agents.

The critical rule to differentiate a nanosensor between the
two roles is the neighboring density of nanosensors around
it, which is characterized by the concentration of Chm-B (see
Fig. 2). When the concentration of Chm-B is low, a nanosensor
is more likely to become a “path marker,” which remains in
Broadcast mode to relay the signal and recruit newcoming
nanosensors. A “targeting” nanosensor, on the other hand,
operates between Move and Idle alternatively (Algorithm 1
line-14 and line-17). When no Chm-A is sensed, a nanosen-
sor remains in Idle mode (line-17). The system functions
intuitively in that it requires “path marker” nanosensors to
remain static to keep the signal-cascading path connected.
Those “targeting” nanosensors can then follow the formed
cascading path to move closer to the target more effectively,
rather than relying on aimless diffusion.

The proposed policy is detailed in Algorithm 1. The release
of Chm-A at each “path marker” is intelligently scheduled by
the proposed policy, such that “targeting” nanosensors move
towards the target in multiple hops. PRun (line 13, where u ∈
[0, 1] is a uniformly-distributed random variable) is a designed
parameter to trade off nanosensors’ converging speed toward
the target and the probability that a signal-cascading path to
the target stays connected.

B. Broadcast-then-Attract

We refer to the nanosensor reaching the target as at level-0.
Nanosensors within the effective range RA of the target are
referred to as at level-1. Similarly, we define nanosensors
sensing the cascading signal k hops from the target as at
level-k. Further, we denote sk(t) ∈ A as the action that at
least one nanosensor in level-k is operating at timeslot t, and
δB(l)(t) indicates that nanosensors in level l have sensed Chm-
B in timeslot t. By default, all the nanosensors have the flag
“ToBroadcast” set to False initially.



Algorithm 1: Decision rule of each nanosensor j at
timeslot t for deep-target delivering

Input: Concentrations of Chm-A and Chm-B
1 if Reached the target then
2 Broadcast (Br) Chm-A;
3 return;

4 Update δBj (t); // neighborhood density flag
5 if δBj (t) = 0 and ToBroadcast = True then
6 Broadcast (Br) Chm-A;
7 ToBroadcast ← True;
8 goto line-17;

9 ToBroadcast ← False;
10 Update δAj (t) // sensed Chm-A flag
11 if δAj (t) = 1 then
12 if δBj (t) = 1 then
13 if u ≤ PRun then
14 Move to the nearest broadcasting neighbor;

15 else
16 ToBroadcast ← True; // prepare to broadcast

17 Remain Idle for the rest of the timeslot;

Notice that the signal-cascading process must initiate at the
target location, i.e. at level 0 (line 1-3, see also time 0 of
Fig. 3). At any given timeslot t, if sk(t) = Broadcast (Br),
level-(k + 1) nanosensors will sense the existence of Chm-A
and choose three possible actions:

1) If δB(k+1)(t) = 0, line-16 will be executed to set the
“ToBroadcast” flag to be True. This allows the level-
(k + 1) nanosensors to prepare broadcasting in the next
timeslot so that they can propagate the target information
outwardly, as shown by the black nodes between time 0
to time 2 of Fig. 3. This outward propagation continues
until it reaches a level l with δB(l) = 1.

2) If δB(k+1)(t) = 1, nanosensors within level k + 1 will
switch to Move with probability PRun and propel to the
nearest broadcasting neighbor (by following the largest
gradient direction of Chm-A). This will lead these moving
nanosensors to relocate from level k + 1 to level k, as
shown by the crossed node in time 2 of Fig. 3.

3) If the nanosensors have δB(k+1)(t) = 1 but do not enter
line-14, they will remain Idle for the rest of timeslot t
(line-17), as shown by the white node in level 3 at time
2 of Fig. 3.

Note that one critical requirement for successfully recruiting
nanosensors towards the target direction is to guarantee that
the moving nodes can only move closer to the targets. In
other words, once level-(k + 1) nodes move to level-k, the
broadcast of Chm-A at level k should stop so that these nodes
can continue to move to level-(k − 1). This requirement is
accomplished in Algorithm 1 by allowing broadcast only when
a nanosensor is in a sparsely populated region (line-5). Thus,
if there were nanosensors that moved to the neighborhood
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Figure 3: Illustration of system dynamics. The black nodes are
broadcasting Chm-A, the white nodes are in Idle, and the crossed
nodes are moving to the nearest broadcasting neighbor. The broadcast
initiates at time t = 0 at the target location (i.e., level 0).

of broadcast-intended nanosensors (i.e., with ToBroadcast =
True) in the previous timeslot, the broadcast tendency of the
latter nanosensors will be inhibited since δB(k)(t) is updated to
1 (line-4). As shown between time 3 and time 4 of Fig. 3, this
design allows the nanosensors to be attracted all the way to
the target.

In summary, thanks to distributed decisions based on Algo-
rithm 1, the system repeats a very interesting broadcast-then-
attract behavior initiating from the location of deep targets. As
shown in Fig. 3, Chm-A is propagating outwardly via a signal-
cascading process until a densely populated nanosensor region
is reached. Then, the signal-cascading process is inhibited and
alternatively, the system starts to attract available nanosensors
until they reach the target. The process is repeated afterwards
to recruit more and more faraway nanosensors towards deep
targets.

In Section IV, we will show that when all the nodes follow
the proposed policy, nanosensors in the main patrolling path
can be continuously guided through multi-hop communication
towards the deep target.

C. Requirements for RA and RB

It is important that RA and RB are properly chosen so that
the proposed strategy can successfully deliver nanosensors to
the deep target continuously. The implementation considera-
tions are discussed below.

1) To maintain the signal-cascading process, the effective
range of Chm-A should be greater than the distance
between each “path marker.” This indicates that initially,
the range RA should at least cover another nanosensor
from the target location. Therefore, we require RA to be
greater than the expected distance between the two closest
nanosensors Rnear, i.e.

RA > E[Rnear] =

∫ ∞
0

r f(r)dr =
1

2
√
λ
, (7)

where f(r) = (2λπr) exp(−λπr2), r > 0, is the density
function of the distance to the nearest nanosensor.

2) The average number of nodes affected by a “path marker”
nanosensor should be greater than 1. Otherwise, the
cascaded process can be terminated early and fail to



Table I: Simulation parameters

Parameters Descriptions Values

RA Effective range of Chm-A 100 (µm)
RB Effective range of Chm-B 30 (µm)
M Monitoring area 1000× 1000 (µm2)
λ Local density of agents in M 3× 10−4 (1/µm2)

µ Rate of agents entering the system 1 (1/timeslot)

PRun
Probability of movement when both
δAj and δBj equal to 1 0.1

σx
Standard deviation of the agent lo-
cation disturbances 2 (µm)

propagate outward from the target location. This leads
us to the requirement of

λπ(R2
A −R2

B) > 1. (8)

IV. NUMERICAL RESULTS

A. Configurations
In our simulations, we set the default parameters as shown

in Table I unless otherwise stated. The release of chemicals
is assumed to stay effective for one timeslot, afterwards it is
lost due to chemical diffusion. Note that we do not assume
M to have a closed boundary. That is, nanosensors can move
out of boundary due to moving disturbances. As explained in
section II.C, the replenishing source of nanosensors is assumed
to provide new nanosensors with a rate, µ = 1, located at
the upper-right corner of M. The nodes experience Brownian
motion-like trajectory unless sensing the recruiting chemical
Chm-A.

B. Results
In Fig. 4, the time snapshots of the system simulation

are shown to demonstrate the signal-cascading process. Ini-
tially, Chm-A is released at the target location since only
one nanosensor finds the target. Later on, we can observe
a growing number of nanosensors moving toward the target,
while “path markers” are continuously broadcasting the target
location to recruit greater numbers of nanosensors from farther
distances.

In Fig. 5, we show the number of nanosensors reaching
the target as time elapses. With larger PRun, we see initially
a larger amount of nanosensors converging to the target.
However, the signal-cascading path is more fragile and subject
to disconnection due to a higher tendency of movement for
nanosensors, leading to fewer agents capable of reaching the
target eventually. In contrast, the system with smaller PRun has
an initially smaller converging speed of nanosensors toward
the target. However, since the cascading process can be kept
intact with higher probability, agents reach the target with
a more constant rate, which eventually leads to better target
detection than that of the larger PRun.

For the performance metric, we define the steady-state
arrival rate of nanosensors π at the target as

π =
N(tf )−N(t1)

tf − t1
, (9)

where N(t) is the number of nanosensors reaching the target
at time t, tf is the final observation time and t1 is the time
that the system leaves the transient state. Based on Fig. 5,
we chose t1 = 100, indicating that the nanosensors recruited
within distance RA from the target are excluded from the
calculation.

Fig. 6 and Fig. 7 show the change of rate π with different
values of RA and RB . Intuitively, a larger RA leads to a
larger recruitment region, and therefore the rate of gathered
nanosensors increases as long as the cascading paths cover the
replenishing source. On the contrary, there exists an optimal
RB to maximize the rate of reaching nanosensors for a
given RA. If RB is too small, then too many nanosensors
stay static serving as “path indicators.” If RB is too large,
fewer nanosensors can be recruited since the range difference,
RA−RB , becomes small. Hence, there is a best RB that trade
off between the two. Observe that when the model parameters
are selected properly, system performance can be enhanced
significantly compared to solely relying on natural diffusion.

V. CONCLUSION

We studied a nanosensor coordination strategy that can
recruit nanosensors from the mainstreams (e.g. blood vessels)
towards deep-target locations using only two chemicals. We
demonstrated that nanosensors can autonomously form “path
markers” and guide new nanosensors via a multi-hop signal-
cascading path. Bacteria-based gene therapy and drug delivery
can benefit from this result in many scenarios where delivering
therapeutic cargo into the core of tumors is necessary.

In future work, we will study how to find PRun to opti-
mize the nanosensors’ converging speeds to the target and to
minimize the probability of disconnecting the signal-cascading
paths. It is also important to improve the error resilience of the
strategy and to generalize it to accommodate settings where
chemicals released by different nanosensors interfere with each
other.

REFERENCES
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