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Abstract

We study the problem of optimal data rate allocation to a group of users in a multihop

wireless network and simultaneously finding a stabilizing scheduling policy. We propose a

dual optimization based approach through which the rate control problem and the schedul-

ing problem can be decomposed. We demonstrate via both analytical and numerical results

that the proposed mechanism can fully utilize the capacity of the network, maintain fairness,

and improve the quality of service to the users.

1 Introduction

Future wireless networks are expected to support applications with high data rate requirements.

Since the wireless spectrum is scarce, it is important to fully utilize the potential capacity of the

network. One approach to improve the capacity of a wireless network is to use multi-hop instead

of the traditional single-hop communication [1, 2]. Another approach is to jointly control multiple

layers of the network, including adaptive coding, link scheduling, power control, and routing. The
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capacity of wireless multihop networks with joint control over multiple layers has been studied

in [3, 4]. In [3], the authors characterize the capacity region of a multihop wireless network and

propose a Dynamic Routing and Power Control (DRPC) policy. As long as the exogenous data

rates fall within the capacity region, the DRPC policy can schedule radio transmissions such

that the system is stable (i.e., all queues inside the network remain bounded). The DRPC policy

generalizes the result of [5], and is similar to the maximum weighted matching policy in switch

scheduling [6]. A related scheduling policy that also minimizes power consumption is studied in

[4].

An issue that has not been treated thoroughly in the literature is how to control the data

rates of the applications so that they fall within the capacity region. In future wireless networks,

more and more applications will be data-oriented. Such applications are elastic, i.e., they can

transmit data over a wide range of data rates. A network without an appropriate rate control

mechanism could perform poorly in practice. Although, in theory, a dynamic scheduling policy∗

such as DRPC can ensure bounded a queue length whenever the long term exogenous demand

is within the capacity region, the queue length can still be very large if the data rates chosen

by the applications are bursty. Large queue lengths will either result in large delays, or, when

the buffer size is limited, lead to a large amount of packet losses in the network. Both will

negatively affect the quality of service experienced by the users. Further, in a network without

rate control, a user could potentially monopolize the network resources by pouring large amounts

of data into the network, which not only causes congestion but also unfairness towards the other

users. Hence, developing a solid rate control strategy is important for the efficient management

of future wireless networks. The objective of rate control is two-fold: to fully utilize the available

capacity of the network, and to ensure fairness and good quality of service for the users.

Although rate control (or congestion control) has been studied extensively for wireline networks

(see [7] for a good survey), these results cannot be directly applied to multihop wireless networks.

∗From now on, we will use the term scheduling to refer to the joint control of layers other than rate control,

including adaptive coding, link scheduling, power control and routing.
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In wireline networks, the capacity region is of a simple form, i.e., the sum of the data rates at each

link should be less than the known link capacity. In multihop wireless networks, the capacity

of each radio link depends on the signal and interference levels, and is thus correlated with the

capacities of other links. Therefore, the capacity region of the network is usually a complex

function of the underlying scheduling policy and cannot be characterized in a simple form. Past

works on rate control in wireless networks either consider only single-hop flows [8, 9, 10], or

impose simplified assumptions on a restrictive set of scheduling policies [11, 12, 13, 14, 15].

Hence, these works have not fully exploited the benefit of multihop communication and joint

multi-layer control.

In this work, we present a unified framework for joint rate control and scheduling in multihop

wireless networks. Our solution to the joint rate control and scheduling problem has an attractive

decomposition property. Using a dual approach, we show that the rate control problem and the

scheduling problem can be decomposed and solved individually. The two problems are then

coupled by the implicit cost associated with each queue to solve the joint problem. We show via

both analytical and numerical results that our joint rate control and scheduling algorithm can

significantly reduce the queue length inside the network and improve the quality of service to

the users.

The rest of the paper is structured as follows. The system model and the problem formulation

are presented in Section 2, followed by our solution in Section 3. We then study two special cases

of the problem in Section 4 and compare our solution with existing works. Simulation results

are presented in Section 5, and the conclusion is given in Section 6.

2 The System Model

We consider a wireless network with N nodes. Let L denote the set of node pairs (i, j) such that

transmission from node i to node j is allowed. Due to the shared nature of the wireless media,

the data rate rij of a link (i, j) depends not only on the power Pij assigned to the link, but
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also on the interference due to the power assignments on other links. Let ~P = [Pij, (i, j) ∈ L]

denote the power assignments and let ~r = [rij, (i, j) ∈ L] denote the data rates. We assume

that ~r = u( ~P ), i.e., the data rates are completely determined by the global power assignment.

(Channel variation, e.g., due to fading, is not considered.) The function u(·) is called the rate-

power function of the system. There may be constraints on the feasible power assignment. For

example, if each node has a total power constraint Pi,max, then
∑

j:(i,j)∈L Pij ≤ Pi,max. Let Π

denote the set of feasible power assignments, and let R = {u( ~P ), ~P ∈ Π}. We assume that

Co(R), the convex hull of R, is closed and bounded.

In our system, there are S users and each user s is associated with a source node fs and a

destination node ds. Let xs be rate with which data are sent from fs to ds, over possibly multiple

paths and multiple hops. We assume that xs is bounded in [0,Ms]. Each user is associated with

a utility function Us(xs), which reflects the “utility” to the user s when its data rate is xs. We

assume that Us(·) is strictly concave, non-decreasing and continuous differentiable on [0,Ms].

The concavity assumption models the “principle of dimishing returns” for elastic applications.

We assume that time is divided into slots. At each time slot, the scheduling policy will select

a power assignment vector ~P and select data to be forwarded on each link. Given a user rate

vector ~x = [xs, s = 1, ..., S], we say that a system is stable under a scheduling policy if the queue

length at each node remains finite. In this paper, we are interested in the following joint rate

control and scheduling problem:

• Find the user rate vector ~x that maximizes the sum of the utilities of all users
∑

s Us(xs)

subject to the constraint that the system is stable under some scheduling policy.

• Find the associated scheduling policy that stabilizes the system.

We define the capacity region Λ of the system as the largest set of rate vectors ~x such that

~x ∈ Λ is a necessary condition for network stability under any scheduling policy. Hence, our rate
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control problem is simply

max
xs≤Ms

∑

s

Us(xs) (1)

subject to ~x ∈ Λ.

The capacity region can be determined by the rate-power function u(·) and the power constraint

set Π [2, 3, 4]. In this paper, we consider two cases: the route-independent case and the route-

dependent case.. In the route-independent case, the routes for each user are not specified before-

hand. Let D = {ds, s = 1, ..., S} denote the set of destination nodes. The capacity region is

determined as in [3]:

The Route-Independent Case: The capacity region Λ is the set of user rates ~x such that there

exists a link rate vector ~rd associated with each destination node d and the vector ~R = [~rd, d ∈ D]

satisfies:

rd
ij ≥ 0 for all (i, j) ∈ L and for all d ∈ D

∑

j:(i,j)∈L

rd
ij −

∑

j:(j,i)∈L

rd
ji −

∑

s:fs=i,ds=d

xs ≥ 0

for all d and for all i 6= d (2)

[
∑

d

rd
ij] ∈ Co(R),

where rd
ij can be interpreted as the amount of capacity on link (i, j) that is allocated for data

towards destination node d.

In the route-dependent case, each user s has θ(s) alternate routes. Let H = [H sv
ij ] denote the

routing matrix, i.e., Hsv
ij = 1 if path v of user s uses link (i, j), and Hsv

ij = 0 otherwise. The

capacity region is determined as in [4]:

The Route-Dependent Case: The capacity region Λ is the set of user rates ~x such that there

exists xsv for each s, v and the vector [xsv, s = 1, ..., S, v = 1, ...θ(s)] satisfies:

xs =
∑

v

xsv for all s, [
∑

s,v

Hsv
ij xsv] ∈ Co(R),
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where xsv can be interpreted as the data rate on path v of user s, and
∑

s,v Hsv
ij xsv is the total

rate on link (i, j).

In both cases, it is easy to show that the capacity region Λ is a convex and compact set.

Because the utility function is strictly concave, an optimal solution to (1) exists and is unique.

We next present a methodology for solving (1) and the associated scheduling policy.

3 The Solution

In this section, we will develop a framework for solving the joint rate control and scheduling

problem.

3.1 The Route-Independent Case

We first study the route-independent case. We can assign a Lagrange multiplier qd
i (i 6= d)for

each constraint in (2). Let qd
d = 0. The Lagrangian is then:

L(~x, ~R, ~q)

=
∑

s

Us(xs) +
∑

d

∑

i6=d

qd
i





∑

j:(i,j)∈L

rd
ij

−
∑

j:(j,i)∈L

rd
ji −

∑

s:fs=i,ds=d

xs





=
∑

s

[

Us(xs) − xsq
ds

fs

]

+
∑

d

∑

(i,j)∈L

rd
ij(q

d
i − qd

j ).

The dual objective function is

D(~q) = max
xs≤Ms,~rd≥0,

P

d
~rd∈Co(R)

L(~x, ~R, ~q)

=
∑

s

Bs(q
ds

fs
) + V (~q),

where

Bs(q) = max
xs≤Ms

Us(xs) − xsq, (3)
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and

V (~q) = max
~rd≥0,

P

d
~rd∈Co(R)

∑

d

∑

(i,j)∈L

rd
ij(q

d
i − qd

j ). (4)

When we maximize the objective in (4), it is easy to verify that, for each link (i, j) ∈ L, rd
ij > 0

only if qd
i − qd

j = maxd′ q
d′

i − qd′

j . Hence, letting rij =
∑

d rd
ij and ~r = [rij, (i, j) ∈ L], we have,

V (~q) = max
~r≥0,~r∈Co(R)

∑

(i,j)∈L

rij max
d

(qd
i − qd

j ). (5)

Further, because the objective function in (5) is a linear function of ~r, the optimal point must

lie in the set R, i.e.,

V (~q) = max
~r≥0,~r∈R

∑

(i,j)∈L

rij max
d

(qd
i − qd

j ). (6)

We can then solve ~R = [~rd] by picking a d∗(i, j) = argmaxd qd
i − qd

j for each link (i, j), and letting

rd
ij = rij if d = d∗(i, j) and rd

ij = 0 otherwise.

The dual approach thus results in an elegant decomposition of the original problem. Given

the Lagrange multipliers qd
i , the rate control problem Bs and the scheduling problem V (~q) are

decomposed. The Lagrange multiplier qd
i can be interpreted as the implicit cost at node i for

destination node d. Each user s solves its own utility maximization problem Bs independently

as if the “price” for user s is qds

fs
. The scheduling problem V (~q) is precisely the DRPC policy in

[3].

The dual problem is then

min
~q≥0

D(~q). (7)

The dual objective function D(~q) is convex. We can show that its subgradient is given by,

∂D

∂qd
i

=





∑

j:(i,j)∈L

rd
ij −

∑

j:(j,i)∈L

rd
ji −

∑

s:fs=i,ds=d

xs



 ,

where ~x = [xs] and ~R = [~rd] solve (3) and (4), respectively. We can then use the following

subgradient method to solve the dual problem. We will refer to this solution as the node-centric

solution, since the Lagrange multipliers (i.e., implicit costs) are associated with the nodes.
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The Node-Centric Solution:

qd
i (t + 1) =







qd
i (t) − ht





∑

j:(i,j)∈L

rd
ij(t)

−
∑

j:(j,i)∈L

rd
ji(t) −

∑

s:fs=i,ds=d

xs(t)











+

, (8)

where ht, t = 1, 2, ... is a sequence of positive stepsizes, ~x(t) and ~rd(t) solve (3) and (4), respec-

tively, with ~q = ~q(t). The following proposition is a consequence of Theorem 2.3 in [16, p26].

The details of the proof is in Appendix A.

Proposition 1 a) There is no duality gap, i.e., the minimal value of (7) coincides with the

optimal value of (1).

b) Let Φ be the set of ~q that minimizes D(~q). For any ~q ∈ Φ, let ~x solve (3), then ~x is the

unique optimal solution ~x∗ of (1).

c) Let ρ(~q, Φ) = min~p∈Φ ||~q − ~p||. If

ht → 0 as t → ∞, and
∑

t ht = ∞,

then ρ(~q(t), Φ) → 0 and ~x(t) → ~x∗ as t → ∞.

The last part of Proposition 1 shows that, when ht ↓ 0 in an appropriate fashion, iteration (8)

converges and solves the optimal rate assignment. In practice, we usually use a constant stepsize.

As long as the stepsize is small, we can still show that ~q(t) will converge to a small neighborhood

around Φ. Because the mapping from ~q(t) to ~x(t) is continuous, we can then conclude that the

user rates ~x(t) will also converge to a small neighborhood of the optimal rate assignment ~x∗.

Further, using constant stepsize also allows the algorithm to track the non-stationarity in the

network conditions.
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3.1.1 The Joint Scheduling Policy

We now show that a stabilizing scheduling policy can be obtained as a by-product of solving (4)

at each iteration (8). We have each node i maintain a queue for each destination node d 6= i, and

let Qd
i denote its queue length. At each time slot, we use the power assignment that generates

the optimal vector ~r of (6). For each link (i, j) ∈ L, we then pick the queue Qd∗

i at node i with

qd∗

i − qd∗

j = maxd qd
i − qd

j , and transmit data from queue Qd∗

i to node j at rate rij. The evolution

of Qd
i is then determined by

Qd
i (t + 1) =







Qd
i (t) −





∑

j:(i,j)∈L

rd
ij(t)

−
∑

j:(j,i)∈L

rd
ji(t) −

∑

s:fs=i,ds=d

xs(t)











+

. (9)

Comparing (9) with (8), we can see that Qd
i (t) = qd

i (t)/h when ht = h > 0. Since qd
i (t) is

bounded, we conclude that Qd
i (t) is bounded as well. For details, see Appendix B.

Proposition 2 Assume ht = h > 0 for all t. If h is small enough, then using the above

scheduling policy, we have,

sup
t

Qd
i (t) < +∞ for all i 6= d.

3.1.2 Fairness and Stability

Fairness among users can be controlled by appropriately choosing the utility functions [17]. For

example, utility functions of the form

Us(xs) = ws log xs (10)

correspond to weighted proportional fairness, where ws, s = 1, ..., S are the weights. A general

form of utility function is

Us(xs) = ws

x1−γ
s

1 − γ
, γ > 0. (11)
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Maximizing the total utility will correspond to maximizing weighted throughput as γ → 0,

weighted proportional delay as γ → 2, and weighted max-min fainess as γ → ∞.

An interesting question that we need to address is: although fairness and quality of service are

improved by applying rate control, does this reduce the stability region (to be defined below) of

the system? To be precise, we replace each user s by a dynamic group of users with the same

utility function and the same source and destination pair. We assume that users of group s arrive

according to a Poisson process with rate λs and each user brings a file for transfer whose size is

exponentially distributed with mean 1/µs. The load brought by group s is then ρs = λs/µs. The

stability region Θ of the system under a given rate-control and scheduling policy is the set of load

vectors [ρs, s = 1, ..., S] such that the number of users and the queue lengths remain finite when

[ρs] ∈ Θ. Note that, in the framework of [3], there is no rate control, i.e., each user can send

the entire file into the system immediately upon its arrival. The authors of [3] show that as long

as [ρs] resides strictly inside the capacity region Λ, the DRPC policy (without rate control) will

stabilize the system. Hence, the stability region coincides with the capacity region Λ. We now

study whether the same conclusion holds when rate control is applied. Let ns denote the number

of users from group s that are currently in the system. We assume that the rate allocation ~x at

each time is perfectly determined by the solution to the utility maximization problem (1) given

the current set of users. Because the iteration (8) takes time to converge, we can expect that

this assumption will better capture systems transferring “longer” files [17]. The transition of ns

is then given by:

ns → ns + 1, with rate λs

ns → ns − 1, with rate xsnsµs.

Proposition 3 Assume that the rate allocation perfectly solves (1) at each time and the utility

function is of the forms (10) or (11) for some γ > 0. If [ρs] resides strictly inside the capacity

region Λ, then the Markov process [ns] is ergodic.

Proof: The proof follows that of Theorem 1 in [17]. We just need to replace the link capacity
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constraint there (Inequality (6) in [17]) by the constraint ~x ∈ Λ. Q.E.D.

Proposition 3 shows that the stability region is not reduced by applying rate control. On the

other hand, the benefit of applying rate control is that the queue length Qd
i inside the network

can be tightly controlled. In Section 5, we will show via simulation that the queue length inside

the network can indeed be significantly reduced by applying our joint rate control and scheduling

algorithm.

3.1.3 Virtual Queues

As we have pointed out earlier, the queue size Qd
i and the implicit cost qd

i are tightly coupled

by iteration (8). Hence, the more congested the network, the higher the implicit costs, and the

larger the delay at each node. This undesirable coupling can be broken by using the virtual queue

concept as in wireline networks [18, 19]. We only need to modify the iteration (8) as:

The Node-Centric Solution with Virtual Queue:

qd
i (t + 1) =







qd
i (t) − h





∑

j:(i,j)∈L

δrd
ij(t)

−
∑

j:(j,i)∈L

δrd
ji(t) −

∑

s:fs=i,ds=d

xs(t)











+

, (12)

where δ is a positive factor slightly smaller than 1. The iteration (12) corresponds to shrinking

the capacity region to δΛ. We can imagine a virtual queue V Qd
i at each node i associated with

each destination d such that V Qd
i = qd

i /h, while the real queue still evolves as in (9). If the

number of the users is fixed, while the implicit costs (and the virtual queue length) will converge

to positive values, the real queue length will eventually go to zero. In Section 5, we will show

that using the virtual queue algorithm can further reduce the queue length inside the network

with a minimal cost to the capacity of the system.
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3.2 The Route-Dependent Case

The route-independent formulation in Section 3.1 is convenient for systems with a small number

of destination nodes. For example, for traffic from wireless terminals to the (single) base station,

each node only needs to maintain one queue. No per-flow information needs to be maintained.

If the number of destinations is large, each node then needs to maintain many queues, each of

which corresponds to one destination node. In the worst case, the number of queues at each node

can be as many as the number of flows. As we will see next, the route-dependent formulation

is more convenient in such scenarios. With the route-dependent formulation, each link again

only needs to maintain one queue (or implicit cost) and no per-flow information needs to be

maintained.

We introduce an auxiliary variable cij ≥ 0 for each link (i, j) ∈ L, and rewrite the primal

problem (1) as:

max
[xsv ]≥0

∑

s

Us(
∑

v

xsv) (13)

subject to
∑

s,v

Hsv
ij xsv ≤ cij for all (i, j) ∈ L (14)

and [cij] ∈ Co(R),
∑

v

xsv ≤ Ms. (15)

The route-dependent case can then be treated analogously to the route-independent case. We

can associate a Lagrange multiplier qij for each constraint in (14). The Lagrangian is then:

L(~x,~c, ~q)

=
∑

s

Us(
∑

v

xsv) −
∑

(i,j)∈L

qij

[

∑

s,v

Hsv
ij xsv − cij

]

=
∑

s



Us(xs) −
∑

v

∑

(i,j)∈L

Hsv
ij qijxsv



 (16)

+
∑

(i,j)∈L

qijcij, (17)

where
∑

(i,j)∈L Hsv
ij qij can be viewed as the implicit cost of path v of user s. The objective
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function of the dual problem is:

D(~q) = max
xsv≥0,

P

v
xsv≤Ms,~c∈Co(R)

L(~x,~c, ~q)

=
∑

s

Bs(~q) + V (~q),

where

Bs(~q) = max
xsv≥0,

P

v
xsv≤Ms

[

Us(
∑

v

xsv)

−
∑

v

∑

(i,j)∈L

Hsv
ij qijxsv



 , (18)

and

V (~q) = max
~c∈Co(R)

qijcij

= max
~c∈R

qijcij. (19)

As we can see, the rate control problem Bs and the scheduling problem V are again decomposed.

The subgradient of D is given by,

∂D

∂qij

= −

(

∑

s,v

Hsv
ij xsv − cij

)

.

Hence, the following subgradient method can be used to solve the dual. We will refer to this

solution as the link-centric solution, since the Lagrange multiplier is associated with each link.

The Link-Centric Solution:

qij(t + 1) =

{

qij(t) + ht

[

∑

s,v

Hsv
ij xsv(t) − cij(t)

]}+

. (20)

where ht is a sequence of stepsizes, ~x(t) and ~c(t) solve (18) and (19) respectively.

There is one problem with the iterations (18)-(20). Although the iteration (20) may converge

to the optimal value of ~q, the user rates xsv will not converge if some users have multiple paths. In

fact, when we solve (18) for a user s that has multiple paths, only paths that have the minimum

cost will have positive data rates. If the costs of several paths are close to each other, the data
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rates on these paths will oscillate as the implicit cost ~q(t) is being updated. This difficulty arises

because the objective function in (13) and (18) is not strictly concave in [xsv]. One can overcome

this problem of oscillation by using the Proximal Optimization Algorithm [20]. We can introduce

an auxiliary variable ysv for each xsv, and modify the objective function to be

max
[xsv ]≥0

∑

s

Us(
∑

v

xsv) −
ν

2

∑

s,v

(xsv − ysv)
2 (21)

subject to (14) and (15),

where ν > 0. For any fixed ~y, the objective function becomes strictly concave. We can retain

the link-centric solution (20) except that now the vector [xsv(t)] should solve

Bs(~q|~y) = max
xsv≥0,

P

v
xsv≤Ms

[

Us(
∑

v

xsv)

−
ν

2

∑

v

(xsv − ysv)
2 −

∑

v

∑

(i,j)∈L

Hsv
ij qijxsv



 .

No oscillation will occur because the mapping from ~q to ~x is now continuous.

Using same techniques as in the proof of Proposition 1, we can show the following result.

Proposition 4 If

ht → 0 as t → ∞, and
∑

t ht = ∞,

then [xsv(t)] → [x∗
sv] by the iteration (20), where the vector [x∗

sv] is the unique optimal solution

to (21) given ~y.

Finally, an optimal solution to the original problem (13) can be obtained by the following

iteration [20]:

• Given ~y = ~y(k), solve (21). Let ~x be its optimal solution.

• Let ~y(k + 1) = ~xβ + ~y(k)(1 − β) where 0 < β < 1.

In practice, we usually use constant stepsize ht = h, and we do not wait for the proximal

problem (21) to converge before we set ~y to the new value of ~x. Our simulation results indicate
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that these modifications converge satisfactorily in practice. Readers can refer to [21] for some

related theoretical analysis.

For the route-dependent case, we can derive analogous results to those in Sections 3.1.1 to

3.1.3 regarding joint scheduling, stability and virtual queue algorithms. Further, the implicit

costs provide us with guidelines for finding better routes. We can search the minimum cost

path between the source fs and the destination ds. If the minimum cost path is cheaper than

all current alternate paths of user s, we can add this path to the set of alternate paths. This

procedure can be used to gear the network towards optimal routing.

4 Special Cases

The most computationally expensive step of our solution is to solve the scheduling subproblems

(6) or (19). They are both of the form

max
~r∈R

∑

(i,j)∈L

wijrij, (22)

where the weights wij is maxd(q
d
i − qd

j ) in the route-independent case (6), and is qij in the route-

dependent case (19). We now briefly discuss two special cases: when the scheduling policy is

allowed to incorporate power control, and when it is not.

4.1 With Joint Power Control

We first investigate the following system model that allows the scheduling policy to incorporate

power control. This model has been used in [4]. The path loss G(i, j) from any node i to node j

is known and fixed. Let G(i, i) = ∞. Let Pij be the transmission power used on link (i, j) ∈ L.

Then the signal-to-interference ratio (SIR) for the signal from node i to node j is

SIRij =
G(i, j)Pij

N0 +
∑

(k,h)∈L,(k,h)6=(i,j) G(k, h)Pk,h

,
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where N0 is the ambient noise. We assume that the transmission rate at link (i, j) is proportional

to its SIR, i.e.,

rij = W × SIRi,j .

This assumption is suitable for CDMA systems with a moderate processing gain [4]. Each node

i has a power constraint Pi,max, i.e., the power allocation must satisfy:

∑

j:(i,j)∈L

Pij ≤ Pi,max for all i. (23)

The problem (22) can be rewritten as

V (~q) = max g( ~P ) (24)

subject to (23),

where

g(~P ) =
∑

(i,j)∈L

SIRijwij. (25)

We now show that the maximum point of g(·) in (23) must satisfy the property that at most

one Pij > 0 for any node i. We show by contradiction: assume that this property does not hold,

i.e., there exists an optimal point ~P 0 and a node i such that P 0
ij > 0 and P 0

ik > 0. Let Pij = x

and Pik = P 0
ij + P 0

ik − x. Fix all other power levels and write the function g(·) as a function of

x. It is easy to verify that the resulting function g(x) is strictly convex in x, which implies that

its value will be strictly larger at either x = 0 or x = P 0
ij + P 0

ik, i.e., the function g( ~P ) will be

larger by setting either Pij or Pik to zero. This contradicts with our earlier assumption that ~P 0

is optimal. Hence, at most one Pij > 0 for any node i.

Further, although the function g( ~P ) is not convex in ~P , it is convex in each variable Pij.

Combining this property with the fact that only one Pij > 0 for any node i, we thus conclude

that, in order to maximize g, each node i should either transmit at full power Pi,max or shut off,

and each node should only transmit to one other node at any time. These properties substantially

simplify the search for the optimal power allocation [4]. Firstly, we only need to search within a
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finite set of extremal nodal power allocations
⊗N

i=1{0, Pi,max}, and compare the optimal values

of g(·) given each nodal power assignment. Secondly, given the transmission power at all nodes,

each node can decide its own optimal transmission schedule locally. To see this, let P i be the

transmission power of node i. By the above observations, each node i only needs to decide which

node j should be the only receiver that node i transmits to. Given the transmission power at

all other nodes, the SIR from node i to any other node is known. Hence, each node i can locally

select the receiver j∗ by solving

j∗ = argmax
j

rijwij,

where rij is calculated as if the node i uses energy P i to transmit to node j.

The complexity of the above procedure is O(2N). When the number of nodes N in the system

is large, a clustering heuristics as in [22] can be used to find approximate solutions to (22).

4.2 Without Joint Power Control

We next consider an alternate system model that does not allow the scheduling policy to in-

corporate power control. This model has been used in earlier studies of rate control (without

integrated joint scheduling) in wireless multihop networks [11, 12]. The capacity of each link

(i, j) is fixed at cij. The scheduling policy can only select a link to be active or inactive, but

cannot use power control or adaptive coding. The scheduling constraint is that each node can

only transmit to or receive from one other node at any time. The problem (22) then becomes

a maximum weighted matching (MWM) problem where the weights for each link is cijwij. A

polynomial-time algorithm can be found in [23].

The link-centric solution in Section 3.2 combined with the above MWM algorithm can be

compared with the rate control algorithm proposed in [11] (although the authors in the latter

work address max-min fairness). The rate control algorithm in [11] uses a token-allocation

scheme: each node distributes tokens evenly to each flow passing through it. Hence, each node

needs to maintain per-flow information. On the other hand, in our link-centric solution, each node
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only needs to maintain one implicit cost variable for each out-going link. No per-flow information

is required. The scheduling algorithm in [11] also uses MWM. However, the scheduling algorithm

and the rate control algorithm in [11] are not integrated, i.e., the weights in MWM (equivalent

to queue lengths) are decoupled from the token allocation process. On the other hand, in our

link-centric solution, the rate control, the MWM and the queue lengths are all tightly coupled

by the implicit cost at each link. Finally, our link-centric solution can utility the full capacity

of the system, while the algorithm in [11] (and [12]) can utility only 2/3 of the capacity of the

system in many cases.

Heuristic solutions to the MWM problem are attractive when computation complexity becomes

a main concern. For example, the following procedure can compute an approximate solution to

the MWM problem [24]. From all possible links (i, j) ∈ L, pick the link with the largest cijwij.

Add this link to the schedule. Remove all links that are incident with nodes i or j. Pick the

link with the largest cijwij from the remaining links, and add to the schedule. Continue until

there are no links left. This procedure produces a maximal weighted matching. Computing

maximal weighted matching is much easier than computing MWM. However, our simulation

results indicate that using the above procedure will usually produce a rate allocation that is

close to the one obtained from perfect MWM.

5 Simulation Results

In this section, we present simulation results for our joint rate control and scheduling solution.

We will first simulate the node-centric solution in Section 3.1 combined with the joint power

control model in Section 4.1. We use the “grid” topology in Fig. 1. There are 8 terminals and

1 base station. The horizontal and vertical distance between neighboring nodes is 1.0 unit. We

first assume that each terminal has one user sending data towards the base station. The utility

function for each user is U(x) = ln x. Each node can communicate directly with any other node.

The power constraint at each node is Pi,max = 1.0 unit. The path loss is d−4 where d is the
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Figure 1: Network Topologies
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Figure 2: The evolution of the user rates (left) and the queue length (right)

distance from the transmitter to the receiver. The rate of each link is proportional to the SIR,

with rij = 10.0 × SIRij. The ambient noise level is N0 = 1.0 unit.

Fig. 2 shows the evolution of the data rates for three users at nodes 0, 1 and 7 respectively,

and the evolution of the queue length at these nodes. The stepsize h = 0.01. (The implicit cost

at each node is simply h times the respectively queue length.) As we can see, all quantities of

interest converge to a small neighborhood.

We then simulate the virtual queue algorithm in Section 3.1.3. The virtual queue parameter

δ = 0.95. The left figure in Fig. 3 shows the evolution of the data rates for the same set of users

as before. We find that their values differ only slightly from those in Fig. 2, so does the evolution

of the virtual queue length (not shown). However, the real queues are eventually driven close to

zero, as shown in the right figure in Fig. 3.

We next simulate the case when there are dynamic arrivals and departures of the users. Users
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Figure 3: The evolution of the user rates (left) and the evolution of the real queue length (right)

when the virtual queue algorithm is used.

arrive at each node according to a Poisson process with rate λs = 0.009. Each user needs to

send to the base station a file whose size is exponentially distributed with mean 1/µs = 100 unit.

The utility function for each user and the radio transmission model are the same as before. We

also simulate the case when there is no rate control, i.e., when a user arrives, it pumps all data

into the source node at a high data rate of 20.0. In the left figure in Fig. 4, we compare the

total queue length summed over all nodes with rate control (the dotted line) and without rate

control (the dashed line). Obviously, the queue length is reduced significantly when rate control

is employed. In the right figure, we plot the total amount of data that are pending to be sent at

the user level, when rate control is employed. We can observe that, our rate control algorithm

maintains small queue lengths inside the network by preventing an excessive amount of pending

data from entering the network.

We also simulate the virtual queue algorithm when there are dynamic arrivals and departures

of the users. The solid line in the left figure in Fig. 4 shows the total queue length summed

over all nodes when the virtual queue algorithm is used. Although the virtual queue parameter

δ = 0.95 is close to 1 (which means that we only incur a small cost at the capacity of the system),

the virtual queue algorithm can further reduce the queue length inside the network. The peak

queue length is reduced from 770 (without virtual queue) to 284 (with virtual queue).
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Figure 4: The evolution of the total queue length summed over all nodes (left), and the evolution

of the total amount of pending data at the user level (right).
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Figure 5: The evolution of each user’s total data rate using perfect maximum weighted matching.

We next simulate the link-centric solution combined with the model in Section 4.2 (without

joint power control). We use the “kite” topology is in Fig. 1. There are three users. User 0

sends data from node 0 to node 4, user 1 from node 1 to node 5, and user 2 from node 3 to

node 4. Each user has two alternate routes as shown by the dashed lines in Fig. 1. The utility

function for each user is again U(x) = ln x. The capacity of each link is 10 units. We implement

a precise algorithm for solving the maximum weighted matching (MWM) problem and plot in

Fig. 5 the evolution of each user’s total data rate summed over all alternate paths. The stepsizes

are h = 0.1, β = 0.1. We also implement the simple heuristics in Section 4.2 and plot the same

figure again (Fig. 6). As we can use, using a much simpler heuristic for MWM does not change

the data rates significantly.
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Figure 6: The evolution of each user’s total data rate using heuristic matching.

6 Conclusion

In this paper, we have presented a framework for joint rate-control and scheduling in multihop

wireless networks. We proposed a dual approach through which the rate control problem and

the scheduling problem are decomposed. Our solution not only fully utilizes the capacity of the

network, but also ensures fairness and good quality of service to the users. We demonstrate via

both analytical and numerical results that the proposed mechanism can effectively reduce the

queue length and the packet delay inside the network.

The most computationally expensive part of the solution is to find the schedule that maxi-

mizes the total weighted link capacity at each iteration. For future work, we plan to study simple

heuristics that can approximate the optimal schedule. Our simulation result using a lower com-

plexity heuristic for the MWM problem suggests that such an approach can be quite attractive.

We are particularly interested in heuristic solutions that are easy to implement in a distributed

fashion. We will also study how the rate allocation will be affected by the use of these heuristics.
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Appendix

A Proof of Proposition 1

The proof of part a) is quite standard (see, for example, Theorem 3.2.8 in [25, p44]). In fact,

let ~x∗ denote the optimal solution of the primal problem (1), and let ~R∗ = [~rd,∗] denote the

corresponding vector of link rates that satisfies (2). It is easy to verify that

max
xs≤Ms,

P

d
~rd∈Co(R)

L(~x, ~R, ~q) ≥
∑

x

Us(x
∗
s) for all ~q ≥ 0 .

To proof part a), we only need to find a ~q ≥ 0 such that

max
xs≤Ms,

P

d
~rd∈Co(R)

L(~x, ~R, ~q) =
∑

x

Us(x
∗
s).

Towards this end, let ~b = [bd
i , d ∈ D, i 6= d] and let

G(~b) = max
xs≤Ms

∑

s

Us(xs) (26)

subject to rd
ij ≥ 0 for all (i, j) ∈ L and for all d ∈ D

∑

j:(i,j)∈L

rd
ij −

∑

j:(j,i)∈L

rd
ji −

∑

s:fs=i,ds=d

xs ≥ −bd
i

for all d and for all i 6= d (27)

[
∑

d

rd
ij] ∈ Co(R),

Note that the right hand side of the constraint (27) is −bd
i . Then the original problem (1)

corresponds to ~b = 0 and G(0) =
∑

s Us(x
∗
s). It is easy to show that G(~b) is a concave function

of ~b. Hence, by Theorem 3.1.8 of [25, p36], there exists a subgradient ~q0 of G(~b) at ~b = 0. We

now show that ~q0 is the desired dual vector. For any ~b ≥ 0, by the concavity of G(~b), we have

G(~b) ≤ G(0) + ~qT
0
~b.

Further, by the definition of the problem (27),

G(0) ≤ G(~b) for all ~b ≥ 0.
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Hence, for any ~b ≥ 0,

G(0) ≥ G(~b) − ~qT
0
~b ≥ G(0) − ~qT

0
~b,

and we have,

~qT
0
~b ≥ 0 for all ~b ≥ 0.

Therefore, ~q0 ≥ 0. Next, for any ~x such that xs ≤ Ms for all s, and for any ~R such that

∑

d ~rd ∈ Co(R), if we let ~g(~x, ~R) = [gd
i (~x, ~R)], where

gd
i (~x, ~R) = −





∑

j:(i,j)∈L

rd
ij −

∑

j:(j,i)∈L

rd
ji −

∑

s:fs=i,ds=d

xs



 ,

then (~x, ~R) is a feasible point in the problem (27) with ~b = ~g(~x, ~R). Hence, using the concavity

of G(~b) again, we have

∑

s

Us(xs) ≤ G(~g(~x, ~R))

≤ G(0) + ~qT
0 ~g(~x, ~R)

=
∑

s

Us(x
∗
s) + ~qT

0 ~g(~x, ~R). (28)

Choosing ~x = ~x∗, ~R = ~R∗, we have

∑

s

Us(x
∗
s) ≤

∑

s

Us(x
∗
s) + ~qT

0 ~g(~x∗, ~R∗),

i.e.,

~qT
0 ~g(~x∗, ~R∗) ≥ 0.

However, since ~g(~x∗, ~R∗) ≤ 0 and ~q0 ≥ 0, we must have

~qT
0 ~g(~x∗, ~R∗) = 0.

Finally, using (28) again, we obtain

L(~x, ~R, ~q0) =
∑

s

Us(xs) − ~qT
0 ~g(~x, ~R)

≤
∑

s

Us(x
∗
s) =

∑

s

Us(x
∗
s) − ~qT

0 ~g(~x∗, ~R∗)

= L(~x∗, ~R∗, ~q0).
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Hence

max
xs≤Ms,

P

d
~rd∈Co(R)

L(~x, ~R, ~q0) =
∑

s

Us(x
∗
s),

i.e., there is no duality gap.

Proof of part b): For any ~q ∈ Φ, we have

∑

s

Us(x
∗
s) = D(~q) = max

xs≤Ms,
P

d
~rd∈Co(R)

∑

s

Us(xs) − ~qT~g(~x, ~R)

≥
∑

s

Us(x
∗
s) − ~qT~g(~x∗, ~R∗) (29)

Hence,

~qT~g(~x∗, ~R∗) ≥ 0.

However, since ~g(~x∗, ~R∗) ≤ 0 and ~q ≥ 0, we must have

~qT~g(~x∗, ~R∗) = 0.

Using (29) again, we have,

max
xs≤Ms,

P

d
~rd∈Co(R)

∑

s

Us(xs) − ~qT~g(~x, ~R) =
∑

s

Us(x
∗
s) − ~qT~g(~x∗, ~R∗).

However, given ~q, the point (~x, ~R) that maximizes

L(~x, ~R, ~q) =
∑

s

Us(xs) − ~qT~g(~x, ~R)

must satisfy the property that ~x is the optimal solution in (3). Since Us(xs) is strictly concave,

the optimal solution of (3) is unique. Therefore, it must be equal to ~x∗.

Proof of part c): Given any ~q, let

∂D

∂qd
i

=





∑

j:(i,j)∈L

rd
ij −

∑

j:(j,i)∈L

rd
ji −

∑

s:fs=i,ds=d

xs



 ,

where ~x = [xs] and ~R = [~rd, d ∈ D] solve (3) and (4), respectively. Let

∂D(~q) = [
∂D

∂qd
i

, d ∈ D, i 6= d].
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We first verify that ∂D(~q) is a subgradient of D(·) at ~q. To see this, for any other vector ~q1, we

have,

D(~q′) ≥ L(~x, ~R, ~q1) = L(~x, ~R, ~q) + (~q1 − ~q)T ∂D(~q)

= D(~q) + (~q1 − ~q)T ∂D(~q).

Hence, ∂D(~q) is a subgradient of D(·) at ~q. Further, it is easy to verify that ∂D(~q) is bounded.

Therefore, part c) follows from Theorem 2.3 of [16, p26].

B Proof of Proposition 2

Let δ = 1. Following the proof of Theorems 2.2 and 2.3 in [16, p25-26], we can show that, there

exists a number h∗ > 0 such that when ht = h > 0 and h < h∗, we can find a t0 such that

ρ(~q(t), Φ) ≤ δ for t ≥ t0.

This implies that ~q(t) is bounded. Hence, Qd
i is bounded for all i 6= d.
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