On the Queue-Overflow Probabilities of
Distributed Scheduling Algorithms

Can Zhao and Xiaojun Lin
School of Electrical and Computer Engineering, Purdue Unitgré/est Lafayette
Email: {zhao43,liny @purdue.edu

Abstract—In this paper, we are interested in using large- mapped to the probability of queue overflow. Unfortunately,
deviations theory to characterize the asymptotic decay-rate poth problems have been known to be very difficult. First,
of the queue-overflow probability for distributed wireless the exact probability distribution is usually mathemaltica

scheduling algorithms, as the overflow threshold approaches . tractable. H ft. h to t t tofi
infinity. We consider ad-hoc wireless networks where each link Ntractablé. Hence, one often has 1o turn {o asymptolc

interferes with a given set of other links, and we focus on techniques, such as Iarge-dgviations_. For Wirelin(_a ndtwor
a distributed scheduling algorithm called Q-SCHED, which is many results have been obtained using large-deviatiohs tec

introduced by Gupta et al. First, we derive a lower bound on the niques [4], based on the assumption that the packet arrival

asymptotic decay rate of the queue-overflow probability for Q- rqcass is known and the service rate of each link is time-

SCHED. We then present an upper bound on the decay rate for . iant. H . ireless networks. th rvice rate
all possible algorithms operating on the same network. Finally, invariant. However, In WIreless networks, the service

using these bounds, we are able to conclude that, subject to Process is time-varying. Sqme progress has been made for
a given constraint on the asymptotic decay rate of the queue- the case when the scheduling decision is based only on the

overflow probability, Q-SCHED can support a provable fraction  channel state, which means that the service rate process has
of the offered loads achievable by any algorithms. known statistics [5]. However, for many wireless schedwlin
algorithms, even the statistics of the service rate proaess
unknown.

Link scheduling is an important problem for ad-hoc wire- Recently, the delay-violation or queue-overflow probabil-
less networks. In wireless networks the transmissions & for a number of queue-length based scheduling algo-
neighboring links can interfere with each other. Hence, imithms, for which the statistics of the service rate process
order to maximize the capacity of the system, it is criti@al t are unknown, have been studied in [6] - [9] using sample-
schedule only a subset of non-interfering links at each timgath large-deviations. In these works, the algorithms are
There have been many studies on designing and analyziogntralized and are for a single cell. Further, the algaorith
scheduling algorithms for wireless network. A notable tesuare deterministic in the sense that the scheduling decision
is the well-known maximum-weight scheduling algorithm,a deterministic function of the system state.
which has been shown to be throughput-optimal, i.e., it In this paper, we will develop techniques to estimate
can stabilize the network at the largest set of offered loadsnd control the QoS of distributed scheduling algorithms
[1]. However, this algorithm is centralized and with highfor ad hoc networks. We will focus on a random access
computational complexity. Therefore, many researcheve haalgorithm for ad hoc wireless networks called Q-SCHED
proposed low-complexity and distributed scheduling algof2] . Note that due to the distributed and random nature of
rithms, (see, e.g. [2], [3] Often, the goal is to be able to Q-SCHED, the techniques in prior works [6] - [9] do not
stabilize the network for a provable fraction of the capacitapply directly. As in [6] - [9], the questions that we are
region. For example, the low-complexity algorithm in [2]sha interested in are: a) how to estimate the decay rate of the
been shown to sustain close to 1/2 of the capacity regiagqueue overflow probability of this algorithm, and b) given
under the node-exclusive interference model. an overflow constraint, how to calculate the set of offer-

To date most studies of wireless scheduling algorithmi®ad vectors that this algorithm can support. To answerethes
have mainly focused on stabilities. In other words, theyuestions, we will first obtain a lower bound on the decay
ensure that the queues do not grow to infinity. Althoughate of the overflow probability for Q-SCHED. Then, based
stability is an important criterion, for many real-time dipp-  on this bound, we provide a lower bound on the set of offer-
tions stability is far from being sufficient. For example,evh load vectors that this algorithm could support at a given
watching streaming video or listening to streaming audioqueue-overflow constraint. To the best of our knowledge,
the user would expect that the delay of every packet cahis is the first work that characterizes the queue-overflow
be upper bounded with high probability. As stability onlyprobability of distributed scheduling algorithms for adeh
ensures that the queue-length of each link remains finitagtworks in a large-deviations setting. Finally, we shoat th
it cannot guarantee such type of stringent quality-ofiserv subject to a given queue-overflow constraint, the offer load
(QoS) requirements. supported by Q-SCHED is at least a provable fraction of the

In certain cases, the probability of delay violation can beffered load supported by any other algorithms.

I. INTRODUCTION



Il. SYSTEM MODEL a transmission from one of its interfering links. If a link
We use the model from [2]. We consider a wireles<chooses a backoff time equals 46 + 1 it will not attempt

network of N' nodes. Leti” be the set of nodess be the set © transmit in this time slot. If two or more links that interé

of directed links between nodes, a6V, E) be the directed W?th each other begin to transmit 'simultane.ousliy, cplﬁsio
connectivity graph of the network. Each litke E interferes will occur and all of these transmissions will fail. Finally
with a set of other links in&, which we denote as;. We an link that hears the collision will not attempt to transmi

assume that ifc € & thenl € &, i.e., the interference N NS time slot. _ .
relationship is symmetric. We also 1€ &, i.e., We now present an important lemma proved in [2] for

Q-SCHED, which will be used in our derivation. Define

n
. | | - V(n) = max 7 4.
This interference set varies when different communication = ice, @]

techniques are gsed. For example, for bluetooth, we use tWﬁich denotes the largest sum of backlog in any interference
node-exclusive interference model, also known as the prlli- :
. . eighborhood.

mary interference model or the one-hop interference model,
where&; is the set of all links that are connected to eithekemma 1. Q-SCHED scheduling policy guarantees that for
end-point ofl. In IEEE 802.11 WLAN, the interference setanye¢, > 0 and constant€’;, C> > 0, there exists a constant
& will be the two-hop neighbors df including!. R such that ifV(n) > R, then for anyn € [0,1] and for

We assume a slotted system. kefn) denotes the number any linki such that

& ={l}U{l' € E:l interferes withl}.

of packets that arrive at link in time-slot n. We assume q(n)
that for eachl, a;(1),a;(2), ... arei.i.d. and \; = E[a;(1)]. > o =n(V(n) = C1 — Caeo),
Moreover, we assume thai(n) is upper bounded by, leg;

foralln > 0andalll € E, i.e.,0 < a;(n) < Ay, which the following holds,
means that the number of arrival packets is finite in eac
time slot. P E Pr{Link [ is schedulefl > 7 <1 - % - 60) .

Let d;(n) denote the number of packets that can be served¢:
by link [ in time-slotn. Assume that the capacity of each Note that although the original statement of Lemma 1 in
link is a fixed numberc;. Let s;(n) = 1 indicates that [2] requires thak,, C1,Cy > 0, the proof there also trivially
link [ is scheduled in time-slot, s;(n) = 0 otherwise. holds for the case whe&y, Cy,Cy > 0. Letting n = 1, this
Clearly, d;(n) = ¢s;(n). We assume a single-hop systemthen implies that, whe (n) is large, with high probability
i.e., packets served at linkimmediately leave the system. at least one link will be scheduled in those interference
Let ¢;(n) denote the backlog of linkin slotn, andg(n) = neighborhood with sum of backlog closelt@n). In [2], this
(q1(n),q2(n), ...,qz|(n)). Then the evolution of each)(n) lemma has been used to establish the negative drift of the
is given byg (n+1) = [q(n) + a;(n) — d;(n)]", where[]*  Lyapunov functionV (n) whenever the offered load satisfies
denote the projection t{®, o). that, for someey > 0,

We consider the algorithm Q-SCHED that was introduced A log(M) +1
in [2]. In this algorithm, it is assumed that at the beginning Z o =1= M
of each time-slot every link knows the queue-lengths of all le&
links in its interference sef; and also the queue-lengths ofFor the rest of the paper, we assume that (1) holds because
all links in the interference s&, for everyk € &. Each time otherwise we do not know the stability of the system.
slot is divided into two parts: a scheduling slot and a data In this paper, we are interested in queue-overflow proba-
transmission slot. Links that are chosen in the schedulirgjlities. For example, we may want to know the probability
slot will transmit their packets in the data transmissiast.sl that the maximum queue length exceeds a given threshold
The scheduling slot is further divided infa mini-slots. At~ B. On the other hand, with the techniques developed in this
the beginning of each time-slat each link! first computes: paper, it is more convenient to work with the probability

i P @B @
]Dl(n) =« ! ae(n)’ I}éag‘(leg. c )

MaXice, D okee,; o

However, even calculating this probability is mathemadlyca
intractable. Hence, we will use large-deviations theory to
estimate it. We are interested in the following limits:

1 — €, for all links i. (1)

wherea = log(M). Then, each link picks a backoff time
Yi(n) from {1,2,....,M + 1} according to the following

probabilities:
v 1
P(Yi(n) =M +1) = e~ 710 Io(\) = flimsupE log P <m3g< £l > B) )
00 1€ C
P(Yi(n) = m) = e P05 _ o~ PO0E jp— 12 M. 7 e
: . . T o1 Q
A link that chooses backoff tim&;(n) = k < M will start Jo(A) = — lim inf 5 logP (gleag = B) :
transmission at thé-th mini-slot unless it has already heard ee !



-

Clearly, In()\) provides a lower bound on the decay rate ointuitively, Z(g 72(t),6) is the set of links that have the
(2) and Jo(X) provides an upper bound. close-to-largest sum of backlol,.,, =% in their re-

spective interference range. Given thﬁiir > 0, if the
~ event{Av (6,t) > SW} happens, we will have?(t) <
We first develop a lower bound faly(A). For any linki B (5 + t) For anyB, if i € E andi ¢ Z(¢”(t),4), then

in E, define the scaled queue length: Zzeg () < vB(t) - 5C;, and hence

&)

IIl. THE LOWER BOUND

() = zai (1B)) aP(t+9)

= <P (1) = 6C; +6C; = 0P (1) < vP (5 +1).
1

Note that this expression represents the standard large<:
deviations scaling that shrinks both time and magnitude. WFherefore for any largeB, only i € T(%(1),8) could

also define the scaled version of the Lyapunov function:
potentially maX|m|zeZl€5 - attimet+¢. So the change
v () = V(g7 (1)). betweenv? (¢) and v B (t + 6) can be bounded by the max-

imum increment oleeg .- among those € Z( g2 (t),9).

The queue overflow criterion i§v?(t) > 1}. For ease of
More specifically, we have

exposition, we consider a system that start$ at0. For a

givenT > 0, we are interested in the following probability: | B(t+5)] )
B ai(n
. 1 Av”(4,t) <  max
I —li}ransup B logP (v(T) > 1 |UB(O) =0). i€Z(g5(1),9) L%;J-H g‘;
Define:

Intuitively, as 7' — oo, one would expect that/d (A X)
approachesly(A ) the lower bound on the decay rate of As(n)
the stationary overflow probability [8], [9]. We will use '
Lemma 1 to derive a lower bound foFOT(X). Note that -
Lemma 1 provides a lower bound on the service rate dfet A; be the mean ofd;(n). Note that by our assumption,
those interference sets whose backlogs are almost thestargéhere exists, > 0 such thatd; < 1 — % — €, for all
However, these interference sets with largest backlog cdinks i.

change from time to time, which makes it difficult for us to Now consider Equation (3), sinegt) is Markovian, so is
track the system dynamics directly by Lemma 1. To addresg’(¢). We thus have

the problem, in the following derivation we divide the eatir

(1>

. : . - 1
scaled time into many small intervals. In each small interva  lim — logsup P (Av (6,t) > 6W\ J)
the interference sets that have almost the largest backiog d Beo 7€Q
not change and therefore we are able to use Lemma 1 to _ hm llog sup P (AvP(8,0) > oW |77 (0) = 7) .
estimate/Z (X). B—oo 7eQ
A. Local Rate Function Hence, for the following derivation, we will take= 0, and

drop the variablet when there is no source of confusion.
Moreover, for ease of exposition, 18;(-) denote the prob-
ability distribution conditioned og(0) = ¢.

For afixedt, lets > 0 be a small number. Lexv?(6,t) =

vB(t + §) — vB(t) denote the drift of the scaled Lyapunov
func'uon Let Q be a closed and bounded set such that

V(7) > v > 0 for all § € Q. Our first goal is to find Lemma 2. Assume thag”(0) = ¢ and V(q) > v > 0. For

the foIIowing limit giveng # 0 and W > 0, anyi € Z(q,9), D;(n) is defined in(5). For any v, ¢ > 0,
there exists), and By such that for allo < §, and for all
hm — log supP (AvP(5,¢) > oW |¢%(t) =7). (3) B > By, the following holds forl < n < B4/,
B—oo (IEQ

We call (3) the local rate function, which is the maximum Pa(Di(7) = 1|Di(n = 1), Ai(n — 1), ..., D(1), A(1))
asymptotic decay rate of the probability that the growtle rat >1—cg¢

of v is no smaller thari¥ over all 7 € Q, conditioned on Ps(D;(n) =0|D;i(n — 1), Ai(n —1),...,D(1), A(1)) < .
¢ (t) = ¢. Since the arrival and departure are both bounded,

for anyi € E there must exist; such that wheree = 1082+ 4 ¢
q(n+1) Lemma 2 implies that, when is small, the service rate
1 q(n . . N
Z Z at each neighborhood of linke Z(q,6) is no smaller than
l€E; I€E; 1 with grobability no smaller than — .

distribution

% > V(q) —0C; } . (4) D(n) = { 1, with prob.1 —e

Z(q,0) =<4i€eFE
0, with prob.e

leg;



Let AB(5) &2 LB A,(n), D) & L3P Di(n), B. The Lower Bound
DB(5) £ & ZL:‘S{AD(TL). Zi(n) & Ay(n)—Di(n), Z(5) = For fixedT > 0, we now derive a lower bound off (X)
AP(6) — DP(8), Z(n) £ Ai(n) — Di(n), and ZP(6) £ in this subsection. Fix a small € (0,1), choosed, as in
AB(8) — DB (5). We then have Theorem 5. Let) < § < &, such thatd = T'//n for some
B B integern. Sincev(0) = 0 and the arrivals are bounded, there
Av=(6) < Z-ez{f;?fém Z;7(9), ©) eXistSUmax > 0, such thatv?(t) < vyay for all t € [0, 7).

Fix ¢ < v. Givenvy = 0,v, = 1,0 < vy, <
Umax, define Tx(vg) = {Uk — (< UB(k‘(S) < wg + C} for
HZZ 2 hmsupllogp (ZAZB(é) > 6W) , k = 1,2,...,n—1, Fo(’UQ) = {UB(O) = 1}0} and Fn(vn) e
B—oo B {vB(né) > v,}. Letm,, 0 <m, < n, be the largest integer
m such thatv,, 1 < 2v. We first fix v, ..., v,. For ease of
exposition, we will use;, to denotel'(v;) when there is
no source of confusion. Consider the follow probability:

P(TiN..NT,|To) (10)

Roughly speaking, this is the probability that the trajegto
vB(t) follows vy, vy, ..., v, given that it starts ab,. Clearly,

For eachi € E, let

1
Higo & ligl sup — log sup Pz (,Gr%xd) zZB () > 6W> .
—00 q 7 s

From (6), we have

lim sup 1 log sup P (AvP(8) > 6W |§'B(O) =) < HZ,.
qeQ

B—oo
Unfortunately, HZ,, is difficult to compute directly. On the
other hand,Z#’s are fairly easy to compute. Next, we will (10) <P (I'x [T—1, ..., T'm,, To) (11)
establish a relationship betweéiy,, and H?'s so that we XP (T 1|Th2ses Ty To) X oo X P (T, [To) -
i A Z
can estimateff iy, by H;'s. Define W5 (6,¢) 2 {AvB (8, (k — 1)8) > vy — vp_1 — 2.
Lemma 3. Assume thag”?(0) = gand V(q) > v > 0. For  Let

any ¢ > 0, definee as in Lemma 2. For any > 0, there {7IV(]) € [vk—1 — g1+ (]}, k=2,...,n
existsdy > 0 and By > 0, such that for anyiy > 0, any Qe = IV Q) =v}, k=1
i € I(4,6) and for all0 < § < do and B > By, we Will A0 qofine
have
PA(ZE(5) > W) < P(ZB(5) > W). ¢ (6,¢) = sup P (U7 (5,¢) [¢%((k —1)8) = ).

q€Qk
Lemma 4. Let Q be a closed and bounded set such thafye then have the following lemma.
V(@) > v >0forall §e Q. For any¢ > 0, definee as in _
Lemma 2. There exists > 0, such that for any¥’ > 0 and Lemma 6. For any k, m, < k < n, the following holds

for all 0 < 6 < §y, we have P Tk 1,.., T, , To) < 02(6,0). (12)
HZ

max

< max Hf @) The proof of Lemma is omitted due to page limits, which
e is available in [10].
Due to page limitations, we omit the proof of these

lemmas, which is available in [10]. Lemma 4 actually sayd héorem 7. Assume that for some, > 0, inequality (1)
that HZ,  can be bounded by the maximum of 4nZs.  holds. For any small and positivg such thatd < £ < e,

max R - .
Each individualHZ is much easier to obtain. We thereforedefinec as in Lemma 2. For an§" > 0, the lower bound on
the decay rate function satisfies

has the following theorem. We omit its proof here. Interdste A
reader could refer to [10] for more details. > I IP

[10] () > inf min e SCEFWIFITE) 5 p
Theorem 5. Assume that for some, > 0, inequality (1) W>0ielk d<(1—¢) w (13)
holds. For any small and positive such that0 < £ < ¢,
definee as in Lemma 2. Given, also assume thaf?(t) = Proof: For any¢ > 0, there exists a finite se¥ of

7 € Q, where Q is a closed and bounded set such thavectors (v,,...,v0), vo = 0,v, = 1,0 < v1,...,0p-1 <
V(7) > v > 0 forall §€ Q. There existgy > 0 such that vmax, such that

forall 0 < é <y and W > 0, U T 1 (Un_1) X . X T1(01)
lim sup é log sup P (AUB((;, t) > oW |cj'B(t) = cj’) (Vns:--00) €V
oo 7eQ ) > { (0B ((n = 1)), ..., v2(8)) |0 < 0B ((n — 1))
< —démin inf (I{{(d+W)+T1P(d)). (8)
i€E 0<d<l-e¢ < Vs <y 0 < 0B (8) < vmax}’
where X X where x denotes the Cartesian product. Then taking the
IP(d) =sup {Hd —1logE (e"DU))} advantage of Lemma 6, one can show that
6eR n
IA(a) =sup {Ga —logE (eeAi(l)) } . 9 P (UB(T) >1 ’UB(O) = Uo) < Z H o1 (6,C).

OeR (Vnyeees00) EV k=my+1



If we take the log and leB go to infinity, we will have Hence, the decay-rate of the queue-overflow probability of

1 this fictitious system is given by
lim sup B log P (UB<T) >1 ’vB(O) =)

B— 1 A 2
OO n lim —logP (v”(0) > 1) = — min inf Lﬂ. (14)
. 1 B B—oo B icE a>0 a
< max limsup — E log ¢, (6, ).
(Uny-es00) €V Boo B R Then, we have the following upper bound:

To estimate the limit in the above inequality, we will use - s IR (a+2)
the local rate function derived in Section IIl.A. From the Jo(A) < Lopt = ?é%lg% PR
definition of $2 (8, ¢) and Theorem 5, i < v, sincevy, >

2, my < k < n, we will have We now pose a constraint on this decay rate function.

Suppose that we want to guarantee that > 0y. Let AL

lim sup 1 log $2(8,¢) < —(vg — vp—1 — 2¢)L be the cumulant generating function of the arrival process,
B—oo B A2 (0) = logE (e?4:(1)). Using the fact thatl! is the
if vy —vp_1 —2¢ > 0. On the other hand, if;, —v,_; — Legendre transform of\A and A# is also the Legendre

2¢ < 0, the above inequality still holds because the left hanttansform of7/, one can show that
side is always less than 0. Therefore, taking the sum from

_ - A#(9)
k = m, + 1 to n, one will get Iopt > 0y & max ———= < 2. (15)
. n S 90
oL B
o, e hgl L8P 1 k:;H log ¢} (6, ¢) The quantity%f“) is often called the effective bandwidth

of the arrival process. The inequality (15) implies that the
maximum possible effective capacity region of the system
under any algorithm is such that the effective bandwidth in
every interference range must be no greater than 2.

<— min (1-2v—-2(n—my)()L
(Una-“ﬂ’o)ev

<-—(1-2v—-2n¢)L

Letv — 0 and¢ — 0, we have

V. COMPARISONS
IF(X) = —limsu LiogP (WP (T) > 1[vP(0)=0) > L
0 \A) = T HISID 3 108 = V) =4 We now compare our lower bound in Section Il with the

Note that the bound in Theorem 7 is independent ffBm upper bound in Section IV in three cases.

As T — oo we could infer thatlf (X) — Io(}). Hence we o peterministic Arrivals

could expect thafy()\) > L. Such a limiting argument can ) ) ] o
be rigorously made using the Freidlin-Wentzell constrreti We first consider the case when the arrivals are determinis-

as in [8], [9]. tic, i.e.,a;(n) =\ foralli e Eandn = 1,2, .... Recall that
Ai =Y ee, i—; is the mean of4d;(n), and the rate function
IV. AN UPPERBOUND of A; will be
In this section, we will develop an upper bound for the 0.a=A
decay-rate function/y(A) under the node-exclusive interfer- I a) = { o;) otherqiNise'
ence model. In the node-exclusive model, each interference ’

set may have at most two links scheduled in the same sldthen, the lower bound of the decay rate of the queue-

Consider an fictitious algorithm such that overflow probability is
DA _
P Z di(n) =2 =1,for all n. L = inf min 17(As W)
iz, C W>0icE w

Clearly, this fictitious algorithm will provide a lower bodn We then put a constraint on the decay rate. Using similar
on the overflow probability over all possible algorithms. Wetechnique as we did when deriving (15), we could get
denote such algorithm as OPTIMAL. Note that OPTIMAL b _
may not exist, and it is only used to derive an upper bound L 20y = A7 (=b0)/(~b0) = Ai,Vi € E.

on Jo(A). We now consider (2) under algorithm OPTIMAL. Note that under the assumption of deterministic arrival,
Let ZP(t), A7 (t), Df (t) have the same meaning as beforeye haye the effective bandwidth of arrival process equals
Now, the derivation are much easier sing¢ (¢) are i.i.d. g jis mean, i.e., AX(6,)/0, = A;. Therefore, the ef-
acrosst. According to Theorem 6.6 in [11], the overflow rategctive capacity region of Q-SCHED is such that the

function of OPTIMAL for each linki is given by sum of effective bandwidth in each interference range is
1 4/ (0) - L op(®) no greater thanA”(—6y)/(—0y). Note thatA”(~6,) =
gim —logP > o 1) =—inf =" log (€ + (1 — e)e~%). Thus, under the assumption of deter-
leg; ministic arrivals the effective capacity regign of Q-SCHED
where I7,,() is the rate function ofZ” under OPTIMAL at a given constraint is at Ieaé‘ig(ﬁg_%(]) of that of
algorithm. 1t is trivial to show thaﬂfopt(x) = I#(z +2). any other algorithms.



B. Infinite Number of Mini-slots Similarly to the case in Section V.A, this means that
In this case, we assume that the number of mini-sidts the effective capacity region of Q-SCHED is at least

is infinite. We also assume that the variablan Lemma 2 is W of that of any other algorithms.

0, which implies that in Lemma 2 equals to 0. It follows

that the rate function o will be: VI. CoNcLusIoN
N 0.d=1 In this paper, we developed a lower bound on the decay
1°(d) = { ' rate of the overflow probability for scheduling algorithnr fo
, . ... ad-hoc wireless networks called Q-SCHED. We also show
Consequently, the right-hand-side of (13) can be simplified 5t the effective capacity that Q-SCHED could support is a
) . TAW 4+ 1) provable fraction of the maximum possible effective capaci
L= v%/nzfo W over all other algorithms, subject to a given constraint on
if we pose tge decay-rate of the queue-overflow probability. For fatur

Using the same method as in the section 1V, . ! :
constraint on the decay rate, e.g. if we want to guarantde thyork, we will extend the approach of this paper to other wire-

L > 6,, then we could get the “effective bandwidth” in this'€ss scheduling algorithms and other types of performance
case: guarantees.
Af(6o)
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