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Abstract— In this paper, we are interested in using large-
deviations theory to characterize the asymptotic decay-rate
of the queue-overflow probability for distributed wireless
scheduling algorithms, as the overflow threshold approaches
infinity. We consider ad-hoc wireless networks where each link
interferes with a given set of other links, and we focus on
a distributed scheduling algorithm called Q-SCHED, which is
introduced by Gupta et al. First, we derive a lower bound on the
asymptotic decay rate of the queue-overflow probability for Q-
SCHED. We then present an upper bound on the decay rate for
all possible algorithms operating on the same network. Finally,
using these bounds, we are able to conclude that, subject to
a given constraint on the asymptotic decay rate of the queue-
overflow probability, Q-SCHED can support a provable fraction
of the offered loads achievable by any algorithms.

I. I NTRODUCTION

Link scheduling is an important problem for ad-hoc wire-
less networks. In wireless networks the transmissions at
neighboring links can interfere with each other. Hence, in
order to maximize the capacity of the system, it is critical to
schedule only a subset of non-interfering links at each time.
There have been many studies on designing and analyzing
scheduling algorithms for wireless network. A notable result
is the well-known maximum-weight scheduling algorithm,
which has been shown to be throughput-optimal, i.e., it
can stabilize the network at the largest set of offered loads
[1]. However, this algorithm is centralized and with high
computational complexity. Therefore, many researchers have
proposed low-complexity and distributed scheduling algo-
rithms, (see, e.g. [2], [3]). Often, the goal is to be able to
stabilize the network for a provable fraction of the capacity
region. For example, the low-complexity algorithm in [2] has
been shown to sustain close to 1/2 of the capacity region
under the node-exclusive interference model.

To date most studies of wireless scheduling algorithms
have mainly focused on stabilities. In other words, they
ensure that the queues do not grow to infinity. Although
stability is an important criterion, for many real-time applica-
tions stability is far from being sufficient. For example, when
watching streaming video or listening to streaming audio,
the user would expect that the delay of every packet can
be upper bounded with high probability. As stability only
ensures that the queue-length of each link remains finite,
it cannot guarantee such type of stringent quality-of-service
(QoS) requirements.

In certain cases, the probability of delay violation can be

mapped to the probability of queue overflow. Unfortunately,
both problems have been known to be very difficult. First,
the exact probability distribution is usually mathematically
intractable. Hence, one often has to turn to asymptotic
techniques, such as large-deviations. For wireline networks,
many results have been obtained using large-deviations tech-
niques [4], based on the assumption that the packet arrival
process is known and the service rate of each link is time-
invariant. However, in wireless networks, the service rate
process is time-varying. Some progress has been made for
the case when the scheduling decision is based only on the
channel state, which means that the service rate process has
known statistics [5]. However, for many wireless scheduling
algorithms, even the statistics of the service rate processare
unknown.

Recently, the delay-violation or queue-overflow probabil-
ity for a number of queue-length based scheduling algo-
rithms, for which the statistics of the service rate process
are unknown, have been studied in [6] - [9] using sample-
path large-deviations. In these works, the algorithms are
centralized and are for a single cell. Further, the algorithms
are deterministic in the sense that the scheduling decisionis
a deterministic function of the system state.

In this paper, we will develop techniques to estimate
and control the QoS of distributed scheduling algorithms
for ad hoc networks. We will focus on a random access
algorithm for ad hoc wireless networks called Q-SCHED
[2] . Note that due to the distributed and random nature of
Q-SCHED, the techniques in prior works [6] - [9] do not
apply directly. As in [6] - [9], the questions that we are
interested in are: a) how to estimate the decay rate of the
queue overflow probability of this algorithm, and b) given
an overflow constraint, how to calculate the set of offer-
load vectors that this algorithm can support. To answer these
questions, we will first obtain a lower bound on the decay
rate of the overflow probability for Q-SCHED. Then, based
on this bound, we provide a lower bound on the set of offer-
load vectors that this algorithm could support at a given
queue-overflow constraint. To the best of our knowledge,
this is the first work that characterizes the queue-overflow
probability of distributed scheduling algorithms for ad-hoc
networks in a large-deviations setting. Finally, we show that
subject to a given queue-overflow constraint, the offer load
supported by Q-SCHED is at least a provable fraction of the
offered load supported by any other algorithms.



II. SYSTEM MODEL

We use the model from [2]. We consider a wireless
network ofN nodes. LetV be the set of nodes,E be the set
of directed links between nodes, andG(V,E) be the directed
connectivity graph of the network. Each linkl ∈ E interferes
with a set of other links inE, which we denote asEl. We
assume that ifk ∈ El then l ∈ Ek, i.e., the interference
relationship is symmetric. We also letl ∈ El, i.e.,

El = {l} ∪ {l′ ∈ E : l′ interferes withl}.

This interference set varies when different communication
techniques are used. For example, for bluetooth, we use the
node-exclusive interference model, also known as the pri-
mary interference model or the one-hop interference model,
whereEl is the set of all links that are connected to either
end-point ofl. In IEEE 802.11 WLAN, the interference set
El will be the two-hop neighbors ofl, including l.

We assume a slotted system. Letal(n) denotes the number
of packets that arrive at linkl in time-slot n. We assume
that for eachl, al(1), al(2), ... are i.i.d. and λl = E[al(1)].
Moreover, we assume thatal(n) is upper bounded byAM

for all n > 0 and all l ∈ E, i.e., 0 ≤ al(n) < AM , which
means that the number of arrival packets is finite in each
time slot.

Let dl(n) denote the number of packets that can be served
by link l in time-slot n. Assume that the capacity of each
link is a fixed numbercl. Let sl(n) = 1 indicates that
link l is scheduled in time-slotn, sl(n) = 0 otherwise.
Clearly, dl(n) = clsl(n). We assume a single-hop system,
i.e., packets served at linkl immediately leave the system.
Let ql(n) denote the backlog of linkl in slot n, and~q(n) =
(

q1(n), q2(n), ..., q|E|(n)
)

. Then the evolution of eachql(n)

is given byql(n+1) = [ql(n) + al(n) − dl(n)]
+, where[·]+

denote the projection to[0,∞).
We consider the algorithm Q-SCHED that was introduced

in [2]. In this algorithm, it is assumed that at the beginning
of each time-slot every linkl knows the queue-lengths of all
links in its interference setEl and also the queue-lengths of
all links in the interference setEk for everyk ∈ El. Each time
slot is divided into two parts: a scheduling slot and a data
transmission slot. Links that are chosen in the scheduling
slot will transmit their packets in the data transmission slot.
The scheduling slot is further divided intoM mini-slots. At
the beginning of each time-slotn, each linkl first computes:

Pl(n) = α

ql(n)
cl

maxi∈El

∑

k∈Ei

qk(n)
ck

,

whereα = log(M). Then, each linkl picks a backoff time
Yl(n) from {1, 2, ...,M + 1} according to the following
probabilities:

P(Yl(n) = M + 1) = e−Pl(n);

P(Yl(n) = m) = e−Pl(n) m−1

M − e−Pl(n) m

M ,m = 1, 2, ...,M.

A link that chooses backoff timeYl(n) = k ≤ M will start
transmission at thek-th mini-slot unless it has already heard

a transmission from one of its interfering links. If a link
chooses a backoff time equals toM + 1 it will not attempt
to transmit in this time slot. If two or more links that interfere
with each other begin to transmit simultaneously, collision
will occur and all of these transmissions will fail. Finally,
any link that hears the collision will not attempt to transmit
in this time slot.

We now present an important lemma proved in [2] for
Q-SCHED, which will be used in our derivation. Define

V (n) = max
i∈E

∑

l∈Ei

ql(n)

cl

,

which denotes the largest sum of backlog in any interference
neighborhood.

Lemma 1. Q-SCHED scheduling policy guarantees that for
anyǫ0 ≥ 0 and constantsC1, C2 ≥ 0, there exists a constant
R such that ifV (n) ≥ R, then for anyη ∈ [0, 1] and for
any link i such that

∑

l∈Ei

ql(n)

cl

≥ η (V (n) − C1 − C2ǫ0) ,

the following holds,
∑

l∈Ei

Pr{Link l is scheduled} ≥ η

(

1 −
log(M) + 1

M
− ǫ0

)

.

Note that although the original statement of Lemma 1 in
[2] requires thatǫ0, C1, C2 > 0, the proof there also trivially
holds for the case whenǫ0, C1, C2 ≥ 0. Letting η = 1, this
then implies that, whenV (n) is large, with high probability
at least one link will be scheduled in those interference
neighborhood with sum of backlog close toV (n). In [2], this
lemma has been used to establish the negative drift of the
Lyapunov functionV (n) whenever the offered load satisfies
that, for someǫ0 > 0,

∑

l∈Ei

λl

cl

≤ 1 −
log(M) + 1

M
− ǫ0, for all links i. (1)

For the rest of the paper, we assume that (1) holds because
otherwise we do not know the stability of the system.

In this paper, we are interested in queue-overflow proba-
bilities. For example, we may want to know the probability
that the maximum queue length exceeds a given threshold
B. On the other hand, with the techniques developed in this
paper, it is more convenient to work with the probability

P

(

max
i∈E

∑

l∈Ei

ql

cl

≥ B

)

. (2)

However, even calculating this probability is mathematically
intractable. Hence, we will use large-deviations theory to
estimate it. We are interested in the following limits:

I0(~λ) , − lim sup
B→∞

1

B
log P

(

max
i∈E

∑

l∈Ei

ql

cl

≥ B

)

,

J0(~λ) , − lim inf
B→∞

1

B
log P

(

max
i∈E

∑

l∈Ei

ql

cl

≥ B

)

.



Clearly, I0(~λ) provides a lower bound on the decay rate of
(2) andJ0(~λ) provides an upper bound.

III. T HE LOWER BOUND

We first develop a lower bound forI0(~λ). For any link i
in E, define the scaled queue length:

qB
i (t) =

1

B
qi (⌊Bt⌋) .

Note that this expression represents the standard large-
deviations scaling that shrinks both time and magnitude. We
also define the scaled version of the Lyapunov function:

vB(t) = V (~qB(t)).

The queue overflow criterion is
{

vB(t) ≥ 1
}

. For ease of
exposition, we consider a system that starts att = 0. For a
given T > 0, we are interested in the following probability:

IT
0 (~λ) , − lim sup

B→∞

1

B
log P

(

vB(T ) ≥ 1
∣

∣vB(0) = 0
)

.

Intuitively, as T → ∞, one would expect thatIT
0 (~λ)

approachesI0(~λ), the lower bound on the decay rate of
the stationary overflow probability [8], [9]. We will use
Lemma 1 to derive a lower bound forIT

0 (~λ). Note that
Lemma 1 provides a lower bound on the service rate of
those interference sets whose backlogs are almost the largest.
However, these interference sets with largest backlog can
change from time to time, which makes it difficult for us to
track the system dynamics directly by Lemma 1. To address
the problem, in the following derivation we divide the entire
scaled time into many small intervals. In each small interval,
the interference sets that have almost the largest backlog do
not change and therefore we are able to use Lemma 1 to
estimateIT

0 (~λ).

A. Local Rate Function

For a fixedt, let δ > 0 be a small number. Let∆vB(δ, t) =
vB(t + δ) − vB(t) denote the drift of the scaled Lyapunov
function. Let Q be a closed and bounded set such that
V (~q) ≥ v > 0 for all ~q ∈ Q. Our first goal is to find
the following limit given~q 6= ~0 andW > 0,

lim
B→∞

1

B
log sup

~q∈Q
P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

. (3)

We call (3) the local rate function, which is the maximum
asymptotic decay rate of the probability that the growth rate
of vB is no smaller thanW over all ~q ∈ Q, conditioned on
~qB(t) = ~q. Since the arrival and departure are both bounded,
for any i ∈ E there must existCi such that

∣

∣

∣

∣

∣

∑

l∈Ei

ql(n + 1)

cl

−
∑

l∈Ei

ql(n)

cl

∣

∣

∣

∣

∣

≤ Ci

for all n. We next define the setI(~q, δ) as

I(~q, δ) =

{

i ∈ E

∣

∣

∣

∣

∣

∑

l∈Ei

ql

cl

≥ V (~q) − δCi

}

. (4)

Intuitively, I(~qB(t), δ) is the set of links that have the

close-to-largest sum of backlog
∑

l∈Ei

qB

l
(t)

cl
in their re-

spective interference range. Given thatW > 0, if the
event{∆vB(δ, t) ≥ δW} happens, we will havevB(t) <
vB(δ + t). For anyB, if i ∈ E and i /∈ I(~qB(t), δ), then
∑

l∈Ei

qB

l
(t)

cl
< vB(t) − δCi, and hence

∑

l∈Ei

qB
l (t + δ)

cl

< vB(t) − δCi + δCi = vB(t) < vB(δ + t).

Therefore, for any largeB, only i ∈ I(~qB(t), δ) could

potentially maximize
∑

l∈Ei

qB

l

cl
at timet+ δ. So the change

betweenvB(t) andvB(t + δ) can be bounded by the max-

imum increment of
∑

l∈Ei

qB

l

cl
among thosei ∈ I(~qB(t), δ).

More specifically, we have

∆vB(δ, t) ≤ max
i∈I(~qB(t),δ)

⌊B(t+δ)⌋
∑

n=⌊Bt⌋+1

1

B

∑

l∈Ei

al(n) − dl(n)

cl

.

Define:

Ai(n) ,
∑

l∈Ei

al(n)

cl

, Di(n) ,
∑

l∈Ei

dl(n)

cl

. (5)

Let Āi be the mean ofAi(n). Note that by our assumption,
there existsǫ0 > 0 such thatĀi < 1− log(M)+1

M
− ǫ0, for all

links i.
Now consider Equation (3), sinceq(t) is Markovian, so is

qB(t). We thus have

lim
B→∞

1

B
log sup

~q∈Q
P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

= lim
B→∞

1

B
log sup

~q∈Q
P
(

∆vB(δ, 0) ≥ δW
∣

∣~qB(0) = ~q
)

.

Hence, for the following derivation, we will taket = 0, and
drop the variablet when there is no source of confusion.
Moreover, for ease of exposition, letP~q(·) denote the prob-
ability distribution conditioned on~q(0) = ~q.

Lemma 2. Assume that~qB(0) = ~q and V (~q) ≥ v > 0. For
any i ∈ I(~q, δ), Di(n) is defined in(5). For any v, ξ > 0,
there existsδ0 and B0 such that for allδ ≤ δ0 and for all
B ≥ B0, the following holds for1 ≤ n ≤ ⌊Bδ⌋,

P~q(Di(n) ≥ 1 |Di(n − 1), Ai(n − 1), ...,D(1), A(1) )

≥ 1 − ǫ,

P~q(Di(n) = 0 |Di(n − 1), Ai(n − 1), ...,D(1), A(1) ) ≤ ǫ.

whereǫ = log M+1
M

+ ξ .

Lemma 2 implies that, whenδ is small, the service rate
at each neighborhood of linki ∈ I(~q, δ) is no smaller than
1 with probability no smaller than1 − ǫ.

Let D̂(n), n = 1, 2, ... be i.i.d random variables with
distribution

D̂(n) =

{

1, with prob. 1 − ǫ
0, with prob. ǫ



Let AB
i (δ) , 1

B

∑[Bδ]
n=1 Ai(n), DB

i (δ) , 1
B

∑[Bδ]
n=1 Di(n),

D̂B(δ) , 1
B

∑[Bδ]
n=1 D̂(n), Zi(n) , Ai(n)−Di(n), ZB

i (δ) ,

AB
i (δ) − DB

i (δ), Ẑ(n) , Ai(n) − D̂i(n), and ẐB
i (δ) ,

AB
i (δ) − D̂B

i (δ). We then have

∆vB(δ) ≤ max
i∈I(~qB(0),δ)

ZB
i (δ), (6)

For eachi ∈ E, let

HẐ
i , lim sup

B→∞

1

B
log P

(

ẐB
i (δ) ≥ δW

)

,

HZ
max , lim sup

B→∞

1

B
log sup

~q∈Q
P~q

(

max
i∈I(~q,δ)

ZB
i (δ) ≥ δW

)

.

From (6), we have

lim sup
B→∞

1

B
log sup

~q∈Q
P
(

∆vB(δ) ≥ δW
∣

∣~qB(0) = ~q
)

≤ HZ
max.

Unfortunately,HZ
max is difficult to compute directly. On the

other hand,HẐ
i ’s are fairly easy to compute. Next, we will

establish a relationship betweenHZ
max andHẐ

i ’s so that we
can estimateHZ

max by HẐ
i ’s.

Lemma 3. Assume that~qB(0) = ~q and V (~q) ≥ v > 0. For
any ξ > 0, defineǫ as in Lemma 2. For anyv > 0, there
existsδ0 > 0 and B0 > 0, such that for anyW > 0, any
i ∈ I(~q, δ) and for all 0 < δ ≤ δ0 and B ≥ B0, we will
have

P~q(Z
B
i (δ) ≥ W ) ≤ P(ẐB

i (δ) ≥ W ).

Lemma 4. Let Q be a closed and bounded set such that
V (~q) ≥ v > 0 for all ~q ∈ Q. For any ξ > 0, defineǫ as in
Lemma 2. There existsδ0 > 0, such that for anyW > 0 and
for all 0 < δ ≤ δ0, we have

HZ
max ≤ max

i∈E
HẐ

i . (7)

Due to page limitations, we omit the proof of these
lemmas, which is available in [10]. Lemma 4 actually says
that HZ

max can be bounded by the maximum of allHẐ
i ’s.

Each individualHẐ
i is much easier to obtain. We therefore

has the following theorem. We omit its proof here. Interested
reader could refer to [10] for more details.

Theorem 5. Assume that for someǫ0 > 0, inequality (1)
holds. For any small and positiveξ such that0 < ξ < ǫ0,
defineǫ as in Lemma 2. Givent, also assume that~qB(t) =
~q ∈ Q, whereQ is a closed and bounded set such that
V (~q) ≥ v > 0 for all ~q ∈ Q. There existsδ0 > 0 such that
for all 0 < δ ≤ δ0 and W > 0,

lim sup
B→∞

1

B
log sup

~q∈Q
P
(

∆vB(δ, t) ≥ δW
∣

∣~qB(t) = ~q
)

≤− δ min
i∈E

inf
0≤d≤1−ǫ

(IA
i (d + W ) + ID̂(d)). (8)

where

ID̂(d) = sup
θ∈R

{

θd − log E

(

eθD̂(1)
)}

IA
i (a) = sup

θ∈R

{

θa − log E

(

eθAi(1)
)}

. (9)

B. The Lower Bound

For fixedT > 0, we now derive a lower bound onIT
0 (~λ)

in this subsection. Fix a smallv ∈ (0, 1), chooseδ0 as in
Theorem 5. Let0 < δ < δ0 such thatδ = T/n for some
integern. Sincev(0) = 0 and the arrivals are bounded, there
existsvmax > 0, such thatvB(t) ≤ vmax for all t ∈ [0, T ].
Fix ζ < v. Given v0 = 0, vn = 1, 0 ≤ v1, ..., vn−1 ≤
vmax, define Γk(vk) =

{

vk − ζ ≤ vB(kδ) ≤ vk + ζ
}

for
k = 1, 2, ..., n − 1, Γ0(v0) =

{

vB(0) = v0

}

and Γn(vn) =
{

vB(nδ) ≥ vn

}

. Let mv, 0 ≤ mv < n, be the largest integer
m such thatvm−1 < 2v. We first fix v0, ..., vn. For ease of
exposition, we will useΓk to denoteΓk(vk) when there is
no source of confusion. Consider the follow probability:

P (Γ1 ∩ ... ∩ Γn |Γ0 ) (10)

Roughly speaking, this is the probability that the trajectory
vB(t) follows v0, v1, ..., vn given that it starts atv0. Clearly,

(10)≤P (Γn |Γn−1, ...,Γmv
,Γ0 ) (11)

× P (Γn−1 |Γn−2, ...,Γmv
,Γ0 ) × ... × P (Γmv

|Γ0 ) .

Define ΨB
k (δ, ζ) ,

{

∆vB(δ, (k − 1)δ) ≥ vk − vk−1 − 2ζ
}

.
Let

Qk =

{

{~q |V (~q) ∈ [vk−1 − ζ, vk−1 + ζ]} , k = 2, ..., n
{~q |V (~q) = v0 } , k = 1

.

Also define

φB
k (δ, ζ) = sup

~q∈Qk

P
(

ΨB
k (δ, ζ)

∣

∣~qB((k − 1)δ) = ~q
)

.

We then have the following lemma.

Lemma 6. For any k, mv < k ≤ n, the following holds

P (Γk |Γk−1, ...,Γmv
,Γ0 ) ≤ φB

k (δ, ζ). (12)

The proof of Lemma is omitted due to page limits, which
is available in [10].

Theorem 7. Assume that for someǫ0 > 0, inequality (1)
holds. For any small and positiveξ such that0 < ξ < ǫ0,
defineǫ as in Lemma 2. For anyT > 0, the lower bound on
the decay rate function satisfies

IT
0 (~λ) ≥ inf

W>0
min
i∈E

inf
d≤(1−ǫ)

(IA
i (d + W ) + ID̂(d))

W
, L.

(13)

Proof: For any ζ > 0, there exists a finite setV of
vectors (vn, ..., v0), v0 = 0, vn = 1, 0 ≤ v1, ..., vn−1 ≤
vmax, such that

⋃

(vn,...,v0)∈V

Γn−1(vn−1) × ... × Γ1(v1)

⊇
{

(

vB((n − 1)δ), ..., vB(δ)
) ∣

∣0 ≤ vB((n − 1)δ)

≤ vmax, ..., 0 ≤ vB(δ) ≤ vmax

}

,

where × denotes the Cartesian product. Then taking the
advantage of Lemma 6, one can show that

P
(

vB(T ) ≥ 1
∣

∣vB(0) = v0

)

≤
∑

(vn,...,v0)∈V

n
∏

k=mv+1

φB
k (δ, ζ).



If we take the log and letB go to infinity, we will have

lim sup
B→∞

1

B
log P

(

vB(T ) ≥ 1
∣

∣vB(0) = v0

)

≤ max
(vn,...,v0)∈V

lim sup
B→∞

1

B

n
∑

k=mv+1

log φB
k (δ, ζ).

To estimate the limit in the above inequality, we will use
the local rate function derived in Section III.A. From the
definition of φB

k (δ, ζ) and Theorem 5, ifζ < v, sincevk ≥
2v,mv < k ≤ n, we will have

lim sup
B→∞

1

B
log φB

k (δ, ζ) ≤ −(vk − vk−1 − 2ζ)L

if vk − vk−1 − 2ζ ≥ 0. On the other hand, ifvk − vk−1 −
2ζ < 0, the above inequality still holds because the left hand
side is always less than 0. Therefore, taking the sum from
k = mv + 1 to n, one will get

max
(vn,...,v0)∈V

lim sup
B→∞

1

B

n
∑

k=mv+1

log φB
k (δ, ζ)

≤− min
(vn,...,v0)∈V

(1 − 2v − 2(n − mv)ζ) L

≤− (1 − 2v − 2nζ) L

Let v → 0 andζ → 0, we have

IT
0 (~λ) = − lim sup

B→∞

1

B
log P

(

vB(T ) ≥ 1
∣

∣vB(0) = 0
)

≥ L.

Note that the bound in Theorem 7 is independent fromT .
As T → ∞ we could infer thatIT

0 (~λ) → I0(~λ). Hence we
could expect thatI0(~λ) ≥ L. Such a limiting argument can
be rigorously made using the Freidlin-Wentzell construction
as in [8], [9].

IV. A N UPPERBOUND

In this section, we will develop an upper bound for the
decay-rate functionJ0(~λ) under the node-exclusive interfer-
ence model. In the node-exclusive model, each interference
set may have at most two links scheduled in the same slot.
Consider an fictitious algorithm such that

P

(

∑

l∈Ei

dl(n)

cl

= 2

)

= 1, for all n.

Clearly, this fictitious algorithm will provide a lower bound
on the overflow probability over all possible algorithms. We
denote such algorithm as OPTIMAL. Note that OPTIMAL
may not exist, and it is only used to derive an upper bound
on J0(~λ). We now consider (2) under algorithm OPTIMAL.
Let ZB

i (t), AB
i (t),DB

i (t) have the same meaning as before.
Now, the derivation are much easier sinceZB

i (t) are i.i.d.
acrosst. According to Theorem 6.6 in [11], the overflow rate
function of OPTIMAL for each linki is given by

lim
B→∞

1

B
log P

(

∑

l∈Ei

qB
l (0)

cl

> 1

)

= − inf
x>0

IZ
i,opt(x)

x

whereIZ
i,opt(x) is the rate function ofZB

i under OPTIMAL
algorithm. It is trivial to show thatIZ

i,opt(x) = IA
i (x + 2).

Hence, the decay-rate of the queue-overflow probability of
this fictitious system is given by

lim
B→∞

1

B
log P

(

vB(0) > 1
)

= −min
i∈E

inf
a>0

IA
i (a + 2)

a
. (14)

Then, we have the following upper bound:

J0(~λ) ≤ Iopt , min
i∈E

inf
a>0

IA
i (a + 2)

a
.

We now pose a constraint on this decay rate function.
Suppose that we want to guarantee thatIopt ≥ θ0. Let ΛA

i

be the cumulant generating function of the arrival process,
ΛA

i (θ) = log E
(

eθAi(1)
)

. Using the fact thatIA
i is the

Legendre transform ofΛA
i and ΛA

i is also the Legendre
transform ofIA

i , one can show that

Iopt ≥ θ0 ⇔ max
i∈E

ΛA
i (θ0)

θ0
≤ 2. (15)

The quantityΛA

i
(θ0)

θ0

is often called the effective bandwidth
of the arrival process. The inequality (15) implies that the
maximum possible effective capacity region of the system
under any algorithm is such that the effective bandwidth in
every interference range must be no greater than 2.

V. COMPARISONS

We now compare our lower bound in Section III with the
upper bound in Section IV in three cases.

A. Deterministic Arrivals

We first consider the case when the arrivals are determinis-
tic, i.e.,ai(n) = λi for all i ∈ E andn = 1, 2, .... Recall that
Āi =

∑

l∈Ei

λl

cl
is the mean ofAi(n), and the rate function

of Ai will be

IA
i (a) =

{

0, a = Āi

∞, otherwise
.

Then, the lower bound of the decay rate of the queue-
overflow probability is

L = inf
W≥0

min
i∈E

ID̂(Āi − W )

W
.

We then put a constraint on the decay rate. Using similar
technique as we did when deriving (15), we could get

L ≥ θ0 ⇔ ΛD̂(−θ0)/(−θ0) ≥ Āi,∀i ∈ E.

Note that under the assumption of deterministic arrival,
we have the effective bandwidth of arrival process equals
to its mean, i.e.,ΛA

i (θ0)/θ0 = Āi. Therefore, the ef-
fective capacity region of Q-SCHED is such that the
sum of effective bandwidth in each interference range is
no greater thanΛD̂(−θ0)/(−θ0). Note that ΛD̂(−θ0) =
log
(

ǫ + (1 − ǫ)e−θ0

)

. Thus, under the assumption of deter-
ministic arrivals the effective capacity region of Q-SCHED

at a given constraint is at least
log(ǫ+(1−ǫ)e−θ0)

−2θ0

of that of
any other algorithms.



B. Infinite Number of Mini-slots

In this case, we assume that the number of mini-slotsM
is infinite. We also assume that the variableξ in Lemma 2 is
0, which implies thatǫ in Lemma 2 equals to 0. It follows
that the rate function of̂D will be:

ID̂(d) =

{

0, d = 1
∞, otherwise

.

Consequently, the right-hand-side of (13) can be simplified

L = inf
W≥0

min
i∈E

IA
i (W + 1)

W
.

Using the same method as in the section IV, if we pose a
constraint on the decay rate, e.g. if we want to guarantee that
L ≥ θ0, then we could get the “effective bandwidth” in this
case:

max
i∈E

ΛA
i (θ0)

θ0
≤ 1.

This result implies that, at a givenθ0, the effective capacity
region of the Q-SCHED algorithm is such that the sum of the
effective bandwidth in each interference range is no greater
than 1. Comparing with (15), we note that the effective
capacity region of Q-SCHED is at least 1/2 of that of any
other algorithms.

C. General Case

Now we consider the general case. Note that when the
value of ǫ0 in (1) satisfies0 < ξ < ǫ0 and W > 0, we
haveW + 1 − ǫ > Āi for all links i by our assumption. If
d ≥ 1− ǫ, we haveW + d ≥ W +1− ǫ > Āi, which means
that IA

i (d + W ) andID̂(d) are increasing with respect tod.
Therefore,

inf
d≤1−ǫ

IA
i (d + W ) + ID̂(d) = inf

d
IA
i (d + W ) + ID̂(d).

Then, we have

L ≥ θ0

⇔ inf
W>0

min
i∈E

inf
d≤(1−ǫ)

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0

⇔ inf
W>0,d

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0,∀i ∈ E.

Further note thatIA
i (d + W ) + ID̂(d)− θW ≥ 0 if W ≤ 0.

Hence, we have, for alli ∈ E

inf
W>0,d

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0

⇔ inf
W,d

{IA
i (d + W ) + ID̂(d) − θW} ≥ 0

⇔ sup
W+d

{(d + W )θ − IA
i (d + W )}

+ sup
d

{−dθ − ID̂(d)} ≤ 0

⇔ΛA
i (θ) + ΛD̂(−θ) ≤ 0.

Hence

L ≥ θ0 ⇔ΛA
i (θ) + ΛD̂(−θ) ≤ 0,∀i ∈ E

⇔max
i∈E

ΛA
i (θ0)

θ0
≤

ΛD̂(−θ0)

−θ0
.

Similarly to the case in Section V.A, this means that
the effective capacity region of Q-SCHED is at least
log(ǫ+(1−ǫ)e−θ0)

−2θ0

of that of any other algorithms.

VI. CONCLUSION

In this paper, we developed a lower bound on the decay
rate of the overflow probability for scheduling algorithm for
ad-hoc wireless networks called Q-SCHED. We also show
that the effective capacity that Q-SCHED could support is a
provable fraction of the maximum possible effective capacity
over all other algorithms, subject to a given constraint on
the decay-rate of the queue-overflow probability. For future
work, we will extend the approach of this paper to other wire-
less scheduling algorithms and other types of performance
guarantees.
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