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Abstract

It has been recently proposed that the reactive power injection of distributed energy resources

(DERs) can be used to regulate the voltage across the power distribution network, and simple distributed

control laws have been recently developed in the literature for performing such distributed Volt/VAR

control. However, enabling the reactive-power injection capability of DERs also opens the door for

potential adversarial attacks. Specifically, the adversary can compromise a subset of the DERs and

use their reactive power to disrupt the voltage profile across the distribution network. In this paper,

we study the potential damage (in terms of the voltage disruption) of such adversarial attacks and

how to mitigate the damage by controlling the allowable range of reactive power injection at each

bus. Somewhat surprisingly and contrary to the intuition that the reactive power injection at legitimate

buses should help mitigating the voltage disruption inflicted by the adversary, we demonstrate that an

intelligent attacker can actually exploit the response of the legitimate buses to amplify the damage by

two times. Such a higher level of damage can be attained even when the adversary has no information

about the network topology. We then formulate an optimization problem to limit the potential damage

of such adversarial attacks. Our formulation sets the range of the reactive power injection on each bus

so that the damage by the adversary is minimized, subject to the constraint that the voltage mismatch

(without attack) can still be maintained within a given threshold under an uncertainty set of external

inputs. Numerical results demonstrate the validity of our analysis and the effectiveness of our approach

to mitigate the damage caused by such attacks.
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I. INTRODUCTION

The increasing penetration of renewable generation from distributed energy resources (DERs)

(such as solar panels) poses significant challenges to the reliable operation of the power system

[10]. At the distribution level, reliability requirements dictate that the voltage across the distri-

bution network must be maintained close to targeted levels [4]. However, the highly variable

renewable generation causes uncertain disruption to the voltage profile. Traditional approaches

of voltage control utilize utility-own devices, such as capacitor banks and on-load tap-changing

(OLTC) transformers. These devices incur significant wear-and-tear cost and can only sustain

a limited number of switching operation during their life span. As a result, these traditional

approaches are no longer adequate when the voltage fluctuation caused by DERs are frequent

and uncertain.

Due to this reason, there have been significant recent interests in utilizing the reactive-power

(VAR) injection themselves to perform voltage control [29]. By formulating Volt/VAR control

as an optimization problem, recent studies have led to the development of distributed control

schemes [14]. Under such distributed Volt/VAR control schemes, each DER device only needs

to measure the local voltage and accordingly adjust the amount of reactive power injection.

Together, their reactive power injection will converge to an equilibrium value that solves the

Volt/VAR optimization problem, without the need of any real-time communications. Therefore,

they can be easily implemented in real systems.

However, the introduction of DER-based distributed VAR/Volt control also opens the door

for potential adversarial attacks. Specifically, the adversary can compromise a subset of the

DERs and use their reactive power to disrupt the voltage profile across the distribution network.

Intuitively, if the compromised DER devices are allowed to inject large values of reactive power,

they can potentially cause significant voltage disruption in the network. Therefore, there is a

pressing need to understand the potential level of damage that can be inflicted by this type of

adversarial attack, and how to mitigate them. To the best of our knowledge, this problem has

not been studied in the literature.

In this paper, we take the first step towards answering this question. We first study how

much damage (in terms of the voltage disruption) a given set of compromised DER devices

can inflict on the voltage of a target bus. Note that since the DER devices on the legitimate

buses (including the target bus) still follow the distributed control laws to compensate for the
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observed voltage mismatch, a naive thinking would be that the actions of the legitimate DER

devices would lower the damage inflicted by the adversary. Somewhat surprisingly, our study

shows the opposite. Specifically, we demonstrate that an intelligent attacker can actually exploit

the response of the legitimate DER devices to amplify the damage by two times. Further, such

a higher level of damage can be attained even when the adversary has no information about the

network topology. Therefore, this type of more efficient attack is very simple to implement. We

then solve the optimal attack strategy of the attacker, and we find in our numerical results that

the damage inflicted by the above topology-agnostic strategy is often close to the optimal.

Based on this damage analysis, we then formulate an optimization problem to control the

damage caused by the potential adversary, by appropriately setting the reactive power range

of DERs on each bus. Note that the allowable range of the DERs’ reactive power cannot

be too small. Otherwise, even without attacks, the DER devices will lack sufficient reactive

power to regulate the voltage under the presence of uncertain external inputs (e.g., the uncertain

renewable generation). However, if these ranges are too large, a potential adversary will be able

to inflict significant damage by compromising a few DER devices. The optimization problem

that we formulate precisely capture this trade off. Specifically, given an uncertainty set U of

external inputs and an upper bound M on the number of DER devices that the adversary can

compromise, our formulation will minimize the maximum damage (i.e., the voltage disruption)

that the adversary can inflict across a set of target buses, subject to the constraint that the

voltage mismatch without attack can be maintained below a threshold for all possible external

inputs within the uncertainty set U . Since this formulation has the flavor of adjustable robust

optimization (ARO) [6] and is often intractable, we use tools from affinely adjustable robust

optimization (AARO) to develop a tractable solution.

Related Work

Our work is related to the large body of work for voltage control in power distribution net-

works. Traditional approaches of voltage control relay on capacitor banks and OLTC transformers

(e.g., [1], [4]). Recently, utilizing the reactive power of the inverters on DERs is viewed as a

new and important way of Volt/VAR control [12], [14], [27], [29]. Various DER-based Volt/VAR

control schemes have been proposed, many of which represent distributed control schemes [10],

[11], [14], [15], [19], [22], [23], [28], [29]. However, none of the above related works consider

potential adversarial attacks that can utilize the reactive power injection capability of DERs to
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disrupt the voltage profile across the distribution network. To the best of our knowledge, our

work is the first to study efficient attack strategies for such an adversary, as well as how to

control the damage due to such adversarial attacks.

Our work is also related to the literature of cyber-physical system security. Many studies in

this area focus on compromising the communication, sensing, and/or monitoring capability of

the system [7], [16]–[18], [20], [21], [24]–[26]. For example, false data injection attacks are

designed to inject false sensing data so that the state-estimator of the power system cannot

obtain the true state of the system [16]. Denial of service attacks compromise the availability

the communication channel, and deception attacks compromise the integrity of control packets

or measurements [2]. The main goal of such attacks (as well as replay attacks [18], covert

attacks [24], and stealthy deception attacks [7]) is to alter the sensing data or control packets

while avoiding detection by the system [21]. Note that in centralized power systems, actuators

(such as generators, capacitor banks, transformers) are often difficult to reach by an adversary.

Thus, it makes sense to focus the studies of adversarial attacks on the communication, sensing

and monitoring infrastructure. In contrast, in the adversarial attacks that we study in this paper,

the target is not on the communication, sensing and monitoring part of the system. Instead, the

attacker directly manipulates the physical signal (i.e., the reactive power injection) to induce

large voltage disruptions. No direct communication or sensing is needed here because DER

devices can inject reactive power distributively (and cheaply) and their effect on the voltage is

through physical laws. Therefore, our study is very different from the above related work. We

note that [17] also studies attacks to Volt/VAR control with DERs. However, it still focuses on

compromising data integrity. In summary, both our study of the optimal attack strategy against

distributed voltage control and our formulation of how to optimize the allowable range of reactive

power injection under uncertain external inputs represent new contributions to this literature.

The rest of the paper is organized as follows. Section II introduces the system model for the

power distribution network, the distributed Volt/VAR control scheme, and the adversary model.

Section III analyzes intelligent attack strategies that the potential adversary can use and the

maximum damage that it can inflict. Section IV formulates an optimization problem to control

the potential damage under a given uncertainty set U of external inputs. Section V presents the

simulation results to validate our analysis and our proposed approach for controlling the potential

damage. Then, we conclude.
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II. SYSTEM MODEL

A. Power distribution network

Consider a radial power distribution network with N + 1 buses forming a tree. We use the set

S := {0, 1, · · · , N} to denote the (N + 1) buses, with the bus 0 denoting the substation at the

root of the tree. Let (i, j) denote the line connecting bus i to bus j, with the convention that

bus i is closer to the substation than bus j (i.e., bus i is the parent of bus j on the tree). Let

L ⊂ S × S denote the set of lines. We define Vj, pj and qj as the voltage magnitude, the real

power injection, and the reactive power injection, respectively, of bus j. The real and reactive

power that flow from i to j on line (i, j) are denoted by Pij and Qij , respectively. Let rij and

xij denote the resistance and reactance, respectively, of the line (i, j). Let Sj ⊂ S denote the

set of bus j’s neighboring buses that are further down from the substation. We use a linearized

DistFlow model [29], which establishes a linear relationship between the power flow and bus

voltage. This linearized model serves as an approximation when the voltage profile is relatively

flat, i.e., Vi is not too far away from 1 for all buses i ∈ S when we have used unit voltage of 1

to denote the desired standard voltage. Specifically, assume that the voltage of the substation is

always 1, i.e., V0 = 1. The linearized DistFlow model states that for all (i, j) ∈ L, we have

Pij −
∑
k∈Sj

Pjk = −pj, (1)

Qij −
∑
k∈Sj

Qjk = −qj, (2)

Vi − Vj = rijPij + xijQij. (3)

We can condense the above linearized DistFlow equations into a simpler matrix form [29].

Let matrix Mo =
[
M o

i,l

]
of size (N + 1) × N denote the graph incidence matrix for the tree

topology. Its l-th column corresponds to the l-th line segment in L and its i-th row corresponds

to bus i. Specifically, if bus a(l) and bus b(l) are two ends of the l-th line, and a(l) is closer

to the substation, we have M o
a(l),l = 1 and M o

b(l),l = −1. Further, M o
i,l = 0 for i 6= a(l), b(l).

Let m0 be the first row of Mo, which corresponds to the substation. Let M be the sub-matrix

containing the rest of rows of Mo. Then, we have Mo = [ m0
M ]. Because the tree topology is

connected, the rank of Mo equals N [9], and thus M is invertible. Further, let Dr be an N ×N

diagonal resistance matrix with the l-th diagonal element equal to ra(l),b(l). Similarly, let Dx be

an N × N diagonal reactance matrix with the l-th diagonal element equal to xa(l),b(l). Assume
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that V0 = 1, i.e., the voltage of the substation bus always equals to 1. Using these matrices, the

voltage equations (3) can be written as

mT
0 + MTV = (Mo)T

V0

V

 = DrP + DxQ, (4)

where V, P, and Q are N×1 vectors formed by vj , Pij , and Qij ( for all j ∈ S\{0}, (i, j) ∈ L)

respectively. Similarly, the power balance equations (1) and (2) can be respectively represented

by

−MP = −p,

−MQ = −q,

where p and q are N×1 vectors formed by pj and qj ( for all j ∈ S\{0}), respectively. Solving

for P and Q and substituting them in (4), we get

MTV = DrM
−1p + DxM

−1q−mT
0 ,

or, equivalently,

V = Rp + Xq−M−TmT
0 , (5)

where R := M−TDrM
−1, X := M−TDxM

−1. Note that each element Xij of X represents the

input on the voltage of bus i by one unit of reactive power injected on bus j. It is not difficult to

see (from (1)-(3)) that Xij is equal to the sum of the reactance on those links that are on both

the path from the substation to bus i and the path from the substation to bus j. The elements of

R can be interpreted in a similar manner. With the help of the next lemma, we have

V = Rp + Xq + 1, (6)

where 1 denote the N × 1 vector with all 1’s.

Lemma II.1. −M−TmT
0 = 1.

Remark: One way to interpret Lemma II.1 is as follows. Suppose that there is no real or

reactive power injection, i.e., p = q = 0. Then, all power flow must also be zero. Thus, the

voltage of all buses should be equal to V0 = 1. Therefore, we can let p = q = 0 in (5), apply

the above property, and get the result −M−Tm0 = V = 1. A more mathematical proof is in

Appendix.
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In this paper, we are interested in scenarios with both normal load and DERs, both of which

contribute to the injected real/reactive power on each bus. We use pc and qc to denote the

consumed real and reactive power, respectively, of the normal load. Similarly, we use pg and

qg denote the generated real and reactive power, respectively, of DERs. Then, the total injected

real and reactive power are given by p = pg−pc and q = qg−qc, respectively. Note that these

vectors are all N × 1 vectors. Further, in this paper, we are mainly interested in controlling qg,

i.e., the reactive power of the DER, while the other variables pc, qc, and pg are determined by

external inputs and are uncontrollable. For ease of exposition, throughout the rest of the paper

we make the simplifying assumption that every bus has only one DER device. Thus, in the rest

of the paper we will refer to a DER device by the corresponding bus. We emphasize that there

is no loss of generality due to this assumption because, if a bus has multiple DER devices, we

can replace this bus as multiple buses (each one of them has one DER device) in an expanded

tree topology. Then, we have

V = Rp + Xq + 1

= R (pg − pc) + X (qg − qc) + 1

= Xqg + 1 + U, (7)

where U = Rpg −Rpc −Xqc.

B. Volt/VAR control

In distribution systems, the objective of Volt/VAR control is to control the reactive power

injection to minimize the voltage mismatch between the real-time voltage profile V and the

standard voltage of 1. In the context of this paper, we are mainly interested in controlling the

reactive power qg of DER. (Note that in practice, reactive power can also be injected by other

equipments, such as capacitor banks. However, capacitor banks incur wear-and-tear costs and

their reactive power cannot be changed as frequently as that of DER. Hence, in this paper, we

assume that the effect of capacitor banks is incorporated in the uncontrollable term qc.)

Define qg(t) as the value of qg at time slot t. Suppose that qg is bounded in the range [qg,qg].

Define V(t) as the value of V at time slot t. We assume the following distributed VAR control

scheme proposed in [29],

qg(t+ 1) = [qg(t)−D(V(t)− 1)]+ , (8)
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where [·]+ denotes the projection when the value is outside of the range [qg,qg], i.e., [x]+ =

arg min
y∈[qg ,qg ]

{
∣∣∣∣y−x∣∣∣∣}. The matrix D is a N×N diagonal matrix with all positive diagonal elements,

which correspond to step sizes. It has been shown in [29] that this VAR control scheme can be

viewed as a gradient-projection method to solve the following optimization problem,

min
qg∈[qg ,qg ]

(Xqg + U)TX−1(Xqg + U). (9)

Note that X is positive definite, which has been proved in [29]. As a special case, when every

bus has abundant VAR resources (i.e., [qg,qg] = (−∞,∞) and thus qg is unbounded), the

optimal solution to (9) is qg∗ = −X−1U. Substituting qg∗ into (7), one gets V = 1, i.e., the

iteration (8) converges to a solution that perfectly regulates all voltage to 1. If qg is bounded,

the convergent point may deviate from 1.

C. The adversary model

While distributed VAR control similar to (8) has been shown to regulate the voltage across the

power distribution grid, it also opens the door for potential adversarial attacks. In particular, once

an adversary compromises a number of DER devices, it can use them to inject reactive power

in undesirable ways to disrupt the distribution-level voltage. As we will show in Section III, if

the adversary knows that the legitimate DER devices will follow the control law (8), it can then

leverage their (legitimate) response to further increase the voltage disruption. Thus, it is critical

to understand (i) how adversary can launch such attacks effectively; (ii) how to limit the damage

of such attacks.

In this paper, we take the first step to answer these questions. Note that if the reactive power

injected by a compromised DER device is unbounded, than there is little we can do to limit

the resulting voltage disruption. To make progress, in this paper we make the assumption that

system designer can enforce the range [qg,qg] of the reactive power injection qg of each DER

device. (Recall that we assume that there is only one DER device on a bus. Hence, this range

also bounds the total DER reactive power on each bus.) In other words, even if a DER device

has been compromised, it still cannot inject reactive power outside of this range. We expect that

such enforcement may be achieved by building specialized circuits in the DER device that are

more difficult to compromise.

Without loss of generality, we divide the set S\{0} of all buses except the substation into two

subsets Sb and Sa. The subset Sb contains benign/legitimate buses where DER devices are not
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compromised. The subset Sa contains attacker buses where DER devices are compromised. We

assume that the adversary can also compromise the smart meters on the compromised buses.

Therefore, the system can not closely monitor the reactive power injected on these buses, which

reflects most current power distribution systems where no additional monitoring capability exists.

We now divide the vector qg into two parts qg
a and qg

b , which denote the sub-vectors of reactive

power injected on the attacker buses and benign buses, respectively. We also divide the voltage

vector V and U in the same way and divide the matrices X and D correspondingly. Specifically,

we have

qg =

qg
a

qg
b

 ,V =

Va

Vb

 ,U =

Ua

Ub

 ,1 =

1a

1b

 ,
X =

Xaa Xab

Xba Xbb

 ,D =

Da 0

0 Db

 . (10)

Then, according to (7), the voltage of the benign buses is given by

Vb = Xbaq
g
a + Xbbq

g
b + Ub + 1b. (11)

The adversary can control the values of qg
a(t) at each time slot t in arbitrary ways, as long as it

is within the range [qg
a,q

g
a]. On the other hand, qg

b follows the distributed control law (8), which

responds to the voltage seen at these buses, i.e.,

qg
b(t+ 1) = [qg

b(t)−Db(Vb(t)− 1b)]
+ . (12)

D. Objectives

Based on the above adversarial model, we aim to answer the following questions. First, given

the reactive power range [qg,qg] on each bus, the set of compromised buses Sa, and a target

bus c, we would like to find the sequence of reactive power injection qa(t) by the adversary that

can lead to the largest voltage disruption on the target bus c. We will focus on this first question

in Section III.

Second, we wish to study how to choose the reactive power range [qg,qg] so that the maximum

damage is controlled when a given number of buses can be compromised. Specifically, suppose

that there are at most M number of buses that may be compromised by the adversary, but we

do not know which buses they are (since we assume each bus has one DER device, the value M

is also the number of compromised DER devices). Note that if the reactive power range is too
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large, the potential adversary will be able to cause much voltage fluctuation. On the other hand,

if the range is too small, even legitimate DER devices lack enough reactive power to regulate

the voltage. Thus, the reactive power range needs to be carefully chosen. In Section IV, we will

formulate an optimization problem to capture this trade-off.

III. DAMAGE ANALYSIS

In this section, we first focus on analyzing the maximum amount of damage (i.e., voltage

disruption) that an adversary can inflict by controlling a given set of compromised DER devices

(i.e., a given set of compromised buses).

A. Linearization and centering

In this section, we make the additional simplifying assumption that the reactive power injection

is unbounded for the legitimate buses, i.e., qg
b is unbounded. This assumption allows us to treat

the system dynamics as a linear system, with the reactive power qg
b at legitimate buses as state

variables and the reactive power qg
a(t) at malicious buses as inputs. (The system becomes linear

because the nonlinear projection in (12) for the legitimate buses is removed.) Using (11) and

(12), we have

qg
b(t+ 1) = qg

b(t)−Db(Vb(t)− 1b)

= qg
b(t)−DbXbaq

g
a(t)−DbXbbq

g
b −DbUb

= (I−DbXbb)q
g
b(t)−DbXbaq

g
a(t)−DbUb, (13)

where I denotes the identity matrix. Next, for ease of exposition, we introduce the following

centering procedure for qg
b and qg

a. For qg
a on the attacker buses, let qg,0

a be the middle point in

its range, i.e., qg,0
a = (qg

a +qg
a)/2. For qg

b on the legitimate buses, let qg,0
b be the point such that

Xbaq
g,0
a + Xbbq

g,0
b = −Ub. (14)

Note that (14) implies that qg,0
b is the fixed point for (13) when qg

a(t) = qg,0
a . Such a qg,0

b

always exists because Xbb can be shown to be invertible as in Proposition 1 of [29]. (Note

that Xbb corresponds to the reactance matrix of a sub-network where the malicious buses are

removed, and thus Proposition 1 of [29] also applies to Xbb.) Now, let q̌g
b(t) = qg

b(t)− qg,0
b and

q̌g
a(t) = qg

a(t)− qg,0
a . Then, by (13), we have

q̌g
b(t+ 1) = (I−DbXbb)q̌

g
b(t)−DbXbaq̌

g
a(t). (15)
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Subtracting (14) from (11) and letting V̌b(t) = Vb(t)− 1b, we have

V̌b(t) = Xbaq̌
g
a(t) + Xbbq̌

g
b(t). (16)

In this way, we obtain a typical linear model (15) and (16) with q̌b as the state, q̌a as the

input, and V̌b(t) as the output. Further, the bound on the range of q̌g
a(t) is symmetric, i.e.,

q̌g
a(t) ∈ [−q̌, q̌], where q̌ = (qg

a − qg
a)/2.

The first question that one may be concerned about is whether the adversary can make the

system unstable, i.e., causing unbounded value of V̌b(t). In linear control theory, a system is

bounded input bounded output stable (BIBO stable) if bounded input can only lead to bounded

output [3]. Since the system derived by (15) and (16) is a typical linear system, we can apply

the condition of input-output stability in [3], and conclude that the system is BIBO stable if and

only if the system without those malicious inputs is asymptotically stable. Here, by “without

those malicious inputs,” we mean that those malicious buses always have zero generation and

load, but are still connected to the network (i.e., the topology remains the same). In [29], when

all buses are legitimate, the authors have shown that the system must be asymptotically stable if

λmax

(
D

1
2XD

1
2

)
< 2, (17)

where λmax(·) denotes the largest eigenvalue of a matrix. We wish to use this condition to verify

both asymptotic stability and BIBO stability. However, note that when there is an adversary,

the matrix X is changed to Xbb. Thus, it appears that we need to verify the condition (17) for

every possible set of malicious buses, which would have been quite computationally intensive.

Fortunately, the following proposition shows that, as long as (17) holds for the original system

without attack, it must also hold for the system under attack, regardless of which set of buses

are malicious.

Proposition 1. Regardless of the set of malicious buses, the system under attack (described by

(15) and (16)) is guaranteed to be BIBO stable if λmax(DX) < 2, where X is given below (5)

and is for the system when there is no attack. (Note that λmax(DX) = λmax

(
D

1
2XD

1
2

)
, and

hence the condition above is the same as (17).)

Proof. See Appendix.
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B. A topology-agnostic attacker with twice the immediate damage

In this subsection, we present one example of an intelligent attack strategy (of choosing the

reactive power injection qg
a(t)) that can leverage the response of legitimate nodes to increase the

damage, i.e., the voltage disruption V̌(t). For simplicity, let us first focus on the setting with

one attacker bus. In this case, the vector q̌g
a(t) reduces to a scalar q̌ga(t) in the interval [−q̌, q̌].

Assume that the initial state of the system is at the equilibrium, i.e., q̌ga(0) = 0, q̌g
b(0) = 0,

and consequently, V̌b(0) = 0. If the adversary changes q̌ga(1), while the reactive power injection

q̌g
b(1) at legitimate buses remains at 0, then the voltage disruption at the target bus c is simply

[Xba]cq̌
g
a(1) (from (16)), where Xba is a column vector corresponding to the one attacker bus

a, and [·]c denotes the row corresponding to the target bus c. Since q̌ga(1) is within [−q̌, q̌], the

absolute value |[Xba]cq̌
g
a(1)| is at most |[Xba]c| q̌. Thus, we refer to this value as the immediate

damage (from the attacker bus a to the target bus c). Of course, the values of q̌g
b(t) will not remain

at zero, but instead will follow (15). A naive thinking is that, since the change in q̌g
b(t) tends to

regulate the voltage closer to 1, the dynamics of the legitimate bus will make the ultimate damage

smaller than the immediate damage. Our first result, described below, shows that this naive

thinking is incorrect. Somewhat surprisingly, by leveraging the “corrective” dynamics of q̌g
b(t),

the attacker can actually inflict a damage that is twice the immediate damage. This increased

damage can be attained even if the adversary knows nothing about the network topology.

More precisely, by (15) and (16), we can write down the relationship between the reactive

power injection q̌ga(t) of the attacker bus from time slot t = 1 to T and the damage to any bus

j ∈ Sb at the time slot T as[
V̌b(T )

]
j

=

[
−

T−1∑
t=1

Xbb(I−DbXbb)
T−t−1DbXbaq̌

g
a(t)

+Xbaq̌
g
a(T )

]
j

, for all j ∈ Sb. (18)

Now, consider the following attack strategy. At time t = 1, · · · , T , let q̌ga(t) = q̌, i.e., the

adversary always inject the largest possible reactive power. As one would expect, the dynamics

(15) of the reactive power injection at legitimate buses will drive V̌b(t) to zero. In other words,
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we have, from (18),

0 = lim
T→∞

[
−

T−1∑
i=0

Xbb(I−DbXbb)
iDbXbaq̌ + Xbaq̌

]
j

, for all j ∈ Sb

=⇒ Xba = lim
T→∞

T−1∑
i=0

Xbb(I−DbXbb)
iDbXba. (19)

Obviously, this strategy of keeping the same amount of reactive power injection is unwise for

the attacker bus. Instead, the adversary can flip the sign of q̌ga(t) at t = T + 1. We then get,[
V̌b(T + 1)

]
c

=

[
−

T∑
i=1

Xbb(I−DXbb)
iDXbaq̌ + Xba(−q̌)

]
c

.

Using (19), we then have

lim
T→∞

[
V̌b(T + 1)

]
c

= −2 [Xba]c q̌. (20)

In other words, when T is large, the damage at T + 1 is almost twice the immediate damage.

To summarize, the adversary can simply hold q̌ga(t) at one extreme value (either q̌ or −q̌) for a

sufficient long period of time T , wait for the legitimate buses to approach their equilibrium, and

then flip the sign of q̌ga(t) in the next time slot. In this way, the maximum voltage disruption is

twice the immediate damage.

When there are multiple attacker buses, the same strategy can be applied for every attacker

bus. Since the system is linear, the total damage simply adds up and can be written as 2 [|Xba|]c q̌,

where q̌ is now a vector, and | · | takes the absolute value for each element in a matrix. It is

remarkable that this strategy does not need any network topology information, which is easy to

be implemented by the adversary.

C. The optimal attack strategy

The above example naturally leads to the following question of whether a more intelligence

attack strategy can introduce an even larger damage. In this section, we characterize the optimal

attack strategy with the largest possible damage, under the assumption that the adversary knows

the full network topology. For simplicity, we again first assume that there is only one attacker

bus and the initial state of the system is at the equilibrium. Then, we can formulate the problem

for the optimal attack strategy as

max
T,q̌g

a(t),t∈{1,2,··· ,T}

[∣∣V̌b(T )
∣∣]

c

subject to (18) and − q̌ ≤ q̌ga(t) ≤ q̌, for all t ∈ {1, 2, · · · , T}.
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This problem has a standard solution [3]. Notice that the relationship (18) of V̌b(t) and q̌ga(t) is

linear. Then, we can get, for a fixed T ,[∣∣V̌b(T )
∣∣]

c

=

[∣∣∣∣∣−
T−1∑
t=1

Xbb(I−DbXbb)
T−t−1DbXbaq̌

g
a(t) + Xbaq̌

g
a(T )

∣∣∣∣∣
]
c

≤
T−1∑
t=1

[∣∣−Xbb(I−DbXbb)
t−1DbXba

∣∣]
c
· q̌ + [|Xba|]c · q̌, (21)

where equality can be achieved by setting

q̌ga(t) =

q̌ , if
[
−Xbb(I−DbXbb)

T−t−1DbXba

]
c
≥ 0

−q̌ , otherwise,

for time t = 1, · · · , T − 1, and

q̌ga(T ) =

q̌ , if [Xba]c ≥ 0

−q̌ , otherwise,

for time T . Since (21) is monotonically increasing in T , we get the maximum damage over T

as

max
T,q̌ga(t),t∈{1,2,··· ,T}

[∣∣V̌b(t)
∣∣]

c

= lim
T→∞

(
T−1∑
t=1

[∣∣−Xbb(I−DbXbb)
t−1DbXba

∣∣]
c
q̌ + [|Xba|]c q̌

)
=β [|Xba|]c q̌,

where

β =
lim
T→∞

(∑T−1
t=1 [|−Xbb(I−DbXbb)

t−1DbXba|]c + [|Xba|]c
)

[|Xba|]c
. (22)

Since the system is BIBO stable, the limit in (22) always converges and β is always bounded.

Unfortunately, it seems difficult to get a closed-form expression for β. We have conducted

numerical experiments based on various topologies. A representative numerical result in Sec-

tion V shows that, when the step size D is reasonably small, the value of β is only slightly

larger than 2. In other words, even if an attacker knows the full network topology, its damage

is usually still very close to that of the simple strategy discussed in Section III-B (which does

not require topology information at all). Thus, in the next section, we will assume that the
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attacker always uses the topology-agnostic strategy in Section III-B, in which case the damage

is 2 [|Xba|]c q̌. Recall that q̌ = (qg
a − qg

a)/2. Thus, going back to the system equations before

the centering transformation of Section III-A, this maximum damage can simply be written as

[|Xba|]c (qg
a − qg

a).

Finally, we recall that the analysis of this section assumes that the reactive power injection of

the legitimate buses is unbounded. In the next section, we will impose bounds on the reactive

power of all buses. Although we do not know the optimal attack strategy in this more general

setting, we expect that the maximum damage in the bounded setting will likely not be larger

(which will be confirmed by the numerical results in Section V). Thus, we take the above

expression of [|Xba|]c (qg
a−qg

a) as an approximate and conservative (i.e., upper bound) estimate

of the maximum damage inflicted by the adversary.

IV. SETTING THE REACTIVE POWER RANGE

In this section, we study how to limit the damage of the potential adversary by setting the

reactive power range of the DER devices. As we discussed at the end of Section II-D, the reactive

power range [qg,qg] needs to be carefully chosen. If the range is too large, when there is an

attack, the adversary will be able to cause much voltage fluctuation. If the range is too small, even

without attack the legitimate DER devices will lack enough reactive power to regulate the voltage

under varying and uncertain external inputs. In this section, we will formulate an optimization

problem to capture this trade-off. Naturally, this formulation needs to consider both scenarios

(i.e., with and without attacks). Specifically, in the following, we aim to minimize the voltage

disruption under attack subject to the constraint that, when there is no attack, the voltage can be

regulated within a certain threshold under a given uncertainty set of external inputs (including

real and reactive power consumption of normal load, and the real power injection of DER).

A. Without attack

Even without attack, the voltage for each bus should be within a certain range (e.g., 10%

away from V0 = 1). Let ∆V denote the maximum allowable voltage mismatch when there is no

attack. Then, by (7), we wish to control the reactive power injection qg such that

−∆V ≤ Xqg + U ≤ ∆V , (23)
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where U is given below Eq. (7). However, in reality, the values of pg, pc, and qc are varying

and uncertain, and so is U. Thus, we assume that we are given an uncertainty set U of possible

values of U. This uncertainty set then produces a constraint on qg and qg, i.e.,

for all U ∈ U , there exists qg ∈ [qg,qg] such that (23) holds. (24)

In this paper, for simplicity we use an uncertainty set U of a box form, U = [U0−U,U0 +U],

where U0 and U are two given N × 1 vectors. (We note that our approach can also be applied

to more complex forms of uncertainty sets.)

B. With attack

We assume that a limited number M of DER devices can be compromised at the same time,

but the exact set of DER devices is unknown. Since we assume that each bus has one DER

device, this translates into M attacker buses. As in Section II-C, denote the set of attacker buses

by Sa. Then, we have Sa ⊂ S\{0}, and |Sa| = M , where |Sa| denotes the number of elements in

Sa. Let Λ denote the set of target buses c that we wish to protect. Clearly, the malicious reactive

power injection of the attacker will produce additional voltage mismatch on top of the voltage

mismatch without attack (which is supposed to be within ∆V as in (23)). In the following,

we will reserve the term “voltage disruption” for this additional voltage mismatch due to the

attacker, and we will use the term “voltage mismatch without attack” for the case when there

is no attack. Our goal is thus to minimize the maximum voltage disruption across all buses in

Λ. Recall from the end of Section III that we use the expression of the voltage disruption under

the topology-agnostic scheme. Thus, the above goal can be written as minimizing δ subject to∑
j∈Sa

|Xcj|
(
qg

j − qg

j

)
≤ δ, for all Sa ⊂ S, |Sa| = M, for all c ∈ Λ, (25)

where Xcj denotes the element of X at the c-th row, j-th column.

Putting these altogether, we arrive at the following formulation

min
qg ,qg

δ, subject to (24) and (25), (26)

which is an instance of adjustable robust optimization problems [6]. Note that under this for-

mulation, when there is an attack the worst-case voltage deviation/mismatch from 1 on any bus

c ∈ Λ is (δ + ∆V ), because δ is on top of the allowable voltage mismatch ∆V without attack.
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C. A tractable solution

Unfortunately, the above formulation can be intractable. First, the number of all possible

Sa (and also the number of constraints in (25)) grows exponentially with M . Second, even

with the boxed uncertainty set, the adjustable robust optimization problem like (26) is usually

computational intractable [5] [6]. To resolve the first difficulty, we make the constraint (25)

stricter as

|Xcj|
(
qg

j − qg

j

)
≤ δ

M
, for all j ∈ S, for all c ∈ Λ. (27)

In Section V, we will show via simulation that the stricter security constraint (27) has similar

performance compared with the original one. To resolve the second difficulty, we use the idea of

affinely adjustable robust counterparts (AARC) [6]. Specifically, we enforce an affine relationship

between qg and U as

qg = WU + w, for all U ∈ U , (28)

where W denotes a N ×N matrix, and w denotes a N × 1 vector. we will choose W and w

such that qg given by (28) is always within [qg,qg]. Note that the affine restriction leads to a

stricter constraint than (24). In summary, the AARC formulation becomes

min
qg ,qg ,W,w

δ (29)

subject to (27)

WU + w ∈ [qg,qg], for all U ∈ U .

Although the last constraint seems to involve an infinite number of inequality constraints (one

for every U), the above formulation is a standard AARC and can be transformed to a standard

linear programming (LP) problem, which can then be solved effectively [5]. Due to page limits,

we omit this transformation here. Interest readers can refer to [5].

Remark: We note that, when there is no attack, the distributed control law (8) generally

converges to an equilibrium point that is different from the value of qg given by the affine

policy in (28). As a result, even when the affine policy meets the constraint (23) for all U ∈ U ,

the distributed control law (8) may not. However, in our experiments, we have found that the

latter type of violation rarely happens (see Section V for details). The reason is that the affine

policy is already conservative in nature. Thus, the resulting reactive power range [qg,qg] often

provides enough room for the distributed control law (8) to regulate the voltage within (23).
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Fig. 1. Voltage disruption at the target bus 13 under different kinds of attack strategies as the attacker bus is varied.

V. SIMULATION RESULTS

In this section, we use simulation to verify our damage analysis in Section III and to demon-

strate the effectiveness of our proposed approach in Section IV for mitigating the damage of the

potential adversary. Note that in all of the figures, we will use the unit voltage of 1 to denote

the desired voltage throughout the distribution grid (also called “feeder”), even though the real

voltage on these feeders differs. Further, as in Sections II-IV, we assume one DER device per

bus.

A. Experiments based on a single-phase 16-bus feeder with a line topology

First, we use a simple distribution network with a line topology (which is also used in [29]).

This is a 12kV distribution feeder with 16 buses on a line topology. Each line segment between

two adjacent buses has the identical impedance of (0.466 + j0.733)Ω. Each bus has a constant

load of (100 + j50)kVA. The step size of the distributed control law (8) is chosen to be 15

for each bus. (This step size is reasonably away from the threshold for stability. As a value for

comparison, if the step size is below 40.3175, condition (17) is satisfied, which guarantees that

the system is stable. If the step size is above 40.3175, our simulation shows that the system

becomes unstable.)

We focus on one target bus 13, which is further away from the substation. We assume that

there is only one attacker bus, but we vary this attacker bus from 1 to 15 (except 13). The

range of reactive power injection of the DER at the attacker bus is [−100, 100]kVAR. The DER
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devices on the legitimate buses have unlimited reactive power (note that the same assumption

is used in Section III). In Fig. 1, we show the damage to the target bus 13 by different attack

strategies, as we vary the attacker bus. Here, the “immediate damage” refers to the voltage

disruption inflicted by the attacker assuming that the reactive power injection at the legitimate

buses is not changed. The “topology-agnostic strategy” refers to the attacker in Section III-B that

does not need information on network topology. The “optimal strategy” refers to the attacker

in Section III-C that requires topology information. From Fig 1, we observe that, by leveraging

the response of legitimate buses, the topology-agnostic strategy can indeed inflict twice the

immediate damage. Further, although the optimal strategy inflicts slightly higher damage than

the topology-agnostic strategy, the difference is small. Notice that the immediate damage and

the damage of the topology-agnostic strategy are independent of the step size in the distributed

control law (8). On the other hand, we find that the damage of the optimal attack strategy may

increase with the step size. (This is expected because, if the step size is too large, the system

will eventually become unstable. Thus, the damage of the adversary becomes arbitrarily large.)

However, in our simulations we find that, when the step size is relatively small (less than 20 in

this case), the damage of the optimal attack strategy is not very sensitive to the step size. Our

experiments with other more realistic topologies show similar results. Thus, these results justify

the use of the topology-agnostic strategy in Section IV for an estimate of the maximum damage

inflicted by the adversary. Fig. 1 also shows that, if the attacker bus is closer to the substation

than the target bus (i.e., the attacker on bus 1∼12), then the damage becomes larger when the

attacker bus gets further away from the substation. On the other hand, if the target bus is closer

to the substation than the attacker bus (i.e., the attacker on bus 14∼15), then the damage is less

dependent on the location of the attacker. This behavior is because [Xba]c in (20) depends on

the overlap between the path from the substation to the attacker bus and that to the target bus.

Thus, a larger overlap leads to a larger damage.

Fig. 2 illustrates a typical attack sequence by the attacker bus 14 with the topology-agnostic

strategy. The top sub-figure shows the voltage disruption on the target bus 13 over time. The

bottom sub-figure shows the reactive power injection qga of the attacker bus 14 by the topology-

agnostic strategy. The attack starts at t = 100 when the attacker bus injects 100kVAR reactive

power. Notice that the voltage disruption at t = 100 is actually the immediate damage. Due to

the actions of other legitimate buses, the voltage disruption on the target bus gradually goes to

zero over 100 ≤ t ≤ 199. However, at t = 200, the attacker bus suddenly changes the sign of qga
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Fig. 2. Voltage disruption to the target bus 13 over time (top figure) when the attacker bus 14 uses the topology-agnostic strategy

(bottom figure) to attack.

Fig. 3. IEEE 34 node test feeder.

to achieve the peak voltage disruption. Note this peak disruption is twice the immediate damage

at t = 100. From then on, the attacker bus keeps flipping the sign of qga every 100 time slots. As

a result, the topology-agnostic strategy can bring twice the immediate damage at t = 200, 300

and so on.

B. Experiments based on the IEEE 34-node test feeder

Next, we use a more realistic topology shown in Fig. 3, which is based on an actual feeder

located in Arizona [8]. It has a nominal voltage of 24.9kV. We use the configuration of phase 1

of this feeder [8] to test our proposed scheme in Section IV. Since we are mainly interested in

using the reactive power injection of DERs to control voltage, we do not use voltage regulators

at line 814-850 and line 852-832. To simplify our experiments, without loss of generality, we
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Fig. 4. Relationship between δ and uncertainty ∆p with different number M of attacker buses |Sa|.

assume that all uncertainty comes from the real power injection of DER, while the real and

reactive power consumption of the normal load are fixed. To model the uncertainty set U when

there is no attack, we assume that the level of uncertainty is the same for every bus. Specifically,

the real power injection [pg]k of the DER on each bus k is within the range [0, 2∆p]. Thus, by

varying ∆p, we vary the level of uncertainty. When there is an attack, we aim to protect bus

890 and bus 844 because they have the highest and the second highest real-power loads, which

are 150kW and 135kW, respectively. We let the maximum allowable voltage deviation ∆V to

be 10% and solve for the maximum damage δ for different size M of the set Sa of attackers

buses.

Fig. 4 shows the relationship between δ and the amount of uncertainty ∆p for different sizes

of the set Sa of attacker buses. The three curves labeled with “|Sa| = 1”, “|Sa| = 2”, and

“|Sa| = 3” are obtained when we apply affine policy with the original security constraint (25),

which exhaustively enumerates all subsets Sa of size M . Clearly, as either the uncertainty ∆p or

the size M of the set of attacker buses increases, the maximum damage δ increases. Fig. 4 can

be used by the utility to determine the amount of uncertainty that it can handle while tolerating

a given level of damage. For example, suppose that we want to limit the total voltage mismatch

within 20%. Since ∆V = 10%, we have δ ≤ 0.2−∆V = 0.1. Fig. 4 shows that when δ ≤ 0.1,

the uncertainty ∆q for |Sa| = 3, |Sa| = 2, and |Sa| = 1 should be at most about 300kW, 400kW,

and 600kW, respectively. The fourth curve, labeled with “|Sa| = 3 (approx.),” is obtained when

we use the stricter but simpler security constraint (27) for |Sa| = 3. We can observe that the
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Fig. 5. The range of qg for each bus when |Sa| = 3, 2, and 1. The y-axis represents either ∆q = (qg − qg)/2 (the first

3 bars) or q0 = (qg + qg)/2 (the forth bar). The values for buses 802 and 806 are not plotted because they are very large.

They are reported here. The values for bus 802 are (30293.33, 46209.22, 65532.76, -801.50) kVAR. The values for bus 806 are

(18252.31, 28936.99, 39230.87, -801.50) kVAR.

result using (27) almost perfectly matches the result that uses the original security constraint

(25). This result demonstrates the effectiveness of replacing the original security constraint (25)

by the simpler one (27), which reduces the complexity. A further important benefit of using the

simpler constraint (27) is that δ becomes proportional to |Sa|. This relation holds because, when

we use the simpler constraint (27), the optimal solution of the range of reactive power injection

for the optimization problem (29) becomes independent of |Sa|. Hence, the utility only needs

to solve (29) for |Sa| = 1, and then extrapolate the solution for any value of |Sa|. This is much

more efficient when the maximum number of compromised DER devices is high.

To provide more details of the resulting range of the DER reactive power, we show in Fig. 5 the

range of reactive power injection of DER for each bus when the uncertainty level is ∆p = 800kW.

Here, for each bus the first three bars represent the value of ∆q = (qg − qg)/2 for |Sa| = 3,

|Sa| = 2, and |Sa| = 1, respectively. The last bar represents the value of q0 = (qg + qg)/2,

which we refer to as the “offset.” From the figure, we can see that buses closer to the substation

have larger reactive-power range. That is because adversaries that are closer to the substation

have less influence on the voltage at the target buses (which can also be seen from Fig. 1). As

a result, those buses can be allowed to have larger ranges of qg without violating the security

constraint. Notice that we report the values for bus 802 and bus 806 (two closest buses to the

substation) in the caption instead of in the figure.

We also use simulations to verify some of the assumptions that we made in our analysis. Recall

that the damage analysis in Section III is based on the assumption that legitimate buses have

unlimited reactive power. Next, we evaluate the damage under the topology-agnostic strategy
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Fig. 6. The empirical cumulative distribution function of the ratio between the real damage and the immediate damage under

the topology-agnostic strategy, when all buses have restricted reactive power.

when this assumption is removed. Specifically, we choose |Sa| = 3, ∆p = 800kW and obtain

the optimal range of reactive power [qg,qg] by solving (29). Then, we uniformly randomly pick

three attacker buses, one target bus, and the value of real-power [pg]k ∈ [0, 2∆p] for each bus

k. Next, let attacker buses inject zero reactive power, i.e., qg
a = 0, and let the system reach

the equilibrium of the distributed control law (12). We then let three attacker buses apply the

topology-agnostic strategy and we record the voltage deviation from the equilibrium state on the

target bus. We use this voltage deviation to quantify the damage caused by attackers. Fig. 6 plots

the empirical distribution function of the ratio between this damage and the immediate damage

(defined in Section III-B). From Fig. 6, we observe that, for most cases, the topology-agnostic

strategy can still bring twice the immediate damage. In other cases (≤ 2% of the random cases),

having bounds on the reactive power injection at legitimate buses makes the damage smaller.

Thus, the figure justifies the use of our damage estimate (25) in Section IV even when the range

of the reactive power at legitimate buses is also enforced.

Finally, recall the discussion at the end of Section IV that the affine policy uses different

reactive power injection from that chosen by the equilibrium point of the distributed control law

(8). As a result, the constraint (24) may still be violated by the distributed control law (8) even

if the affine policy satisfies the constraint (23). We now use simulation to evaluate how likely

this mismatch can happen. Specifically, we choose |Sa| = 1, ∆p = 800kW, and target buses

being bus 890 and bus 844. After we determine the optimal range of reactive power injection
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Fig. 7. The empirical cumulative distribution function of the voltage mismatch without attack.

[qg,qg] from (29), we uniformly randomly pick the value of [pg]k ∈ [0, 2∆p] for each bus k and

record the largest voltage mismatch among all buses when the local voltage control scheme (8)

is used. Fig. 7 shows the empirical distribution function of that voltage mismatch. Recall that we

have used ∆V = 10%, i.e., the affine policy ensures that the voltage mismatch is always below

10% when there is no attack. From Fig. 7, we observe that the voltage mismatch under the

distributed control law (8) is also below 10% for nearly all cases. In summary, the use of affine

policy provides a convenient and fairly accurate way to control the voltage mismatch without

attacks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we study adversarial attacks to voltage control in the power distribution network.

We first study how intelligent attacker can vary the reactive power injection to inflict large voltage

disruption. We demonstrate that a topology-agnostic attack strategy that can leverage the response

of legitimate buses to amplify the damage by two times. We also solve the optimal attack strategy

when network topology information is known to the adversary. Then, we formulate an adjustable

robust optimization to control the potential damage of the adversary by optimally setting the

reactive power range of the DER devices.

There are a number of interesting directions for future work. First, although we have shown

by simulation that the gap between the damage of the optimal strategy and the damage of the

topology-agnostic strategy is often small (when the step size of (8) is not too large), it would be



25

desirable if we can obtain a more rigorous theoretical bound on the difference. Second, it would

also be of interest to understand the optimal attack strategy when the reactive power injection

of legitimate DERs is bounded (which makes the system non-linear). Further, throughout this

paper we have assumed that there is no additional monitoring capability by the system to monitor

reactive power injections. It would be interesting to study how to optimally launch attacks when

there is additional monitoring capability, so that the attacks cannot be detected (e.g., in the

manner of [21]), as well as how to best deploy such monitoring capability to limit the potential

damage.
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[21] PASQUALETTI, F., DÖRFLER, F., AND BULLO, F. Attack detection and identification in cyber-physical systems. IEEE

Transactions on Automatic Control 58, 11 (Nov. 2013), 2715–2729.

[22] ROBBINS, B. A., HADJICOSTIS, C. N., AND DOMINGUEZ-GARCIA, A. D. A two-stage distributed architecture for voltage

control in power distribution systems. IEEE Transactions on Power Systems 28, 2 (May 2013), 1470–1482.

[23] SINGH, S., AND SINGH, S. P. A smart volt-var optimization engine for energy distribution system. In International

Conference on Emerging Trends in Electrical, Electronics and Sustainable Energy Systems (ICETEESES) (Sultanpur,

India, Mar. 2016), pp. 35–41.

[24] SMITH, R. S. A decoupled feedback structure for covertly appropriating networked control systems. IFAC Proceedings

Volumes 44, 1 (Jan. 2011), 90–95.

[25] SRIDHAR, S., HAHN, A., AND GOVINDARASU, M. Cyber–physical system security for the electric power grid. Proceedings

of the IEEE 100, 1 (Jan. 2012), 210–224.

[26] SRIDHAR, S., AND MANIMARAN, G. Data integrity attack and its impacts on voltage control loop in power grid. In IEEE

Power and Energy Society General Meeting (Detroit, MI, USA, July 2011), pp. 1–6.
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APPENDIX

A. Proof of Lemma 2.1

Proof. Because the sum of elements in each column of the incidence matrix Mo is zero, we

have

[ N+1︷ ︸︸ ︷
1 1 · · · 1

] m0

M

 =
[ N+1︷ ︸︸ ︷

0 0 · · · 0
]

=⇒m0 +
[ N︷ ︸︸ ︷

1 1 · · · 1
]
·M =

[ N︷ ︸︸ ︷
0 0 · · · 0

]
=⇒MT · 1 = −mT

0

=⇒ − (MT )−1 ·mT
0 = 1

=⇒ −M−TmT
0 = 1.

B. Proof of Proposition 3.1

Proof. The result in [29] shows that X is positive definite. Recall that X = M−TDxM
−1 and

Dx is diagonal. Thus, X and D
1
2XD

1
2 are real, positive definite, and symmetric. We can show

that DX and D
1
2XD

1
2 have the same set of eigenvalues. To see this, let λ be an eigenvalue of

DX with the corresponding eigenvector s. Then, we have

DXs = λs

⇐⇒ D
1
2XD

1
2D−

1
2 s = D−

1
2λD

1
2D−

1
2 s

⇐⇒ D
1
2XD

1
2

(
D−

1
2 s
)

= λ
(
D−

1
2 s
)
,

which means that λ is also an eigenvalue of D
1
2XD

1
2 . Because D

1
2XD

1
2 is real, positive definite,

and symmetric, the eigenvalues of D
1
2XD

1
2 (and also the eigenvalues of DX) are all real

and positive. By the assumption of the proposition, we then have λmax

(
D

1
2XD

1
2

)
< 2. Now,

consider the matrix Xbb when some buses are malicious. Using a similar argument, we conclude

that DbXbb has the same eigenvalues with D
1
2
b XbbD

1
2
b We now use Cauchy Interlace Theorem

[13], which is stated below for readers’ convenience:

Theorem A.1 (Cauchy Interlace Theorem). Let A be a Hermitian matrix of order n, and let B

be a principle sub-matrix of A of order n− 1. If λn ≤ λn−1 ≤ · · · ≤ λ1 are the eigenvalues of
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A and µn ≤ µn−1 ≤ · · ·µ2 are the eigenvalues of B, then λn ≤ µn ≤ λn−1 ≤ µn−1 ≤ · · · ≤

λ2 ≤ µ2 ≤ λ1.

Since D
1
2XD

1
2 is symmetric and D

1
2
b XbbD

1
2
b is a principle sub-matrix of D

1
2XD

1
2 , by repeat-

edly applying Cauchy Interlace Theorem, we have λmax

(
D

1
2
b XbbD

1
2
b

)
≤ λmax

(
D

1
2XD

1
2

)
, which

implies that λmax (DbXbb) = λmax

(
D

1
2
b XbbD

1
2
b

)
< 2. Using Theorem 10.17 of [3, pp. 508], we

conclude that the linear system described by (15) and (16) is BIBO stable.


