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Abstract

In this paper, we are interested in using large-deviations theory to char-
acterize the asymptotic decay-rate of the queue-overflow probability for dis-
tributed wireless scheduling algorithms, as the overflow threshold approaches
infinity. We consider ad-hoc wireless networks where each link interferes with
a given set of other links, and we focus on a distributed scheduling algorithm
called Q-SCHED, which is introduced by Gupta et al. First, we derive a
lower bound on the asymptotic decay rate of the queue-overflow probability
for Q-SCHED. We then present an upper bound on the decay rate for all pos-
sible algorithms operating on the same network. Finally, using these bounds,
we are able to conclude that, subject to a given constraint on the asymp-
totic decay rate of the queue-overflow probability, Q-SCHED can support a
provable fraction of the offered loads achievable by any algorithms.

Key words: Wireless Networks, Quality of Service, Large Deviations,
Scheduling Algorithms.

1. Introduction

Link scheduling is an important problem for ad-hoc wireless networks. In
wireless networks the transmissions at neighboring links can interfere with
each other. Hence, in order to maximize the capacity of the system, it is
critical to schedule only a subset of non-interfering links at each time. There
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have been many studies on designing and analyzing scheduling algorithms
for wireless network. A notable result is the well-known maximum-weight
scheduling algorithm, which has been shown to be throughput-optimal, i.e.,
it can stabilize the network at the largest set of offered loads [2]. However, this
algorithm is centralized and with high computational complexity. Therefore,
many researchers have proposed low-complexity and distributed scheduling
algorithms (see, e.g. [3–8]). Often, the goal is to be able to stabilize the
network for a provable fraction of the capacity region. For example, the low-
complexity algorithm in [5] has been shown to sustain close to 1/2 of the
capacity region under the node-exclusive model.

To date most studies of wireless scheduling algorithms have mainly fo-
cused on stabilities. In other words, they ensure that the queues do not grow
to infinity. Although stability is an important criterion, for many real-time
applications stability is far from being sufficient. For example, when watch-
ing streaming video or listening to streaming audio, the user would expect
that the delay of every packet can be upper bounded with high probability.
As stability only ensures that the queue-length of each link remains finite,
it cannot guarantee such type of stringent quality-of-service (QoS) require-
ments.

In certain cases, the probability of delay violation can be mapped to
the probability of queue overflow. Unfortunately, both problems have been
known to be very difficult. First, the exact probability distribution is usually
mathematically intractable. Hence, one often has to turn to asymptotic tech-
niques, such as large-deviations. For wireline networks, many results have
been obtained using large-deviations techniques [9], based on the assump-
tion that the packet arrival process is known and the service rate of each link
is time-invariant. However, in wireless networks, the service rate process is
time-varying. Some progress has been made for the case when the scheduling
decision is based only on the channel state, which means that the service rate
process has known statistics [10, 11]. However, for many wireless scheduling
algorithms, even the statistics of the service rate process are unknown.

Recently, the queue-overflow probability for a number of queue-length
based scheduling algorithms, for which the statistics of the service rate pro-
cess are unknown, have been studied in [12–16] using sample-path large-
deviations. In these works, the algorithms are centralized and are for a
single cell. Further, the algorithms are deterministic in the sense that the
scheduling decision is a deterministic function of the system state.

In this paper, we will develop techniques to estimate and control the QoS
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of distributed scheduling algorithms for ad hoc networks. We will focus on
a random access algorithm for ad hoc wireless networks called Q-SCHED
[5]. Note that due to the distributed and random nature of Q-SCHED, the
techniques in prior works [12–16] do not apply directly. This is because the
sample-path large deviations techniques in these prior works require the cost
of each sample-path to be known. Note that for the scheduling algorithm
in these prior works, since the scheduling decision is a deterministic func-
tion of the system state, the statistics of the service rate given the system
state is known. Hence, the cost of each sample-path can be written down
explicitly. However, for the Q-SCHED algorithm, due to the randomness and
distributive nature of the algorithm, the statistics of the service rate given
the current system state is not precisely known. (In fact, only bounds on
its statistics are known, as can be seen from Lemma 1.) Hence, we can not
specify the cost of a sample path explicitly, and thus, we can not use the
methodologies from [12–16] directly.

As in [12–16] the questions that we are interested in are: a) how to
estimate the decay rate of the queue overflow probability of this algorithm,
and b) given an overflow constraint, how to calculate the set of offer-load
vectors that this algorithm can support. To answer these questions, we will
first obtain a lower bound on the decay rate of the overflow probability for
Q-SCHED. Then, based on this bound, we provide a lower bound on the
set of offer-load vectors that this algorithm could support at a given queue-
overflow constraint. To the best of our knowledge, this is the first work
that characterizes the queue-overflow probability of distributed scheduling
algorithms for ad-hoc networks in a large-deviations setting. Finally, we show
that subject to a given queue-overflow constraint, the offer load supported
by Q-SCHED is at least a provable fraction of the offered load supported by
any other algorithms.

2. System Model

We use the model from [5]. We consider a wireless network of N nodes.
Let V be the set of nodes, E be the set of directed links between nodes, and
G(V,E) be the directed connectivity graph of the network. Each link l ∈ E
interferes with a set of other links in E, which we denote as El. We assume
that if k ∈ El then l ∈ Ek, i.e., the interference relationship is symmetric. We
also let l ∈ El, i.e., El = {l} ∪ {l′ ∈ E : l′ interferes with l}. This interference
set varies when different communication techniques are used. For example,
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for bluetooth, we use the node-exclusive interference model, also known as
the primary interference model or the one-hop interference model, where El is
the set of all links that are connected to either end-point of l. In IEEE 802.11
WLAN, the interference set El will be the two-hop neighbors of l, including
l.

We assume a slotted system. Let al(n) denotes the number of packets that
arrive at link l in time-slot n. We assume that for each l, al(1), al(2), ... are
i.i.d. and λl = E[al(1)]. Moreover, we assume that al(n) is upper bounded
by AM for all n > 0 and all l ∈ E, i.e., 0 ≤ al(n) < AM , which means that
the number of arrival packets is finite in each time slot.

Let dl(n) denote the number of packets that can be served by link l in
time-slot n. Assume that the capacity of each link is a fixed number cl. Let
sl(n) = 1 indicates that link l is scheduled in time-slot n, sl(n) = 0 otherwise.
Clearly, dl(n) = clsl(n). We assume a single-hop system, i.e., packets served
at link l immediately leave the system. Let ql(n) denote the backlog of link
l in slot n, and ~q(n) =

(

q1(n), q2(n), ..., q|E|(n)
)

. Then the evolution of each

ql(n) is given by ql(n + 1) = [ql(n) + al(n) − dl(n)]+, where [·]+ denote the
projection to [0,∞). We also define:

Ai(n) ,
∑

l∈Ei

al(n)

cl

, Di(n) ,
∑

l∈Ei

dl(n)

cl

. (1)

These two variables are the sum of normalized arrival and service in each
interference set at time slot n, and will be used frequently in Section 3.

We consider the algorithm Q-SCHED that was introduced in [5]. In this
algorithm, it is assumed that at the beginning of each time-slot every link
l knows the queue-lengths of all links in its interference set El and also the
queue-lengths of all links in the interference set Ek for every k ∈ El. Each
time slot is divided into two parts: a scheduling slot and a data transmission
slot. Links that are chosen in the scheduling slot will transmit their packets
in the data transmission slot. The scheduling slot is further divided into M
mini-slots. At the beginning of each time-slot n, each link l first computes:

Pl(n) = α

ql(n)
cl

maxi∈El

∑

k∈Ei

qk(n)
ck

,

where α = log(M). Then, each link l picks a backoff time Yl(n) from
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{1, 2, ...,M + 1} according to the following probabilities:

P(Yl(n) = M + 1) = e−Pl(n);

P(Yl(n) = m) = e−Pl(n)m−1

M − e−Pl(n) m

M ,m = 1, 2, ...,M.

A link that chooses backoff time Yl(n) = k ≤ M will start transmission at
the k-th mini-slot unless it has already heard a transmission from one of its
interfering links. If a link chooses a backoff time equals to M + 1 it will not
attempt to transmit in this time slot. If two or more links that interfere with
each other begin to transmit simultaneously, collision will occur and all of
these transmissions will fail. Finally, any link that hears the collision will
not attempt to transmit in this time slot.

We now present an important lemma proved in [5] for Q-SCHED, which

will be used in our derivation. Define V (n) = maxi∈E

∑

l∈Ei

ql(n)
cl

, which
denotes the largest sum of backlog in any interference neighborhood.

Lemma 1. Q-SCHED scheduling policy guarantees that for any ǫ0 ≥ 0 and

constants C1, C2 ≥ 0, there exists a constant R such that if V (n) ≥ R, then

for any η ∈ [0, 1] and for any link i such that

∑

l∈Ei

ql(n)

cl

≥ η (V (n) − C1 − C2ǫ0) ,

the following holds,

∑

l∈Ei

Pr{Link l is scheduled} ≥ η

(

1 −
log(M) + 1

M
− ǫ0

)

.

Note that although the original statement of Lemma 1 in [5] requires
that ǫ0, C1, C2 > 0, the proof there also trivially holds for the case when
ǫ0, C1, C2 ≥ 0. Letting η = 1, this then implies that, when V (n) is large,
with high probability at least one link will be scheduled in those interference
neighborhood with sum of backlog close to V (n). In [5], this lemma has been
used to establish the negative drift of the Lyapunov function V (n) whenever
the offered load satisfies that, for some ǫ0 > 0,

∑

l∈Ei

λl

cl

≤ 1 −
log(M) + 1

M
− ǫ0, for all links i. (2)
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For the rest of the paper, we assume that (2) holds because otherwise we do
not know the stability of the system.

In this paper, we are interested in queue-overflow probabilities. For ex-
ample, we may want to know the probability that the maximum queue length
exceeds a given threshold B. On the other hand, with the techniques devel-
oped in this paper, it is more convenient to work with

P

(

max
i∈E

∑

l∈Ei

ql

cl

≥ B

)

. (3)

Note that when the arrival rates are constant, i.e. ai(t) = λi for all i, t, the
above probability can be mapped to an upper bound of the probability of
delay-violation. To see this, let τi(t) denotes the delay of the latest packet
arrived at link i in time slot t. More specifically, τi(t) is the number of time
slots for that packet remained in the system. Then for any b > 0,

τi(0) ≥ b

⇔Cumulative service of link i over[0, b − 1] < qi(0) + λi

⇔qi(b) ≥ bλi − (qi(0) + λi)

⇔qi(b)/ci − λi(b − 1)/ci ≥ 0

If we consider the maximum delay in the neighborhood of link i, we will get

max
l∈Ei

τl(0) ≥ b

⇔For some l ∈ El, ql(b)/cl − λl(b − 1)/cl ≥ 0

⇔max
l∈Ei

(ql(b)/cl − λl(b − 1)/cl) ≥ 0

⇒max
l∈Ei

(

∑

l∈Ei

ql(b)

cl

−
λl

cl

(b − 1)

)

≥ 0

⇔
∑

l∈Ei

ql(b)

cl

≥ min
l∈Ei

λl

cl

(b − 1)
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Hence, if the system is stationary one can conclude that 1

P

(

max
l∈Ei

τl(0) ≥ b

)

≤P

(

∑

l∈Ei

ql(b)

cl

≥ min
l∈Ei

λl

cl

(b − 1)

)

= P

(

∑

l∈Ei

ql(0)

cl

≥ min
l∈Ei

λl

cl

(b − 1)

)

(4)

However, even calculating (3) is mathematically intractable. Hence, we
will use large-deviations theory to estimate it. We are interested in the
following limits:

I0(~λ) , − lim sup
B→∞

1

B
log P

(

max
i∈E

∑

l∈Ei

ql

cl

≥ B

)

,

J0(~λ) , − lim inf
B→∞

1

B
log P

(

max
i∈E

∑

l∈Ei

ql

cl

≥ B

)

.

Clearly, I0(~λ) provides a lower bound on the decay rate of (3) and J0(~λ)
provides an upper bound.

3. The lower bound

We first develop a lower bound for I0(~λ). For any link i in E, define the
scaled queue length: qB

i (t) = 1
B

qi (⌊Bt⌋) . Note that this expression represents
the standard large-deviations scaling that shrinks both time and magnitude.
We also define the scaled version of the Lyapunov function: vB(t) = V (~qB(t)).
The queue overflow criterion is

{

vB(t) ≥ 1
}

. For ease of exposition, we con-
sider a system that starts at t = 0. For a given T > 0, we are interested in
the following probability:

IT
0 (~λ) , − lim sup

B→∞

1

B
log P

(

vB(T ) ≥ 1
∣

∣vB(0) = 0
)

.

1We note however that inequality (4) only provides an upper bound on the delay
violation-probability. An algorithm that minimize the right hand side of (4) does not
necessarily minimize the delay-violation probability. We will comment on the implication
of this point in Section 7.
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Intuitively, as T → ∞, one would expect that IT
0 (~λ) approaches I0(~λ), the

lower bound on the decay rate of the stationary overflow probability [14, 15].
We now introduce the following main result, which provides a lower bound
on IT

0 (~λ).

Theorem 2. Assume that for some ǫ0 > 0, inequality (2) holds. For any

small and positive ξ such that 0 < ξ < ǫ0, let

ǫ =
log(M) + 1

M
+ ξ. (5)

Moreover, let D̂(n), n = 1, 2, ... be i.i.d random variables with distribution

D̂(n) =

{

1, with prob. 1 − ǫ
0, with prob. ǫ

For any T > 0, the lower bound on the decay rate function satisfies

IT
0 (~λ) ≥ inf

W≥0
min
i∈E

inf
d≤(1−ǫ)

(IA
i (d + W ) + ID̂(d))

W
, L. (6)

where

ID̂(d) = sup
θ∈R

{

θd − log E
(

eθD̂(1)
)}

= sup
θ∈R

{

θd − log
(

ǫ + (1 − ǫ)eθ2
)}

.

IA
i (a) = sup

θ∈R

{

θa − log E
(

eθAi(1)
)}

. (7)

Note that the bound on the right hand side of (6) in Theorem 2 is in-

dependent from T . Assuming that IT
0 (~λ) → I0(~λ) we would then expect

that I0(~λ) ≥ L. Such a limiting argument can be made rigorously using the
Freidlin-Wentzell construction as in [14, 15].

Before we elaborate on the proof of Theorem 2, we would like to pro-
vide some intuitions behind the result. Recall from Lemma 1 that for all
interference sets whose backlogs are almost the largest, i.e.

∑

l∈Ei

ql(n)

cl

≥ V (n) − C1 − C2ǫ0,

the following holds

∑

l∈Ei

Pr{Link l is scheduled} ≥ 1 −
log(M) + 1

M
− ǫ0. (8)
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Now for simplicity, let us consider a fictitious algorithm, which guarantees
that inequality (8) holds for every interference set at all time, regardless of
their backlogs. Under this fictitious algorithm, the backlog of each interfer-
ence set can be stochastically bounded from below by a single server queue
with the same arrivals, and with the service rate given by D̂(n). Hence, the
quantity L in (6) provides a lower bound on the decay rate of the overflow
probability under this fictitious algorithm. However, the above argument
does not directly apply to Q-SCHED. In Q-SCHED, inequality (8) only holds
for those interference sets with the largest backlog, and such sets change from
time to time, which makes it difficult for us to track the system dynamics
directly by Lemma 1. To address the problem, in the following derivation
we divide the entire scaled time into many small intervals. In each small
interval, the interference sets that have almost the largest backlog do not
change and therefore we are able to use Lemma 1 to estimate IT

0 (~λ).

3.1. Local Rate Function

For a fixed t, let δ > 0 be a small number. Let ∆vB(δ, t) = vB(t+δ)−vB(t)
denote the drift of the scaled Lyapunov function. Let Q be a closed and
bounded set such that V (~q) ≥ v > 0 for all ~q ∈ Q. Our first goal is to find
the following limit given ~q 6= ~0 and W > 0,

− lim
B→∞

1

B
log sup

~q∈Q

P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

. (9)

We call (9) the local rate function, which is the maximum asymptotic decay
rate of the probability that the growth rate of vB is no smaller than W over
all ~q ∈ Q, conditioned on ~qB(t) = ~q. Since the arrival and departure are both
bounded, for any i ∈ E there must exist Ci such that

∣

∣

∣

∣

∣

∑

l∈Ei

ql(n + 1)

cl

−
∑

l∈Ei

ql(n)

cl

∣

∣

∣

∣

∣

≤ Ci

for all n. We next define the set I(~q, δ) as

I(~q, δ) =

{

i ∈ E

∣

∣

∣

∣

∣

∑

l∈Ei

ql

cl

≥ V (~q) − δCi

}

. (10)

Intuitively, I(~qB(t), δ) is the set of links that have the close-to-largest sum of

backlog
∑

l∈Ei

qB
l

(t)

cl
in their respective interference range. Given that W > 0,

9



if the event {∆vB(δ, t) ≥ δW} happens, we will have vB(t) < vB(δ + t). For

any B, if i ∈ E and i /∈ I(~qB(t), δ), then
∑

l∈Ei

qB
l

(t)

cl
< vB(t)−δCi, and hence

∑

l∈Ei

qB
l (t + δ)

cl

< vB(t) − δCi + δCi = vB(t) < vB(δ + t).

Therefore, for any large B, only i ∈ I(~qB(t), δ) could potentially maxi-

mize
∑

l∈Ei

qB
l

cl
at time t + δ. So the change between vB(t) and vB(t + δ)

can be bounded by the maximum increment of
∑

l∈Ei

qB
l

cl
among those i ∈

If(~qB(t), δ). More specifically, we have

∆vB(δ, t) ≤ max
i∈I(~qB(t),δ)

⌊B(t+δ)⌋
∑

n=⌊Bt⌋+1

1

B

∑

l∈Ei

al(n) − dl(n)

cl

.

Let Āi be the mean of Ai(n). Note that by our assumption, there exists

ǫ0 > 0 such that Āi < 1 − log(M)+1
M

− ǫ0, for all links i.
Now consider Equation (9), since q(t) is Markovian, so is qB(t). We thus

have

lim
B→∞

1

B
log sup

~q∈Q

P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

= lim
B→∞

1

B
log sup

~q∈Q

P
(

∆vB(δ, 0) ≥ δW
∣

∣~qB(0) = ~q
)

.

Hence, for the following derivation, we will take t = 0, and drop the variable
t when there is no source of confusion. Moreover, for ease of exposition, let
P~q(·) denote the probability distribution conditioned on ~q(0) = ~q.

We first show the following property on the service process.

Lemma 3. Assume that ~qB(0) = ~q and V (~q) ≥ v > 0. For any i ∈ I(~q, δ),
Di(n) is defined in (1). For any v, ξ > 0, there exists δ0 and B0 such that

for all δ ≤ δ0 and for all B ≥ B0, the following holds for 1 ≤ n ≤ ⌊Bδ⌋,

P~q(Di(n) ≥ 1 |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≥ 1 − ǫ,

P~q(Di(n) = 0 |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≤ ǫ,

where ǫ is defined as (5)
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Proof. For any η ∈ [0, 1), choose δ such that

δ ≤
(1 − η)v

4 maxi∈E Ci

, δ0.

If vB(0) = V (~q) ≥ v > 0, because the changing rate of vB(t) is at most
maxi∈E Ci, it follows that

vB(0) +
(1 − η)v

4
≥ vB(n/B) ≥

3v

4
, for all n ∈ [0, ⌊Bδ⌋].

Hence, for i ∈ I(~q, δ), we have

∑

l∈Ei

qB
l (n/B)

cl

≥
∑

l∈Ei

qB
l (0)

cl

− δCi ≥ vB(0) − 2δCi

≥ vB(n/B) −
3

4
(1 − η)v

≥ vB(n/B) − (1 − η)vB(n/B)

≥ ηvB(n/B).

Therefore, the unscaled backlog must satisfy

∑

l∈Ei

ql(n)

cl

≥ ηV (n), for all n ∈ [0, ⌊Bδ⌋].

Take the constants ǫ0 = 0, C1 = 0, C2 = 0 in Lemma 1. Also, since
vB(n/B) ≥ 3v/4 for n ∈ [0, ⌊Bδ⌋], then for large enough B, V (n) ≥ R for
n ∈ [0, ⌊Bδ⌋], where R is given by Lemma 1. Therefore, for any i ∈ I(~q, δ),
the following holds according to Lemma 1:

∑

l∈Ei

P~q (Link l is scheduled) ≥ η

(

1 −
log(M) + 1

M

)

.

For any ξ > 0, we could choose η close enough to 1 so that the result of
Lemma 3 holds.

Lemma 3 implies that, when δ is small, the service rate at each neighbor-
hood of link i ∈ I(~q, δ) is no smaller than 1 with probability no smaller than
1 − ǫ.
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Let AB
i (δ) , 1

B

∑[Bδ]
n=1 Ai(n), DB

i (δ) , 1
B

∑[Bδ]
n=1 Di(n), D̂B(δ) , 1

B

∑[Bδ]
n=1 D̂(n),

Zi(n) , Ai(n)−Di(n), ZB
i (δ) , AB

i (δ)−DB
i (δ), Ẑ(n) , Ai(n)− D̂i(n), and

ẐB
i (δ) , AB

i (δ) − D̂B
i (δ). We then have

∆vB(δ) ≤ max
i∈I(~qB(0),δ)

ZB
i (δ), (11)

For each i ∈ E, let

H Ẑ
i , lim sup

B→∞

1

B
log P

(

ẐB
i (δ) ≥ δW

)

,

HZ
max , lim sup

B→∞

1

B
log sup

~q∈Q

P~q

(

max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)

.

From (11), we have

lim sup
B→∞

1

B
log sup

~q∈Q

P
(

∆vB(δ) ≥ δW
∣

∣~qB(0) = ~q
)

≤ HZ
max.

Unfortunately, HZ
max is difficult to compute directly. On the other hand, H Ẑ

i ’s
are fairly easy to compute. We will establish a relationship between HZ

max

and H Ẑ
i ’s and estimate HZ

max by H Ẑ
i ’s.

Lemma 4. Assume that ~qB(0) = ~q and V (~q) ≥ v > 0. For any ξ > 0, define

ǫ as (5). For any v > 0, there exists δ0 > 0 and B0 > 0, such that for any

W > 0, any i ∈ I(~q, δ) and for all 0 < δ ≤ δ0 and B ≥ B0, we will have

P~q(Z
B
i (δ) ≥ W ) ≤ P(ẐB

i (δ) ≥ W ).

The proof of Lemma 4 uses the property in Lemma 3 that D̂(n) stochas-
tically dominates D(n). The details of the proof is provided in the appendix.

Using Lemma 4, we can then establish the following relationship between
HZ

max and H Ẑ
i .

Lemma 5. Let Q be a closed and bounded set such that V (~q) ≥ v > 0 for

all ~q ∈ Q. For any ξ > 0, define ǫ as (5). There exists δ0 > 0, such that for

any W > 0 and for all 0 < δ ≤ δ0, we have

HZ
max

= lim sup
B→∞

1

B
log sup

~q∈Q

P~q

(

max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)

≤ max
i∈E

lim sup
B→∞

1

B
log P

(

ẐB
i (δ) ≥ δW

)

= max
i∈E

H Ẑ
i . (12)
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Proof. Choose δ0 and B0 as in Lemma 4. According to Lemma 4, for 0 <
δ ≤ δ0, when B ≥ B, we have

P~q

(

max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)

≤
∑

i∈I(~q,δ)

P~q

(

ZB
i (δ) ≥ δW

)

≤
∑

i∈I(~q,δ)

P
(

ẐB
i (δ) ≥ δW

)

≤
∑

i∈E

P
(

ẐB
i (δ) ≥ δW

)

≤|E|max
i∈E

P
(

ẐB
i (δ) ≥ δW

)

.

Hence,

sup
~q∈Q

P~q

(

max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)

≤ |E|max
i∈E

P
(

ẐB
i (δ) ≥ δW

)

.

It follows that

lim sup
B→∞

1

B
log sup

~q∈Q

P~q

(

max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)

≤ lim sup
B→∞

1

B
log |E|max

i∈E
P
(

ẐB
i (δ) ≥ δW

)

= lim sup
B→∞

1

B
log |E| + max

i∈E
lim sup

B→∞

1

B
log P

(

ẐB
i (δ) ≥ δW

)

= max
i∈E

lim sup
B→∞

1

B
log P

(

ẐB
i (δ) ≥ δW

)

.

The following main result then provides a lower bound on the local-rate
function defined in (9).

Theorem 6. Assume that for some ǫ0 > 0, inequality (2) holds. For any

small and positive ξ such that 0 < ξ < ǫ0, define ǫ as (5). Given t, also

assume that ~qB(t) = ~q ∈ Q, where Q is a closed and bounded set such that

13



V (~q) ≥ v > 0 for all ~q ∈ Q. There exists δ0 > 0 such that for all 0 < δ ≤ δ0

and W > 0,

− lim sup
B→∞

1

B
log sup

~q∈Q

P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

≥ δ min
i∈E

inf
0≤d≤1−ǫ

(IA
i (d + W ) + ID̂(d)). (13)

Proof. Since we assume finite arrivals, we have 0 ≤ Ai(n) < |Ei|AM , 0 ≤
D̂(n) ≤ 1. From Theorem 4.5.3 of [17], since the set {(a, d)|W ≤ a − d ≤
|Ei|AM , 0 ≤ d ≤ 1− ǫ} is compact for any W > 0, there exist a rate function

IAD̂
i (a, d) such that

lim sup
B→∞

1

B
log P

(

AB
i (δ) − D̂B(δ) ≥ δW

)

≤ −δ inf
W≤a−d≤AM

IAD̂
i (a, d), (14)

where

IAD̂
i (a, d) = sup

(θ1,θ2)∈R2

{

θ1a + θ2d − lim sup
B→∞

1

Bδ
log E

(

eBθ1AB
i

(δ)+Bθ2D̂B
)

}

.

(15)

Since Ai(n) and D̂(n) are independent, we have IAD̂
i (a, d) = IA

i (a) + ID̂(d).
Choose δ0 as in Lemma 5. According to (11), (12) and (14), we have

lim sup
B→∞

1

B
log sup

~q∈Q

P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

≤ −δ min
i∈E

inf
W≤a−d≤AM

(IA
i (a) + ID̂(d))

The mean of D̂(n) is 1 − ǫ. It follows that ID̂(d) ≥ ID̂(1 − ǫ) = 0 when
d ≥ 1 − ǫ. When 0 < ξ < ǫ0, we have W + 1 − ǫ > Āi for all links i by our
assumption. If d ≥ 1−ǫ and a−d > W , we have a > W +d ≥ W +1−ǫ > Āi.
Because IA

i (a) is increasing when a > Āi, we have,

inf
W≤a−d≤AM

d≥1−ǫ

(IA
i (a) + ID̂(d)) = inf

d≥1−ǫ
(IA

i (W + d) + ID̂(d)) = IA
i (W + 1 − ǫ).

In fact, if d = 1 − ǫ, we will have

IA
i (W + 1 − ǫ) = inf

W≤a−d≤AM
d=1−ǫ

(IA
i (a) + ID̂(d)).

14



Therefore,

inf
W≤a−d≤AM

d≥1−ǫ

(IA
i (a) + ID̂(d)) ≥ inf

W≤a−d≤AM
0≤d≤1−ǫ

(IA
i (a) + ID̂(d)),

and hence,

lim sup
B→∞

1

B
log P

(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

≤ −δ min
i∈E

inf
W≤a−d≤AM

0≤d≤1−ǫ

(IA
i (a) + ID̂(d)).

Further, we claim that

inf
W≤a−d≤AM

0≤d≤1−ǫ

(IA
i (a) + ID̂(d)) = inf

0≤d≤1−ǫ
(IA

i (d + W ) + ID̂(d)). (16)

To see this, note that

inf
W≤a−d≤AM

0≤d≤1−ǫ

(IA
i (a) + ID̂(d))

= min











inf
W≤a−d≤AM

0≤d≤1−ǫ

d+W≥Āi

(IA
i (a) + ID̂(d)) , inf

W≤a−d≤AM
0≤d≤1−ǫ

d+W<Āi

(IA
i (a) + ID̂(d))











.

For the first term, since a ≥ d + W ≥ Āi, and IA
i (a) is increasing when

a > Āi, we have,

inf
W≤a−d≤AM

0≤d≤1−ǫ

d+W≥Āi

(IA
i (a) + ID̂(d)) = inf

a−d=W

d≤1−ǫ

d+W≥Āi

(IA
i (a) + ID̂(d)).

For the second term, since a could be taken to be equal to the mean, we have

inf
W≤a−d≤AM

0≤d≤1−ǫ

d+W<Āi

(IA
i (a) + ID̂(d)) = inf

0≤d≤1−ǫ

d+W<Āi

ID̂(d).

However, because Āi − W < 1 − ǫ and ID̂(d) is decreasing when d ≤ 1 − ǫ,

the above quantity is actually no greater than ID̂(Āi−W ), which is included
in infimum in the first term. Hence the claim (16) holds and the local rate
function can be bounded as (13).
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3.2. The Lower Bound on the Decay-rate of the Overflow Probability

For fixed T > 0, we now derive a lower bound on IT
0 (~λ) in this subsection.

Fix a small v ∈ (0, 1), choose δ0 as in Theorem 6. Let 0 < δ < δ0 such
that δ = T/n for some integer n. Since v(0) = 0 and the arrivals are
bounded, there exists vmax > 0, such that vB(t) ≤ vmax for all t ∈ [0, T ].
Fix ζ < v. Given v0 = 0, vn = 1, 0 ≤ v1, ..., vn−1 ≤ vmax, define Γk(vk) =
{

vk − ζ ≤ vB(kδ) ≤ vk + ζ
}

for k = 1, 2, ..., n − 1, Γ0(v0) =
{

vB(0) = v0

}

and Γn(vn) =
{

vB(nδ) ≥ vn

}

. Let mv, 0 ≤ mv < n, be the largest integer m
such that vm−1 < 2v. We first fix v0, ..., vn. For ease of exposition, we will
use Γk to denote Γk(vk) when there is no source of confusion. Consider the
follow probability:

P (Γ1 ∩ ... ∩ Γn |Γ0 ) (17)

Roughly speaking, this is the probability that the trajectory vB(t) follows
v0, v1, ..., vn given that it starts at v0. Clearly,

(17) ≤

P (Γn |Γn−1, ..., Γmv
, Γ0 ) × P (Γn−1 |Γn−2, ..., Γmv

, Γ0 ) × ... × P (Γmv
|Γ0 ) .

Define ΨB
k (δ, ζ) ,

{

∆vB(δ, (k − 1)δ) ≥ vk − vk−1 − 2ζ
}

. Let

Qk =

{

{~q |V (~q) ∈ [vk−1 − ζ, vk−1 + ζ]} , k = 2, ..., n
{~q |V (~q) = v0} , k = 1

.

Also define

φB
k (δ, ζ) = sup

~q∈Qk

P
(

ΨB
k (δ, ζ)

∣

∣~qB((k − 1)δ) = ~q
)

.

We then have the following lemma.

Lemma 7. For any k, mv < k ≤ n, the following holds

P (Γk |Γk−1, ..., Γmv
, Γ0 ) ≤ φB

k (δ, ζ). (18)

Proof.

P (Γk |Γk−1, ..., Γmv
, Γ0 ) ≤P

(

ΨB
k (δ, ζ) |Γk−1, ..., Γmv

, Γ0

)

(19)

=
P
((

⋂k−1
i=mv

Γi

)

⋂

ΨB
k (δ, ζ) |Γ0

)

P
(

⋂k−1
i=mv

Γi |Γ0

) . (20)
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The numerator of (20) can be written as

E
{

1{(
T

k−1

i=mv
Γi)

T

ΨB
k

(δ,ζ)} |Γ0

}

= E
{

E
{

1{(
T

k−1

i=mv
Γi)

T

ΨB
k

(δ,ζ)}

∣

∣~qB((k − 1)δ), ..., ~qB(mvδ)
}∣

∣

∣Γ0

}

= E
{

E
{

1{ΨB
k

(δ,ζ)}

∣

∣~qB((k − 1)δ), ..., ~qB(mvδ)
}

· 1{
T

k−1

i=mv
Γi}

∣

∣

∣
Γ0

}

(21)

Since vB(t) satisfies the Markov property, conditioned on ~qB((k−1)δ), {~qB(t),
t > (k − 1)δ} is independent from {~qB(t), t < (k − 1)δ}. Define,

fk(~qk−1, ..., ~qmv
) ,E

{

1{ΨB
k

(δ,ζ)}

∣

∣~qB((k − 1)δ) = ~qk−1, ..., ~q
B(mvδ) = ~qmv

}

=P
(

ΨB
k (δ, ζ)

∣

∣~qB((k − 1)δ) = ~qk−1

)

.

By the definition of φB
k (δ, ζ), we have

fk(~qk−1, ..., ~qmv
) ≤ φB

k (δ, ζ),

when ~qk−1 ∈ Qk. Then

(21) =E
{

fk(~q
B((k − 1)δ), ..., ~qB(δ)) · 1{

T

k−1

i=mv
Γi}

∣

∣

∣Γ0

}

≤φB
k (δ, ζ) · E

{

1{
T

k−1

i=mv
Γi}

∣

∣

∣Γ0

}

.

Noting that

E
{

1{
T

k−1

i=mv
Γi}

∣

∣

∣
Γ0

}

= P

(

k−1
⋂

i=mv

Γi |Γ0

)

,

we therefore have (20) ≤ φB
k (δ, ζ).

We now can prove Theorem 2.

Proof of Theorem 2. For any ζ > 0, there exists a finite set V of vectors
(vn, ..., v0), v0 = 0, vn = 1, 0 ≤ v1, ..., vn−1 ≤ vmax, such that

⋃

(vn,...,v0)∈V

Γn−1(vn−1) × ... × Γ1(v1) ⊇

{

(

vB((n − 1)δ), ..., vB(δ)
) ∣

∣0 ≤ vB((n − 1)δ) ≤ vmax, ..., 0 ≤ vB(δ) ≤ vmax

}

,
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where × denotes the Cartesian product. Taking the advantage of Lemma 7,
one can show that

P
(

vB(T ) ≥ 1
∣

∣vB(0) = v0

)

≤
∑

(vn,...,v0)∈V

n
∏

k=mv+1

φB
k (δ, ζ).

If we take the log and let B go to infinity, we will have

lim sup
B→∞

1

B
log P

(

vB(T ) ≥ 1
∣

∣vB(0) = v0

)

≤ max
(vn,...,v0)∈V

lim sup
B→∞

1

B

n
∑

k=mv+1

log φB
k (δ, ζ).

To estimate the limit in the above inequality, we will use the local rate
function derived in Section III.A. From the definition of φB

k (δ, ζ) and Theorem
6, if ζ < 0, since vk ≥ 2v,mv < k ≤ n, we will have

lim sup
B→∞

1

B
log φB

k (δ, ζ) ≤ −(vk − vk−1 − 2ζ)L

if vk − vk−1 − 2ζ ≥ 0. On the other hand, if vk − vk−1 − 2ζ < 0, the
above inequality still holds because the left hand side is always less than 0.
Therefore, taking the sum from k = mv + 1 to n, one will get

max
(vn,...,v0)∈V

lim sup
B→∞

1

B

n
∑

k=mv+1

log φB
k (δ, ζ)

≤− min
(vn,...,v0)∈V

(1 − 2v − 2(n − mv)ζ) L

≤− (1 − 2v − 2nζ) L

Let v → 0 and ζ → 0, we have

IT
0 (~λ) = − lim sup

B→∞

1

B
log P

(

vB(T ) ≥ 1
∣

∣vB(0) = 0
)

≥ L.

4. An Upper Bound

In this section, we will develop an upper bound for the decay-rate function
J0(~λ). We use the notion of “interference degree” that is first introduced in
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[7]. The interference degree Kl of a link l is the maximum number of links
in its interference set El that can transmit simultaneously. The interference
degree K(V,E) of a network G(V,E) is the maximum interference degree
over all links in E, i.e., K(V,E) = maxl∈E Kl. For a given network topology,
the interference degree can be obtained based on the interference model we
use. For some classes of interference models, K(V,E) can be bounded for all
networks. For instance, if we consider node-exclusive interference model, we
will have K(V,E) ≤ 2. For any given network G(V,E), let its interference
degree be K. Consider an fictitious algorithm such that

P

(

∑

l∈Ei

dl(n)

cl

= K

)

= 1, for all n.

Clearly, this fictitious algorithm will provide a lower bound on the over-
flow probability over all possible algorithms. We denote such algorithm as
OPTIMAL. Note that OPTIMAL may not exist, and it is only used to derive
an upper bound on J0(~λ). We now consider (3) under algorithm OPTIMAL.
Let ZB

i (t), AB
i (t), DB

i (t) have the same meaning as before. Now, the deriva-
tion are much easier since ZB

i (t) are i.i.d. across t. According to Theorem
6.6 in [18], the overflow rate function of OPTIMAL for each link i is given
by

lim
B→∞

1

B
log P

(

∑

l∈Ei

qB
l (0)

cl

> 1

)

= − inf
x>0

IZ
i,opt(x)

x

where IZ
i,opt(x) is the rate function of ZB

i under OPTIMAL algorithm. It
is trivial to show that IZ

i,opt(x) = IA
i (x + K). Hence, the decay-rate of the

queue-overflow probability of this fictitious system is given by

lim
B→∞

1

B
log P

(

vB(0) > 1
)

= −min
i∈E

inf
a>0

IA
i (a + K)

a
. (22)

Then, we have the following upper bound:

J0(~λ) ≤ Iopt , min
i∈E

inf
a>0

IA
i (a + K)

a
.

We now pose a constraint on this decay rate function. Suppose that we want
to guarantee that Iopt ≥ θ0. Let ΛA

i be the cumulant generating function
of the arrival process, ΛA

i (θ) = log E
(

eθAi(1)
)

. Note that IA
i is the Legendre
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transform of ΛA
i and ΛA

i is also the Legendre transform of IA
i . Therefore, the

following holds

Iopt ≥ θ0 ⇔ inf
a>0

IA
i (a + K)

a
≥ θ0,∀i ∈ E

⇔ sup
a

{

θ0a − IA
i (a)

}

− Kθ0 ≤ 0,∀i ∈ E

⇔ ΛA
i (θ0) − Kθ0 ≤ 0,∀i ∈ E ⇔ max

i∈E

ΛA
i (θ0)

θ0

≤ K. (23)

The quantity
ΛA

i
(θ0)

θ0
is often called the effective bandwidth of the arrival

process. The inequality (23) implies that the maximum possible effective
capacity region of the system under any algorithm is such that the effective
bandwidth in every interference range must be no greater than K.

5. Comparisons

We now compare our lower bound in Section III with the upper bound
in Section IV. Note that when the value of ǫ0 in (2) satisfies 0 < ξ < ǫ0 and
W > 0, we have W +1−ǫ > Āi for all links i by our assumption. If d ≥ 1−ǫ,
we have W + d ≥ W + 1 − ǫ > Āi, which means that IA

i (d + W ) and ID̂(d)
are increasing with respect to d. Therefore,

inf
d≤1−ǫ

IA
i (d + W ) + ID̂(d) = inf

d
IA
i (d + W ) + ID̂(d).

Then, we have

L ≥ θ0 ⇔ inf
W>0

min
i∈E

inf
d≤(1−ǫ)

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0

⇔ inf
W>0,d

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0,∀i ∈ E.

Further, note that IA
i (d + W ) + ID̂(d) − θW ≥ 0 if W ≤ 0. Hence, we have,

for all i ∈ E

inf
W>0,d

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0

⇔ inf
W,d

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0

⇔ sup
W+d

{(d + W )θ − IA
i (d + W )} + sup d{−dθ − ID̂(d)} ≤ 0

⇔ΛA
i (θ) + ΛD̂(−θ) ≤ 0.
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Hence

L ≥ θ0 ⇔ΛA
i (θ) + ΛD̂(−θ) ≤ 0,∀i ∈ E

⇔max
i∈E

ΛA
i (θ0)

θ0

≤
ΛD̂(−θ0)

−θ0

.

Therefore, the effective capacity region of Q-SCHED is such that the sum

of effective bandwidth in each interference range is no greater than ΛD̂(−θ0)
(−θ0)

.

Note that ΛD̂(−θ0) = log
(

ǫ + (1 − ǫ)e−θ0

)

. Thus, the effective capacity re-

gion of Q-SCHED at a given constraint is at least
log(ǫ+(1−ǫ)e−θ0)

−Kθ0
of that of

any other algorithms. We then consider two special cases.

5.1. Deterministic Arrivals

We first consider the case when the arrivals are deterministic, i.e., ai(n) =
λi for all i ∈ E and n = 1, 2, .... Recall that Āi =

∑

l∈Ei

λl

cl
is the mean of

Ai(n), and the rate function of Ai will be

IA
i (a) =

{

0, a = Āi

∞, otherwise
.

Under the assumption of deterministic arrival, we have the effective band-
width of arrival process equals to its mean, i.e., ΛA

i (θ0)/θ0 = Āi. Hence,

L ≥ θ0 ⇔ ΛD̂(−θ0)/(−θ0) ≥ Āi,∀i ∈ E.

Thus, under the assumption of deterministic arrivals the effective capacity

region of Q-SCHED at a given constraint is still at least
log(ǫ+(1−ǫ)e−θ0)

−Kθ0
of

that of any other algorithms.

5.2. Infinite Number of Mini-slots

In this case, we assume that the number of mini-slots M is infinite. We
also assume that the variable ξ in Lemma 3 is 1, which implies that ǫ in
Lemma 3 equals to 0. It follows that the rate function of D̂ will be:

ID̂(d) =

{

0, d = 1
∞, otherwise

.
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Consequently, the right-hand-side of (6) can be simplified

L = inf
W≥0

min
i∈E

IA
i (W + 1)

W
. (24)

Using the same method as in the section IV, if we pose a constraint on the
decay rate, e.g. if we want to guarantee that L ≥ θ0, then we could get the

“effective bandwidth” in this case: maxi∈E
ΛA

i
(θ0)

θ0
≤ 1. This result implies

that, at a given θ0, the effective capacity region of the Q-SCHED algorithm
is such that the sum of the effective bandwidth in each interference range is
no greater than 1. Comparing with (23), we note that the effective capacity
region of Q-SCHED is at least 1/K of that of any other algorithms.

6. Simulation Result

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

20 10 14

20 16 14 12

20 10 14

20 16 14 12

20 10 14

20 16 14 12

20 10 14

Figure 1: Network Topology

In this section, we provide the simulation results to verify our earlier
results. We simulate a single-hop network with topology shown in Figure 1,
which has 16 nodes. The deashed lines represent links. The number next to
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each link denotes its capacity. Tha arrows represent the flows. The arrival
rate of all flows are the same. We run the Q-SCHED algorithm for many slots.
In each time slot, we measure the quantity maxi∈E

∑

l∈Ei

ql

cl
and compare it

with a given threshold B to see if overflow occurs. The ratio between the
number of times that overflow occurs and the total number of time slots
will give the probability of queue-overflow. In the following, we consider
two interference models: the one-hop interference model and the two-hop
interference model.

6.1. One-Hop Interference Model

In this subsection we provide the simulation results using the one-hop
interference model. First we assume that packets of each flow arrive at con-
stant rates and let the arrival rate of each flow to be 1. The result is shown
in Figure 2. We plot the overflow probability P

(

vB(0) > 1
)

against the over-
flow threshold B with different numbers of minislots for Q-SCHED. We have
also plotted two corresponding lines whose slope are calculated by the lower
bound given in Theorem 2 with different numbers of minislots. We see that
the actual overflow probability decays faster than the lower bound given by
our analytical results in Theorem 2. We also observe in Figure 2 that as
the number of minislots increases, the overflow probability decreases which
is coincident with the nature of Q-SCHED.

We then set the volume of data that arrive in each time slot to be a
uniformly distributed random variable over [0, 2]. Note that the mean arrival
rate of each flow is still 1. The result is shown as Figure 3. We plot the
overflow probability P

(

vB(0) > 1
)

against the overflow threshold B with
different numbers of minislots for Q-SCHED. We can also confirm that the
actual overflow probability decays faster than the lower bound in Theorem
2. We also draw a line with slope equal to (24), which is the lower bound
on the decay rate for the case when we have infinite minislots. The decay
rate is larger if the number of minislots is larger and the decay rate is the
largest if we allow infinite minislots. By comparing Figure 2 and Figure 3, we
observe that under the same overflow threshold B, the overflow probability
under random arrivals is slightly larger that the overflow probability under
deterministic arrivals, i.e., if we add more randomness in the arrival, the
overflow probability will increase.

One can get the capacity region for Q-SCHED once the arrival pro-
cesses are given. We choose the arrival rate of each flow to be the same.
We can use simulation to obtain the maximum possible arrival rate for the
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Figure 2: Deterministic Arrivals under One-Hop Interference Model: The
Overflow Probability versus Overflow Threshold

−1 0 1 2 3 4 5 6 7 8 9 10 11 12
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

B

P
(

v
B
(0

)
>

1)

Simulation, M=32
Analysis, M=32

Simulation, M=64
Analysis, M=64
Analysis, M = ∞

Figure 3: Random Arrivals under One-Hop Interference Model: The Over-
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network that satisfies a given constraint on the overflow probability that
P
(

vB(0) > 1
)

< p0. Correspondingly, we can convert the constraint on the
overflow probability p0 to a constraint on the decay rate θ0 with the ap-
proximation that the overflow probability is equal to eBθ0 . We can then use
Theorem 2 to calculate the maximum arrival rate subject to the constraint
that the lower bound is greater than θ0. This quantity then provides a lower
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Figure 4: Capacity Region versus Overflow Probability, One-Hop Interference
Model

bound on the effective capacity of the system. We plot the maximum possible
arrival rate under computed from simulation and from the analytical lower
bound. The result is shown in Figure 4. We set the number of minislots
to be 32 under all cases expect the case infinite minislots and the case for
OPTIMAL algorithm. We also set the overflow threshold B = 8 in all cases.
We see that the capacity region for our analytical lower bound is only slightly
smaller than the one obtained by simulation. We also see that, when we have
infinite number of minislots, the lower bound “capacity region” is more than
1/2 of the capacity region for OPTIMAL. One can also verify that when
we have deterministic arrivals, the lower bound of the capacity region under

a fix overflow probability p0, is larger than a fraction
log(ǫ+(1−ǫ)e−θ0)

−2θ0
of the

capacity region for OPTIMAL, where θ0 = − 1
B

log p0 is the corresponding
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decay rate.

6.2. Two-Hop Interference Model

We next change the interference model to the two-hop interference model
on the same network in Figure 1. We first simulate the case with deterministic
arrivals. Data arrive to each flow at a constant rate of 1/2. In Figure 5, we
plot the overflow probability P

(

vB(0) > 1
)

against the overflow threshold B
with two different choices on the number of minislots for Q-SCHED. Once
again, we confirm that the actual overflow probability decays faster than
the lower bound given by our analytical results in Theorem 2. Note that
due the larger interference set, the overflow probability under the two-hop
interference model (Figure 5) is larger than the overflow probability under
one-hop interference model (Figure 2), even with smaller arrival rate.

We then set the volume of the data that arrive in each time slot to be
a random variable with uniform distribution over [0,1]. The result is shown
as Figure 6. We also see that the actual overflow probability decays faster
than the lower bound in Theorem 2. By comparing Figure 5 and Figure 6,
the same conclusion could be made as we did when we compare Figure 2 and
Figure 3, i.e., if we add randomness in the arrival, the overflow probability
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will increase.
7. Conclusion and Discussion

In this paper, we developed a lower bound on the decay rate of the over-
flow probability for scheduling algorithm for ad-hoc wireless networks called
Q-SCHED. We also show that the effective capacity that Q-SCHED could
support is a provable fraction of the maximum possible effective capacity
over all other algorithms, subject to a given constraint on the decay-rate
of the queue-overflow probability. For future work, we will extend the ap-
proach of this paper to other wireless scheduling algorithms and other types
of performance guarantees. We believe that the techniques developed in this
paper can be used to study other distributed scheduling algorithms such as
maximal matching and greedy maximal matching [6–8]. Essentially, what
we need is some knowledge of the statistics of service rate process like that
in Lemma 1. Then, using the technique in Theorem 2 and Section 4 we can
compute the lower and upper bounds on the decay rate of the queue-overflow
probability.

The lower bound on the decay-rate of the overflow probability can be
mapped to a corresponding lower bound on the decay rate of the delay-
violation probability as in (4), which can then be used to bound the delay-
violation probability. We note however that such bounds on delay-violation
probability are probably not the tightest, since we cannot derive a matching
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upper bound on the decay-rate of the delay-violation probability similar to
(4). Hence, we believe that Q-SCHED cannot guarantee a constant fraction
of the effective system capacity subject to a given constraint on the delay-
violation probability. For future work, we are interested in algorithms that
can achieve a constant fractions of the effective system capacity even subject
to delay constrains. We conjecture that such algorithms will likely use delay,
rather than queue-length, to make the scheduling decisions.

Finally, our analysis in this paper is restricted to single-hop networks.
For future works, we will study how to extend the techniques to multihop
systems, possibly using the techniques in [19].

Appendix: Proof of Lemma 4

The inequality we need to show is equivalent to the following:

P~q





⌊Bδ⌋
∑

n=1

Zi(n) ≥ BW



 ≤ P





⌊Bδ⌋
∑

n=1

Ẑi(n) ≥ BW



 .

According to Lemma 3, we could choose δ0 and B0 such that for any i ∈
I(~q, δ), when B ≥ B0 and δ ≤ δ0 the following holds for n ≤ Bδ

P~q(Di(n) ≥ 1 |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≥ 1 − ǫ,

P~q(Di(n) = 0 |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≤ ǫ.

Note that, δ0 exists because I(~q, δ) is a finite set. We use induction to prove
that for any N , 1 ≤ N ≤ ⌊Bδ0⌋

P~q

(

N
∑

n=1

Zi(n) ≥ BW

)

≤ P

(

N
∑

n=1

Ẑi(n) ≥ BW

)

, (25)

and then the result of Lemma 4 will holds.
We first show that the induction hypothesis (25) holds for N = 1. Note

that, for i ∈ I(~q, δ),

P~q(Di(n) ≥ 0 |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) = 1 = P(D̂(n) ≥ 0),

P~q(Di(n) ≥ 1 |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≥ 1 − ǫ = P(D̂(n) ≥ 1)
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Moreover, for any k ≥ 2,

P~q(Di(n) ≥ k |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≥ 0 = P(D̂(n) ≥ k).

Hence, for any k = 0, 1, 2, ...

P~q(Di(n) ≥ k |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≥ P(D̂(n) ≥ k),

P~q(Di(n) ≤ k |Di(n − 1), Ai(n − 1), ..., D(1), A(1)) ≤ P(D̂(n) ≤ k).

Since Ai(1), Di(1) and D̂(1) are independent, we have for any k,

P~q(Di(1) ≤ k |Ai(1)) = P~q(Di(1) ≤ k) ≤ P(D̂(1) ≤ k)

= P(D̂(1) ≤ k |Ai(1)).

Hence,

P~q(Di(1) ≤ Ai(1) − BW |Ai(1)) ≤ P(D̂(1) ≤ Ai(1) − BW |Ai(1)).

Using total probability equation, we have

P~q(Di(1) ≤ Ai(1) − BW ) ≤ P(D̂(1) ≤ Ai(1) − BW ),

which means that the induction hypothesis (25) holds for N = 1, i.e.,

P~q(Zi(1) ≥ BW ) ≤ P(Ẑ(1)) ≥ BW ).

Now assume that the induction hypothesis (25) holds for N − 1, i.e., for
any i ∈ I(~q, δ),

P~q

(

N−1
∑

n=1

Zi(n) ≥ BW

)

≤ P

(

N−1
∑

n=1

Ẑi(n) ≥ BW

)

.

Then

P~q

(

N
∑

n=1

Zi(n) ≥ BW

)

= P~q

(

Di(n) ≤
N−1
∑

n=1

Zi(n) + Ai(n) − BW

)

(26)

Since Ai(N), Di(N) and D̂(N) are independent, using similar method as we
did previously, we can show that

P~q

(

Di(N) ≤
N−1
∑

n=1

Zi(n) + Ai(n) − BW

∣

∣

∣

∣

∣

Ai(N), Di(N − 1), ..., A(1)

)

≤ P~q

(

D̂(N) ≤
N−1
∑

n=1

Zi(n) + Ai(n) − BW

∣

∣

∣

∣

∣

Ai(N), Di(N − 1), ..., A(1)

)

.
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Therefore, from total probability equation, we have

P~q

(

Di(N) ≤
N−1
∑

n=1

Zi(n) + Ai(N) − BW

)

(27)

≤P~q

(

D̂(N) ≤
N−1
∑

n=1

Zi(n) + Ai(N) − BW

)

≤P~q

(

N−1
∑

n=1

Zi(n) ≥ D̂(N) − Ai(N) + BW

)

. (28)

However,
∑N−1

n=1 Zi(n) is independent from D̂(N) and Ai(N). From the in-
duction hypothesis for N − 1, we then have

P~q

(

N−1
∑

n=1

Zi(n) ≥ D̂(N) − Ai(N) + BW
∣

∣

∣Ai(N), D̂(N)

)

≤ P

(

N−1
∑

n=1

Ẑ(n) ≥ D̂(N) − Ai(N) + BW
∣

∣

∣Ai(N), D̂(N)

)

Once again, using total probability equation, we get that

P~q

(

N−1
∑

n=1

Zi(n) ≥ D̂(N) − Ai(N) + BW

)

(29)

≤P

(

N−1
∑

n=1

Ẑ(n) ≥ D̂(N) − Ai(N) + BW

)

(30)

From (26), (28) and (30), we can conclude that

P~q

(

N
∑

n=1

Zi(n) ≥ BW

)

≤ P

(

N
∑

n=1

Ẑi(n) ≥ BW

)

.

This proves the induction hypothesis (25) for N . The result of the Lemma
then follows.
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