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Abstract— In this work, we study the design of pricing
mechanisms for the efficient and stable service of a large
consumer base with deferrable demands, as envisioned in future
smart electricity and data networks. When users with flexible
demand are introduced into such large-scale dynamic markets
with dynamic prices, they exhibit opportunistic behavior to
minimize their cost per unit amount of service-received. This,
in turn, generates highly fluctuating aggregate demand patterns
that are destabilizing or costly to serve.

To avoid this undesired outcome, we propose a randomized
pricing mechanism that preserves the strengths of dynamic
pricing in tracking a targeted aggregate demand while pre-
venting the destabilizing effect of opportunistic users. Price ran-
domization creates information asymmetry among consumers,
but preserves fairness and also the economic benefits of the
consumers. We show that the randomization operation can
be captured by augmenting a related utility function to the
cost minimization problem. This interesting connection enables
the study of the steady-state behavior of our randomized
pricing solution through the study of the associated optimization
problem. Based on this connection, we investigate key metrics
of supplier cost and profit and consumer payments.

I. INTRODUCTION

Many large scale systems, such as data networks, cloud
computing services, and smart electricity grids, serve de-
mands that inherently possess various types of flexibilities.
These demand-side flexibilities can arise in various forms
such as shifting or deferring the service time, allowing
intermittent service, or adjusting the amount of service. For
instance, smart electricity consumers can defer service times
of home appliances like dishwashers, or customers of a cloud
service can choose non-consecutive time blocks to execute
chunks of a single task.

The unconventional consumer behavior generated by
demand-side flexibilities brings both opportunities and chal-
lenges to system operation, and necessitates the design of
novel management techniques. From a global perspective,
demand-side flexibilities can be utilized to the advantage of
the whole system. For example, in a smart electricity grid or a
cloud computing system, consumer demand can be deferred
to a later time to cut down peak load and reduce service
and maintenance costs. On the other hand, self-interested
and price-taking consumers will be willing to defer their
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service only if they can obtain economic benefits and reduce
their payments. Therefore, there is a need to design real-
time pricing schemes that incentivize economically-driven
consumers to defer their flexible demand.

However, pricing-based dynamic control of self-interested
users leads to its own challenges. Note that, in a real-time
market, consumers can opportunistically exploit their flexi-
bilities to obtain economic benefits by taking advantage of
changing prices. In particular, users will likely defer their ser-
vice to the periods of time with lower price to the extent that
their flexibility allows. Indeed, previous works such as [1],
[2] investigate consumer behavior under different flexibility
and cost structures, and establish optimality of threshold-
based policies in asymptotic and non-asymptotic regimes.
However, the aggregate response of a large consumer base
employing such threshold-based policies can potentially lead
to highly and abruptly fluctuating total service and price (as
will be demonstrated in Section III). In most systems, this
volatile behavior is undesirable, if not acceptable, because it
increases service costs, puts stress on the physical network
and devices, and endangers the stability of the underlying
infrastructure and the market [3].

Several works in the literature investigated this problem.
In [4], auction strategies that require the knowledge of
consumer demand and utility functions are designed. In [5],
authors propose ex-post adjustments to the market price, but
demands consumers to predict the effect of their aggregate
behavior. Recent work in [6], [7], attempts to solve the
volatility problem by assigning a price to the difference in
consumption between consecutive time slots. The motivation
in introducing a secondary price is to penalize large changes
in individual consumer’s service amounts. In this work, our
goal is to design decentralized pricing mechanisms that are
simple and computationally efficient, yet able to coordi-
nate opportunistic users to mitigate volatility and instability
problems while preserving fairness among users and their
benefits.

In this work, we propose a novel approach to mitigate the
volatility caused by opportunistic consumer behavior. The
key idea is to communicate to each user a random perturba-
tion of a common market price, in order to effectively guide
their aggregate behavior. Price differentiation among users
introduces heterogeneity to consumer decisions. As a result,
the aggregate load is averaged out instead of having abrupt
oscillations. Yet, this short-term heterogeneity is balanced
in the long-run so as to sustain the fairness property of
pricing. We capture the impact of price randomization as
solving an augmented cost minimization problem where the



augmented term is a function of the randomization proce-
dure. Nonetheless, the randomized real-time pricing scheme
does not require knowledge of consumers’ utility functions.
We then analyze the resulting system dynamics when the
number of users is large, assuming that users are price-taking
and that they implement threshold-policies that align with an
individual consumer’s economic interest. Interestingly, we
show that both the system and the consumers economically
benefit under the randomized pricing scheme. Further, in-
formation asymmetry created by price randomization yields
significant global gains that symmetric information (i.e. a
common market price) is unable to achieve.

We believe that the idea of randomized pricing presented
in this paper applies to generic systems (including data
networks, cloud servers, energy grids, etc.) that serve self-
interested and price-taking smart consumers. However, to
facilitate more concrete presentation, we specifically focus
on the smart electricity market and present the system model
in detail in Section II-A. In Section II-B, we formulate
the optimization problem which embodies fundamental dy-
namics of various systems that have deferrable demand.
We characterize the opportunistic consumer behavior in
Section III-A, and demonstrate its effects on the system via
two benchmark real-time pricing schemes in Section III-
B. We present the randomized pricing algorithm in Sec-
tion IV, and give theoretical results on its optimality and
convergence characteristics. Another algorithm is proposed
under the presence of a periodic inflexible load pattern in
Section IV-B. We conclude our discussion in Section V,
by presenting comprehensive numerical investigations on the
performance of the randomized pricing algorithm compared
to the benchmark schemes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a real-time market scenario where suppliers
and consumers react to dynamically generated prices in short
time scales possibly ranging from several seconds to minutes.
The fundamental distinction that distinguishes our model
from a traditional market and that motivates us to pursue
novel pricing mechanisms is the flexibility of consumers to
defer their demand. In the following, we present a real-time
market model and introduce the market participants, with a
focus on the electrical systems, and formulate the control and
pricing problem under this setup. We note that the model and
the proposed control and pricing mechanisms also apply to
other types of systems where consumers have the flexibility
to defer their consumption.

A. System Model

The real-time market comprises consumers, suppliers, and
a non-profit entity called market manager. The market is op-
erated over discrete time slots, t = 0, 1, . . ., and at each time
slot the market participants make their control decisions. The
goal of the market manager is to ensure stable and efficient
operation of the market. It sets the real-time market prices,
maintains the infrastructure over which the transactions take
place, and ensures that load and supply match each other

at each time slot. Suppliers provide service to the market at
predetermined costs per unit. The goal of each supplier is
to maximize its profit. On the other hand, consumers seek
to satisfy their demand by getting service with the aim of
making the lowest payment for consumption. There are two
types of consumers in the market. Flexible consumers have
deferrable demand and they can delay their consumption
to take advantage of low prices in the future. Inflexible
consumers, however, cannot delay their consumption and
must serve their demand at the time slot that the demand
is realized.
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Fig. 1. Market model depicting the participants and their interactions.

The market type that we focus our investigation on is an
electricity market depicted in Figure 1. This structure can be
utilized to model a system in which consumers are house-
holds with small amount of demand and supplier is a single
electricity retailer company. However, this market structure
is generic and may also be used to model other different
market types. Next, we present the market participants and
the overall operation of the market in detail.

1) Market Manager: The manager institutes the electricity
market and supervises its operation with the goal of provid-
ing a reliable market for supplier and consumer transactions.
In a smaller setting, a utility company that procures elec-
tricity to its consumer base can also be considered a market
manager.

The manager intends to coordinate the market participants
by setting the real-time prices at each time slot, i.e. p(t) for
t = 0, 1, . . .. The market price is generated ex-ante, meaning
that the amount of supply and consumption are unknown at
the time the price is set. Hence, suppliers and consumers
are price-taking, and give their supply and consumption
decisions at each slot based on the announced prices. Further-
more, the manager does not have the knowledge of supplier
costs, consumer valuations, and their control strategies.

2) Suppliers: There are M electric suppliers, and the
procurement of s watts of power incurs a cost of Cm(s)
to the supplier m. We assume that Cm : R+ → R+ is
a continuously differentiable and increasing function of s
for each m. We also assume that C̈m(s) > 0, and hence
Cm is strictly convex and Ċm is invertible. At time slot
t, supplier m decides on its supply offer sm(t) based on
the announced market price, and receives payment ωm(t) ,
p(t)sm(t). Hence, supplier’s goal is to maximize its profit
ωm(t)− Cm(sm(t)).
3) Consumers: There are N flexible and Ni inflexible

consumers. At time slot t, consumer n generates demand
an(t). an(t) is a random variable that is assumed to be



independent among consumers and i.i.d. over time slots for
each consumer. The average demand arrival rate is λn, i.e.
E [An(t)] = λn for all t. We further assume that demand
arrivals are bounded such that An(t) ∈ [0, an,max].

The amount of electric energy consumed, namely load 1

, by user n at slot t is denoted by xn(t) ∈ [0, xmn ]. For
inflexible consumers, xn(t) = an(t) because the realized
demand must be served immediately. We define Si(t) ,∑Ni

n=1 xn(t), with mean λS ,
∑Ni

n=1 λn, to be the total load
of inflexible users. On the other hand, for flexible consumers,
the amount of consumption is not necessarily equal to the
amount of realized demand; Demand can be deferred and
served later as a load.

The waiting queue (i.e. backlog) for flexible consumer
n’s deferrable demand at time t is qn(t) and its evolution
is given by qn(t + 1) = [qn(t) + an(t)− xn(t)]+. Queues
are required to be stable, otherwise the delay experienced
by the demand will approach infinity. We assume that the
goal of flexible consumer n is to minimize its payment,
rn(t) , p(t)xn(t), under the queue stability constraint.
Inflexible consumers do not have such objective since they
do not have control on their load.

The market model described above is a stochastic dy-
namical system with closed-loop feedback . Suppliers and
consumers react to the market prices generated by the
operator, and the operator adjusts the prices based on the
realizations of supply and load. Furthermore, the operator
generates market prices without the knowledge of suppliers’
cost structures and consumers’ valuations. Under this model,
we are interested in designing distributed control and pricing
schemes that ensure the efficient and stable operation of the
market and that are aligned with the market participant’s
individual objectives.

B. Problem Formulation

In the paper, we use boldface letters to denote vectors, e.g.
x = (x1, . . . , xN ) is the N dimensional vector of the scalar
quantities xn for n = 1, . . . , N . We use {.} to denote a set
of quantities whose cardinality should be understood from
context, e.g. {y(t)} for t = 0, . . ..

The objective of the operator is to minimize the time-
averaged expected cost of electricity procurement. The opti-
mization problem is formally given by

min
{x(t)}{s(t)}

lim
T→∞

1

T

T−1∑
t=0

M∑
m=1

E [Cm (sm(t))] (1)

s.t.
N∑
n=1

xn(t) + Si(t) =

M∑
m=1

sm(t), ∀t = 0, 1, . . .

(2)

lim
T→∞

1

T

T−1∑
t=0

E [xn(t)] ≥ λn, ∀n. (3)

1To be precise, in this paper we make a distinction between “demand” and
“load”. Demand is externally generated according to a, but can be delayed.
Load is the actual consumption at each time instant.

In problem (1), constraint (2) is necessary for keeping supply
and load balanced in the electric grid at all time slots.
Constraint (3) ensures that the consumers experience finite
delay, i.e. consumer backlogs remain stable.

To simplify the design and analysis, instead of problem (1)
we will consider the following static (one time-slot) problem:

min
x,s

M∑
m=1

Cm (sm) (4)

s.t.
N∑
n=1

xn + λS ≤
M∑
m=1

sm

λn ≤ xn, ∀n.

It can be shown that the optimum objective value in (4) is a
lower bound for the objective value of problem (1). We will
demonstrate with simulation that, under properly designed
pricing mechanisms (which will become more clear later on),
the optimum value of problem (1) will also be close to that of
problem (4). Hence, by solving problem (4), whether exactly
or approximately, we can obtain a solution for problem (1).
Furthermore, problem (4) has a simpler structure, thus we
can apply well-known techniques such as duality to derive
iterative algorithms and tools.

However, Problem (4) may be solved by various iterative
algorithms. Such algorithms may dictate undesirable control
rules on the consumer side that do not align with flexible
consumers’ objective to minimize their payments. On the
other hand, as we will demonstrate soon, allowing flexi-
ble consumers to fully exhibit their opportunistic behavior
may cause instability and inefficiency by generating abrupt
changes and fluctuations in power generation . Therefore,
our goal is to design control and real-time market pricing
schemes that will give flexible consumers the freedom to
opportunistically consume electricity for their own interest,
and that will also achieve close-to-minimum electricity pro-
curement cost.

III. FLEXIBLE CONSUMER BEHAVIOR AND BENCHMARK
REAL-TIME PRICING SCHEMES

In the following, we will first characterize the oppor-
tunistic behavior of flexible consumers, and then discuss its
implications on the electricity market. To demonstrate the
detrimental effects of consumer-side flexibility, we present
two benchmark real-time pricing schemes which lead to
undesirable oscillatory behavior even though they are simple
and intuitive.

In the rest of the paper, for numerical investigations, we
consider a market where a certain percentage of consumers
have deferrable demand and the rest of the load, which
we call inflexible load, has a daily predetermined pattern.
Specifically, we use historical metered load data from PJM
[8] as the inflexible load. Furthermore, for the simplicity of
exposition and since our focus is on consumer behavior, we
assume that there is a single supplier in the market, although
the solution can be generalized to multiple suppliers.



A. Flexible Consumer Behavior

In our model, consumers are price-taking; At slot t,
each consumer receives a price p(t) for consuming a unit
amount of power, and then decides on his load. Thus, the
optimization problem faced by a flexible consumer can be
formulated as

min
{xn(t)}

lim
T→∞

1

T

T−1∑
t=0

E [p(t)xn(t)] (5)

s.t. lim
T→∞

1

T

T−1∑
t=0

E [xn(t)] ≥ λn, ∀n.

From a single consumer’s perspective, his load decisions
have negligible effect on the future prices when the number
of users is large. Hence, here when we are studying (5), we
assume that p(t) is exogenous; It is independent of xn(t).
Under this assumption, the following policy asymptotically
achieves the optimal value of (5) as the design parameter
κun > 0 gets large:

xn(t) = xmn 1

{
p(t) ≤ qn(t)

κun

}
(6)

The policy in (6) results in an opportunistic behavior.
Users consume electricity only when price is below a certain
threshold, and when they consume they put their maximum
available load to take full advantage of the low price. We
note that this threshold policy and similar threshold-based
policies have been shown to be asymptotically optimal when
the prices are exogenous [1], [9], [10].

However, in reality the behavior of each individual user
will eventually affect the price. Note that the above oppor-
tunistic behavior, when aggregated over a large consumer
base, will cause very high (low) load when price is low
(high). Thus, the resulting load pattern will not be flat and
will be costly to supply. Furthermore, electric supply and
market prices will be highly fluctuating since the prices
are adjusted in real time by the operator as a response to
the changes in load. Next, by comparing two benchmark
pricing schemes, we demonstrate that this fluctuation is a
real challenge when there are flexible consumers.

B. Benchmark Real-time Pricing Schemes

i) Scheme I (Real-time Pricing With Zero Penetration
of Flexible Consumers): In this scheme, all consumers are
inflexible so they do not have the ability to defer their loads;
Arriving demand is served immediately, i.e. xn(t) = an(t)
for all n, regardless of the market price. Supplier is obliged
to procure supply equal to the realized load and receive a
payment accordingly. On the other hand, the operator uses∑
n xn(t) as the prediction of the load on the next time slot,

and sets the market price to the total marginal procurement
cost of the supplier, i.e. p(t + 1) = Ċ (s(t)) subject to
s(t) =

∑
n xn(t). This choice of price maximizes supplier’s

profit assuming that the load prediction is accurate. Scheme 1
is summarized as follows:

Scheme 1. At time t:

• Consumer n sets xn(t) = an(t).
• The operator computes:

p(t+ 1) = Ċ (s(t)) , s.t. s(t) =
∑
n

xn(t)

We note that, scheme 1 serves a base setup which will be
useful in assessing both the advantages and disadvantages of
consumer-side flexibility.
ii) Scheme II (Gradual Real-time Price Update Under the

Presence of Flexible Consumers): We next introduce flexible
consumers by setting a certain percentage of the users to
have deferrable demand. We assume that flexible consumers
implement the threshold policy (6). Under this policy, we
expect the aggregate load to become either very large or
too small, since the consumers use the maximum amount
xmn or nothing based on the common market price. If the
operator sets the price to marginal cost as it does in Scheme I,
which implicitly assumes that the load is static, the price will
fluctuate violently. Such closed-loop feedback between load
and price degrades the system performance by increasing the
procurement cost and putting more stress on the electrical
grid.

One seemingly plausible direction to overcome this prob-
lem is to smoothen the price updates. We can consider an
iterative solution by means of a primal-dual approach to
problem (4), and gradually update the price at each time
slot. Scheme 2, which is presented next, achieves the optimal
solution of problem (4) asymptotically as κs →∞.

Scheme 2. At time t:
• Consumer n computes:

xn(t) = xmn 1

{
p(t) ≤ qn(t)

κun

}
(7)

qn(t+ 1) = [qn(t) + an(t)− xn(t)]+ (8)

• The supplier must meet the real load
∑
n xn(t). In

addition it computes s(t) = Ċ−1 (p(t)).
• The operator computes:

p(t+ 1) =

[
p(t) + κs

(∑
n

xn(t) + Si(t)− s(t)

)]+
(9)

where κs > 0 is a positive step size.

Note that the supplier computes a fictitious amount of
supply s(t) based on the current price although the real
supply should always be equal to the instantaneous load.
On the other hand, this fictitious supply s(t) is used by the
operator to gradually adjust the price in (9).

Under Scheme 2, price exhibits relatively small oscil-
lations due to the dampening effect of κs. However, the
total load still abruptly fluctuates as seen in Figure 2. The
threshold rule (7) allows flexible users to consume at their
maximum rates xmn when the market price is low, and their
aggregate load becomes too high since the same price is
observed simultaneously by all users.
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Fig. 2. Load evolution under Scheme 1 and 2. There are 1000 flexible
consumers that receive Poisson distributed demand arrivals, and their load
constitute 5% of the total load.

IV. REAL-TIME RANDOMIZED PRICING ALGORITHM

In this section we present a real-time randomized pricing
algorithm, and investigate its optimality and convergence
characteristics via a fluid limit model.

Our algorithm aims to mitigate the volatility and instability
problems that can arise due to the opportunistic behavior
of flexible consumers in the real-time market. Towards this
goal, the underlying motivation in the design of algorithm RP
is two-fold. First, like Scheme 2, we consider updating the
market price incrementally so that sudden changes in load
do not directly translate into large fluctuations in price.
Second, in order to prevent flexible consumers from aligning
their load decisions together to create undesirable peaks and
valleys in aggregate load, we differentiate the market price
across the consumer base. In particular, each consumer is
communicated an individual price that is randomly differen-
tiated from the common price.

The real-time randomized pricing algorithm is given as
follows:

Algorithm RP Randomized Pricing
At iteration t:
• Consumer n receives an individual price pn(t). Then, it
computes its load and queue as

xn(t) = xmn 1

{
pn(t) ≤

qn(t)

κ

}
(10)

qn(t+ 1) = [qn(t) + an(t)− xn(t)]+

• The supplier must meet the real load
∑
n xn(t). Further it

computes s(t) = Ċ−1(p(t)).
• The operator computes the common market price:

p(t+ 1) =

[
p(t) + α

(
N∑
n=1

xn(t) + Si(t)− s(t)

)]+
Then, the operator generates individual prices that are com-
municated to each consumer separately:

pn(t+ 1) = p(t+ 1) + εn(t+ 1)

where εn(t) are i.i.d. random variables over time and con-
sumers with the CDF (Cumulative Distribution Function) Fε.

In algorithm RP, individual prices are generated by adding
i.i.d. random noise εn(t) to the common market price. The

noise can have an arbitrary distribution as long as it satisfies
the following assumption which is not restrictive.

Assumption 1. Fε is continuous on its domain and strictly
increasing from 0 to 1 on an interval [εmin, εmax].

Users pay for their consumption at the individual price
privately communicated to them by the operator. Since this
price is generated by adding a random disturbance to the
common market price, the revenue obtained by the supplier
at each time slot will be different than the revenue anticipated
at the common price. Hence, it is not surprising that RP does
not achieve the optimal solution to problem (1). Instead,
we will show that an approximate version of RP achieves
the optimal solution to a welfare maximization problem
that is closely related to the original problem. The basic
idea is that communicating randomized prices to consumers
induces a utility-function based decision at the consumer
side. To demonstrate this, we present a continuous-time fluid
approximation model of RP, which will also be instrumental
in analyzing its behavior.

A. Continuous-time Fluid Approximation Model and Utility-
Maximization-Based Formulation

In this section we derive a continuous-time fluid approx-
imation for algorithm RP. Then, we relate the model to a
utility maximization problem with modified consumer utility
functions induced by price randomization.

The aggregate flexible consumer load is the sum of N bi-
nary variables, i.e. X(t) ,

∑
n x

m
n 1
{
εn(t) ≤ qn(t)

κ − p(t)
}

.
For large number of users, the queue lengths of users,
qn(t), will be roughly evenly distributed around κp(t) due
to the diversity between internal states of users. In this
case, xn(t) will be approximately i.i.d. Bernoulli random
variables. Applying the Law of Large Numbers based on
this assumption, we obtain the following expression for the
aggregate load

X(t) ≈
∑
n

xmn Fε

(
qn(t)

κ
− p(t)

)
. (11)

The above expression is the mean behavior for the aggregate
load, and when the number of users is large it will well
approximate the dynamics of the load.

We define un(x) , xmn Fε(−x), and write

xn(t) ≈ un
(
p(t)− qn(t)

κ

)
,

which approximates the mean behavior of individual users.
Next, we present below a continuous-time approximation to
RP.

In algorithm (RP-C), consumer loads are computed via
the smooth functions un. Since Fε is continuous and strictly
increasing on [εmin, εmax], un is continuous and strictly
decreasing, and it has an inverse u−1n . The domain of u−1n
is the interval [0, xmn ], possibly with u−1n (0) = ∞ and
u−1n (xm) = −∞, depending on the values of εmin and
εmax. We define function Un such that U̇n(x) , u−1n (x)
on (0, xmn ), which exists since u−1n (x) is continuous, and



Algorithm RP-C Continuous-time Approximation of RP
The continuous-time fluid model of the pricing scheme is
given by the following differential equations

xn(t) = xmn Fε

(
qn(t)

κ
− p(t)

)
(12)

s(t) = Ċ−1(p(t)) (13)

q̇n(t) =

{
λn(t)− xn(t) if qn(t)>0, or

λn(t)−xn(t)≥0
0 otherwise

ṗ(t) =

{
γ
(∑N

n=1 xn(t) + λS − s(t)
)

if p(t)>0, or∑N
n=1 xn(t)+Si−s(t)≥0

0 otherwise

hence integrable. If u−1n is bounded at the end points of its
domain, i.e. 0 and xmn , we set U̇n(x) = u−1n (x) at these
points. Otherwise, we set Un(0) = −∞ if u−1n (0) = ∞,
and Un(x

m
n ) = −∞ if u−1n (xmn ) = −∞. Note that by this

definition, Un is strictly concave on [0, xmn ].
Having defined the functions Un, we consider the follow-

ing social welfare maximization problem

max
x,s

N∑
n=1

Un(xn)− C(s) (14)

s.t.
N∑
n=1

xn + λS ≤ s (15)

λn ≤ xn, ∀n (16)

In (14), Un can be interpreted as a consumer utility function.
Un is strictly concave since u−1n is strictly decreasing and
U̇n(x) = u−1n (x). We do not restrict Un to be a monotone
function. Problem (14) is quite similar to problem (4) only
with a change in the objective function, where the utility of
consumption is amended.

Define p to be the dual variable corresponding to (15),
and qn to be the dual variables corresponding to (16). Let
(x̂, ŝ, p̂, q̂) be the optimal primal-dual solution to prob-
lem (14). The next theorem shows that RP-C converges to
the optimal solution of (14)-(16).

Theorem 1. The continuous-time approximation algo-
rithm RP-C converges to the optimal solution (x̂, ŝ, p̂, q̂) of
Problem (14).

Proof. First, we write the Lagrangian for Problem (14) as

L(x, s, p, z) =
∑
n

Un(xn)− C(s)− p

(∑
n

xn + λS − s

)
−
∑
n

qn
κ
(λn − xn)

Applying KKT conditions, the optimal solution satisfies

ŝ =
∑
n

x̂n + λS , p̂ = Ċ(ŝ), x̂n = U̇−1n

(
p̂− q̂n

κ

)
, ∀n

(17)
x̂n ≥ λn, ∀n (18)

q̂n(λn − x̂n) = 0, ∀n (19)

where (17)-(18) are optimality and feasibility conditions, and
(19) is the complementary slackness conditions for the dual
variables qn and the corresponding inequality constraints.

Now, we consider RP-C, and treat the queue and the price
values as the dual variables of Problem (14). In order to
establish the convergence of RP-C to (x̂, ŝ, p̂, q̂), we show
that the following Lyapunov function is strictly decreasing.

V (t) =
κ

2γ
(p(t)− p̂)2 + 1

2

∑
n

(qn(t)− q̂n)2. (20)

Specifically, the drift is given by

V̇ (t) =
κ

γ
(p(t)− p̂)ṗ(t) +

∑
n

(qn(t)− q̂n)q̇n(t)

≤ κ(p(t)− p̂)

(∑
n

xn(t) + λS − s(t)

)
+
∑
n

(qn(t)− q̂n)(λn − xn(t))

= κ(p(t)− p̂)

(∑
n

(xn(t)− x̂n) + (ŝ− s(t))

)
+
∑
n

(qn(t)− q̂n)((λn − x̂) + (x̂− xn(t))) (21)

where (21) is obtained by adding and subtracting the opti-
mum values x̂n and ŝ, and noting from (17) that ŝ =

∑
n x̂n.

Note that, from complementary slackness condition given in
(19), q̂n(λn−x̂n) = 0 for all n. Also, qn(t)(λn−x̂n) ≤ 0 due
to dual and primal feasibility. Therefore, (qn(t)− q̂n)(λn −
x̂n) ≤ 0. Using this in (21), we obtain

V̇ (t) ≤ κ
∑
n

(
p(t)− qn(t)

κ
−
(
p̂− q̂n

κ

))
(xn(t)− x̂n)

− κ(p(t)− p̂)(s(t)− ŝ)

Recall that the function Un is strictly concave from (17) and
(12) we obtain((

p(t)− qn(t)

κ

)
−
(
p̂− q̂n

κ

))
(xn(t)− x̂n)

=
(
U̇n(xn(t))− U̇n(x̂n)

)
(xn(t)− x̂n) ≤ 0,

and the equality holds if and only if xn(t) = x̂n. Similarly,
due to strict convexity of C and from (13)

(p(t)− p̂)(s(t)− ŝ) ≥ 0

where the equality holds if and only if p(t) = p̂. Hence,
we obtain V̇ (t) < 0, and the equality holds if and only
if p(t) = p̂ and xn(t) = x̂n for all n. Thus, V̇ (t) < 0
unless (x(t), s(t), p(t),q) = (x̂, ŝ, p̂, q̂). As a result, the dual
algorithm converges to the optimal point (x̂, ŝ, p̂, q̂).



B. The Algorithm and Consumer Behavior Under the Pres-
ence of Daily Inflexible Load

The problems in (1) and (4) disregard the fact that part
of the grid load, which we model as inflexible load, has
a daily pattern, . Load exhibits bottoms and peaks at ap-
proximately same hours each day, and its amount do not
change significantly between the same hours of different
days. Thus, inflexible load can be predicted day-ahead, and
real-time control and pricing decisions can be made with this
knowledge. Hence, a plausible direction is to formulate an
optimization problem taking into account such daily patterns.

Let K be the number of time slots in a day over which
supply and load matching should be ensured and control
decisions are made. We assume that the inflexible load
pattern is periodic with K, i.e. we expect to see the same load
every day. The following problem aims to minimize the cost
of electricity supply over K slots subject to the consumers’
average consumption constraints.

min
x,s

K∑
k=1

M∑
m=1

Cm (sm) (22)

s.t.
N∑
n=1

xkn + Ski ≤
M∑
m=1

skm, ∀k = 1, . . . ,K (23)

Kλn ≤
K∑
k=1

xkn, ∀n. (24)

Utilizing the line of reasoning used in the design of RP, we
present algorithm RPD that aims to obtain an approximate
solution to (22)-(24) by price randomization.

Algorithm RPD Randomized Daily Pricing
At iteration t:
• Consumer n computes its load and queue as

xn(t) = xm1

{
pn(t) ≤

qn(t)

κ

}
, for t = 1, 2, . . . ,

qn(t) =

qn(lK) +

(l+1)K∑
k=lK+1

(an(k)− xn(k))

+

for t ∈ [(l + 1)K + 1, (l + 2)K] , l = 0, 1, . . .

• The supplier must meet the real load
∑
n xn(t), and it

computes s(t) = Ċ−1(p(t))
• The operator computes the common market price and
generates the individual prices for consumers:

p(t+K) =

[
p(t) + α

(
N∑
n=1

xn(t) + Si(t)− s(t)

)]+

pn(t) = p(t) + εn(t)

Algorithm RPD differs from RP in consumers’ queue
update rule. Since constraint (24) aims to satisfy average
user demand over one optimization period, user queues are

updated once at the end of each period and the same backlog
value is used in the rest of the next period. Intuitively,
consumers track their consumption on a daily basis.

In Figure 3, load evolutions obtained by running algo-
rithms RP and RPD are plotted over two days. Historical
metered load data from PJM, [8], is used as inflexible load,
and flexible load is set to be 5% of the total load. We observe
a waterfilling behavior for both algorithms; Flexible users
consume electricity when the inflexible demand is low and
fill the valleys in the daily pattern.
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Fig. 3. Flexible load (5% of the total load) fill the valleys in the daily
inflexible load pattern where the market price is lower.

V. PERFORMANCE AND NUMERICAL RESULTS

We next evaluate the proposed randomized pricing mech-
anisms using the following performance metrics: The pay-
ments made by the consumers, the payments received by
the suppliers and the cost of generation. In terms of these
metrics, we compare the performance of RP and RPD to the
benchmark schemes Scheme 1 and 2.

The payment of consumer n under RP-C is given by

rn(t) = p(t)xn(t) + xmn E
[
εn1
{
εn ≤ −U̇(xn(t))

}]
which follows from (12). On the other hand, the supplier
receives the payment w(t) = p(t)s(t). Note that w(t) is
calculated based on the supplier’s offer s(t) instead of the
actual generation

∑
n xn(t). At the equilibrium of RP-C, the

supplier and total consumer payments are given by

r̂ = p̂
∑
n

x̂n +
∑
n

xmn E
[
εn1
{
εn ≤ −U̇(x̂n)

}]
(25)

ω̂ = p̂ŝ = p̂
∑
n

x̂n (26)

where (26) follows from the KKT condition in (17).
Observe that, from (25) and (26), the amount of payment

made to the supplier and the amount of payment received
from flexible consumers do not necessarily match, and the
difference is given by the second term in (25). We call this
difference the manager deficit. Naturally, one wants to make
this difference 0 so that the market actually clears in terms of
payments. As an example, consider the case where λn = λ,
xmn = xm for all n, and εn’s have the identical uniform
distribution over the interval [ε, ε+ a], i.e. Fε(x) = x−ε

a .
Then, setting ε = − aλ

xm ensures that the deficit is 0. Indeed,
the deficit is negligibly small even when ε(t) has a uniform
distribution symmetric around 0.

Figure 4 plots on the horizontal axis the consumer pay-
ments that are obtained by running the benchmark schemes



and the randomized algorithms. The simulations are run
for different numbers of flexible consumers in the system.
Particularly, load from flexible consumers constitutes 5%,
10%, and 20% of the total load in each simulation. The
amount of total load in the system is kept constant for
all levels of flexible consumer penetration. Furthermore,
inflexible load is a sinusoid which approximates well the
historical metered load data from PJM [8] (c.f. Figure 2&3).
We observe that in Scheme 1, where demand has practically
no flexibility, consumer payments are greater than all other
pricing mechanisms. On the other hand, in Scheme 2 and in
algorithms RP and RPD, consumers can take advantage of
changing prices and reduce their payments. Figure 4 shows
that consumer payments in randomized pricing algorithms
and payments in Scheme 2 are quite close. We can conclude
that randomized pricing preserves the economic benefits of
flexible consumers, and hence consumers will be motivated
to participate in a market where prices are differentiated.
Furthermore, as seen in Figure 4, as the number of flexible
consumers increases, payments tend to decrease due to
lowered fluctuations in the common market price.
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Fig. 4. Randomized pricing algorithms perform better with increasing
flexible consumer penetration in the market.

Next, we study the impact of demand deferrability on
supply cost and compare the costs achieved by the pricing
mechanisms. Figure 4 plots on the vertical axis the supply
costs that are achieved by running the benchmark schemes
and the randomized algorithms. Since the cost function C
is increasing and convex we expect it to be more costly to
supply more variable load. However, in the figure, supply
cost decreases as flexibility penetration increases from 0
to 10% under all pricing mechanisms except Scheme 1.
In Scheme 1, the total load is the sum inflexible load
and aggregation of random demand arrivals, thus it follows
almost the same pattern in all flexibility levels. On the other
hand, the decrease in cost under randomized mechanisms and
Scheme 2 is due to the increased peak shaving effect with
increasing flexibility penetration.

The benefit of price randomization becomes more dramatic
when the percentage of flexible load increases. We observe
in Figure 4 that supply cost starts increasing under Scheme 2
after a certain level of flexible load percentage whereas
it continues to decrease under algorithms RP abd RPD.

The increase under Scheme 2 is apparently due to large
fluctuation in load and the convex cost structure. However,
price randomization smoothens the flexible consumers’ load
and makes total load less costly to supply.

VI. CONCLUSION

We proposed a novel real-time pricing scheme that at-
tempts to solve the volatility problem in a system where
economically-driven consumers have the flexibility to defer
their demand. We demonstrated the destabilizing effect of op-
portunistic consumer behavior on the load and market price,
when conventional real-time pricing methods are employed.

We then proposed a new pricing scheme that is based on
price differentiation among consumers; Individual consumers
receive different prices that are randomly generated based
on a common price. We numerically demonstrated that self-
interested consumers economically benefit from deferring
their demand while supply cost is kept low. The randomized
pricing scheme is simple to implement since it does not
require any knowledge on consumer strategies, and it can
be employed in different systems where demand has time
flexibilities.
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