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Abstract— In this paper, we address real-time pricing and
control of opportunistic consumers with deferrable demands
that are motivated by the envisioned smart electrical grid. In
the smart grid, demand-side flexibilities from deferrable loads
enable consumers to respond to real-time electricity prices
for their own economic benefit. However, the aggregate load
created by many such economically-driven consumers can be
highly time-varying, which can cause significant fluctuations
in both the electricity demand and the real-time price, and
ultimately incur additional generation and capacity costs for
the suppliers. In this paper, we propose a distributed pricing
and load scheduling algorithm that alleviates such undesirable
fluctuations and high volatility. In particular, we formulate the
pricing and scheduling problem as an optimization problem
with proximal terms that incur penalty for rapid consumption
changes over time. Through a continuous-time approximation,
we show how the overall system evolves towards the optimal
operating regime under the proposed algorithm. In the limiting
operating regime, even though the individual consumption of
each consumer may still exhibit oscillatory behavior, the aggre-
gate load and the real-time price at any time stay arbitrarily
close to a stable operating point. Our design also enables third-
party intermediaries to adjust the change of load penalty to
balance the payments made by the consumers to the suppliers,
thereby achieving market clearance.

I. INTRODUCTION

This work aims to develop simple real-time pricing
schemes for serving economically-driven consumers with
stochastically arriving and flexible demands. While the re-
sulting insights can apply in greater generality to other
systems (most notably smart data networks), we focus on
the pricing for the electricity power grid. The future smart
grid is envisioned to contain various forms of flexibility
in the service demands, e.g., deferrable service times as
in operating a dishwasher overnight, controllable power
levels as in lighting or heating/cooling systems, etc. One
of the visions is that the flexibility of demand from these
users could dynamically be controlled to reduce the peak
consumption, and therefore increase the efficiency of the
overall system. However, users are self-interested agents and
will allow such flexibilities to be used only if they can
get economical benefits. Therefore, it is necessary to design
intelligent pricing schemes that not only benefit the grid, but
also provide the monetary incentives for the users to alter
their load.
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However, such self-interested users will likely utilize their
flexibilities to their advantage by opportunistically respond-
ing to the changing prices, which may potentially lead to
highly volatile behavior. For example, the authors of [1]
study the optimal user behavior when the prices are assumed
to be exogenously generated, and establish that an asymp-
totically optimal policy possesses an aggressive threshold-
based behavior. Similar observations have also been made
in [2] under different flexibility and cost structures, and in
non-asymptotic regimes. The main insight from these works,
which captures a general and perhaps obvious consumer
characteristic, is that, within the limits of the users’ flexibil-
ities, the users will tend to apply load when the price is low.
While this threshold-type behavior is aligned with the users’
own economic interests, it raises immediate concerns that,
when the system is serving a large number of such aggressive
users, whether the overall system can still be stable.

Such risks of instability have been reported in related
work. In fact, if the load is flexible but cannot be shifted
in time, [3] shows that if the elasticity of the user demand
is large, the system under an ex-ante pricing scheme can
indeed become unstable. If the load can be shifted in time,
intuitively the elasticity will likely increase further. Hence,
this type of instability issues could become a very critical
problem for such systems.

The work by [4] attempts to address this problem by
introducing ex-ante prices with ex-post adjustments. How-
ever, under this scheme the users are forced to predict the
future impact of their collective decisions on the system,
which is a highly non-trivial task. Another line of work [5]
proposes auction mechanisms for demand side management.
However, such approaches require both the demand and the
users’ utility functions to be known in advance, which may
be impractical as well.

With this motivation, our goal in this work is to design
simple pricing schemes that are both globally stable and
also align with the users’ economic interest. Our proposed
pricing schemes have a similar flavor as ex-ante scheme in
the sense that the price is announced before hand. Hence,
the users do not need to perform complicated prediction
operations. Instead, the key idea of the new proposed scheme
is to penalize the changes of load across time, therefore ef-
fectively eliminating the extreme-oscillation in the aggregate
opportunistic load.

After the description of the system model and problem
formulation in Section II-A, our investigations start in Sec-
tion III by two benchmark pricing strategies that exhibit the
volatility of traditional pricing mechanisms. In Section IV,



we formulate a related static problem with a proximal term,
which leads to a novel pricing mechanism where, in addition
to the absolute consumption, the change in consumption is
also priced. In Section IV-A, we propose a continuous-time
approximation of the resulting dynamic system, and study
its convergence characteristics. Our analysis reveals an inter-
esting limiting behavior of our scheme, whereby individual
consumer loads and queue-evolutions follow sinusoid-like
trajectories, they do so in such an asynchronous fashion that
the aggregate load converges to a stable value. Our numerical
results in Section V confirm the findings of the analytical
results also under stochastic conditions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We present a model for the stable control of real-time
markets where several suppliers or service providers serve
a class of consumers who have the flexibility to defer
their demand. We will focus on the volatility and stability
issues arising due to the opportunistic behavior of flexible
consumers under real-time pricing mechanisms. Although
we mainly focus on electricity market in this paper, the basic
structure and dynamics of our model may also apply to other
markets such as wireless data markets.

A. System Model: Electricity Market

We study a real-time electricity market consisting of elec-
tricity consumers, suppliers, and a non-profit party called ISO
(Independent System Operator) that oversees the efficient
and reliable operation of the market. Time is divided into
discrete slots, i.e. t = 0, 1, . . ., that represent appropriate
intervals over which the control decisions are made and the
total electric supply must be set to meet the load. Figure 1
depicts the market participants and their interactions which
are presented in detail in the following.
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Fig. 1. Market structure showing its participants and their interactions.

1) ISO (Independent System Operator): The ISO is a non-
profit organization that is responsible for maintaining reliable
operation of the market with the objective of achieving a
sustainable level of welfare for the market participants 1.
It regulates the load-supply matching and other operational
constraints of the electrical grid by controlling the real-time
prices which are broadcast to suppliers and consumers. The
real-time price per unit of electric power at time slot t is
denoted by p(t), and is set and broadcast by the ISO at
the beginning of slot t. We assume that the ISO does not

1The ISO concept is specific to the electricity market, but the same
system model without an ISO applies to other markets such as wireless data.
Basically, perfect competition among suppliers would result in an aggregate
behavior similar to the ISO’s.

have the knowledge of consumers’ strategies, valuations of
consumption, and their internal states. Hence the demand
that will be induced by a given price is uncertain to the ISO.

2) Suppliers: There are M electric suppliers such as
generator companies, retailers, or load aggregators that are
responsible for providing electric power to the grid. The
procurement of s watts of power incurs a cost of Cm(s)
to the supplier m, where Cm : R+ → R+ is a continuously
differentiable and increasing function of s for each m. We
also assume that C̈m(s) > 0, and hence Cm is strictly convex
and Ċm is invertible. At any time slot, the electric supply
provided by the suppliers must meet the load. We assume
that the ISO knows the cost function Cm(·) and can use it
to adjust the elastic price in the future.

3) Consumers: There are N consumers who use electricity.
At time slot t, consumer n generates random demand An(t).
We assume that An(t) is independent among users and i.i.d.
over time slots for each user. The distribution function of
An(t) is denoted by FAn and E [An(t)] = λn for all t. We
further assume that demand arrivals are bounded such that
An(t) ∈ [0, an,max].

The demand is flexible in the sense that it can be deferred
by the user before it is actually served as an electric load on
the grid. On the other hand, the amount of electric energy
consumed by user n at slot t is denoted by xn(t) ∈ [0, xmax].
We emphasize that here we make a clear distinction between
the terms demand and load; at time t user n generates
demand an(t), which is the realization of random variable
An(t), and he consumes load xn(t) based on his own
decision. The waiting queue (i.e. backlog) for consumer
n’s deferrable demand at time t is qn(t) and its evolution
is given by qn(t + 1) = [qn(t) + an(t)− xn(t)]

+. The
consumers require their queues to be stable, otherwise the
delay experienced by the demand will approach infinity. Our
analytical results are mainly based on this stability constraint.
On the other hand, in our simulations we will also compare
the average delay experienced by the consumers.

Moreover, we assume the consumers are price-taking, thus
they determine their loads xn(t) at the beginning of each
time slot t after observing the corresponding price p(t)
announced by the ISO (cf. Figure 1). Naturally, the goal of
the customer would be to minimize his payment under the
above stability constraints. In the paper, we are interested
in designing pricing schemes that not only are aligned with
the customer’s interest, but also optimize the global system
performance (to be defined shortly).

The market model induced by the interactions between
the ISO, suppliers, and consumers is a closed-loop feedback
dynamical system. At the beginning of each time slot, the
ISO has to decide on the market price without knowing the
amount of load it would induce, because the users’ valuations
and strategies are not available to the ISO. On the other hand,
once the actual load is realized the suppliers have to meet
the realized load. Then the ISO decides on the price for the
next time slot based on the current realization of the load.



B. Problem Formulation

We define x(t) , (x1(t), . . . , xn(t)) to be the vector of
consumer loads at time t and s(t) to be the vector of electric
procurements of suppliers. Let {x(t)} denote the set of x(t)
values for t = 0, 1, . . .. Then, the objective of the ISO is
given by the following infinite horizon optimization problem:

min
{x(t)}{s(t)}

lim
T→∞

1

T

T−1∑
t=0

M∑
m=1

E [Cm (sm(t))] (1)

s.t.
N∑
n=1

xn(t) =

M∑
m=1

sm(t), ∀t = 0, 1, . . . (2)

lim
T→∞

1

T

T−1∑
t=0

E [xn(t)] ≥ λn, ∀n (3)

In problem (1), the objective function is the limit of
the time averaged expected cost of the suppliers for pro-
viding electricity. Constraint (3) is a necessary condition
for the backlog of each consumer to be stable, and con-
straint (2) ensures that the electricity provided by the sup-
pliers matches the total consumer load at all time slots.
Furthermore, we encapsulate the multiple number of sup-
pliers by defining two cascaded optimization problems in
Problem (1). In particular, we modify the objective (1)
as limT→∞

1
T

∑T−1
t=0 E [C(s(t))], and the constraint (2) as∑

n xn(t) = s(t), where

C(s(t)) , min
s

∑
m

Cm(sm(t))

s.t.
∑
m

sm(t) = s(t). (4)

Our goal in this paper is to design pricing schemes that
not only minimize the generation cost based on problem (1),
but are also aligned with the interest of the consumers to
minimize their own payment. In the following section, we
first discuss two pricing schemes that have been commonly
referred to in the literature and demonstrate that while they
are aligned with the consumer’s interest, they lead to volatile
load and price for the system. Then, In Section IV we will
propose a new pricing scheme that eliminates such volatility
and instability problems.

Before beginning the analysis we give the following
definition for volatility.

Definition 1. Incremental mean volatility of a real valued
signal s(t) is given by

ρ(s) = lim
T→∞

1

T

T−1∑
t=0

‖s(t+ 1)− s(t)‖. (5)

III. TWO BENCHMARK REAL-TIME PRICING SCHEMES

In this section, we discuss stability and price volatility
issues of the electricity market. To that end, we present two
real-time pricing and scheduling schemes that motivate the
development in this paper. Both schemes are quite intuitive
and even have been suggested as basic principles for real-
time market operation. However, as we will demonstrate

shortly, under flexible demand they lead to high volatility
of price and supply, and then result in high supply cost.

In both schemes, we assume that the end users employ a
threshold policy to determine whether they consume elec-
tricity at a particular time slot t. Specifically, consumer
n compares the current price p(t) to a scaled version of
the backlog qn(t)

κu
n

, where κun is a constant. He applies a

load of xn(t) = xn,max if p(t) ≤ qn(t)
κu
n

; otherwise he
applies zero load, i.e. xn(t) = 0. This threshold policy
and similar threshold-based policies have been shown to
be asymptotically optimal when the prices are exogenous
[1], [6], [7]. In particular, if we consider the following
optimization problem faced by a consumer

min
{xn(t)}

lim
T→∞

1

T

T−1∑
t=0

E [p(t)xn(t)] (6)

s.t. lim
T→∞

1

T

T−1∑
t=0

E [xn(t)] ≥ λn, ∀n, (7)

where p(t) is the presumed i.i.d. price, one can show that if
the prices p(t) are exogenous, then the described threshold
policy will asymptotically achieve the optimal value of (6) as
κnu is large. Since in this paper we assume that the consumers
are price taking, we will use this threshold policy in both of
the schemes studied below.

On the other hand, the two schemes differ in the way that
the ISO sets prices as will see shortly.
i) Scheme I: The ISO sets the price for the next time slot

by p(t+1) = Ċ (
∑
n xn(t)), which is known as the marginal

price. Note that if the ISO uses
∑
n xn(t) as a prediction

of the load on the next time slot, then this price will also
maximize the profit of the suppliers when the demand is
inflexible, thus such a price-setting strategy appears to be
quite reasonable. However, as we will demonstrate below,
when the demand is flexible, high-volatile behavior will
arise. We summarize the control decisions of the market
participants in Scheme 1:

Scheme 1. At time t:
• Consumer n computes:

xn(t) = xn,max1

{
p(t) ≤ qn(t)

κun

}
(8)

qn(t+ 1) = [qn(t) + an(t)− xn(t)]
+ (9)

• The ISO computes:

p(t+ 1) = Ċ

(∑
n

xn(t)

)
and s(t) =

∑
n

xn(t) (10)

We show in Figure 2 the resulting evolution of price and
total load under Scheme 1. As we can see from Figure 2, the
resulting system dynamics under Scheme 1 are tremendously
undesirable. Based on the threshold rule (8), the consumers
use the maximum amount xn,max if the price is low and
consume nothing if the price is high. Consequently, the
aggregate load becomes either very large or too small.



We note that such opportunistically-aggressive behavior is
commonly expected from cost-minimizing users in general.
On the other hand, the ISO sets the price for the next slot to
the marginal price which implicitly assumes that the load is
static. Therefore, the price for the next slot is either high (if
the total load is high) or low (if the total load is small). As
a result, this mechanism creates violent fluctuations in both
price and total load as depicted in Figure 2, and the system
can not achieve a stable operating state.

Obviously, such a high-volatile load pattern can not mini-
mize the generation cost in (6). Furthermore, the payments of
users can be extremely low because the ISO basically follows
the load one time slot behind in its price-setting rule. Thus,
the payment from the consumers will not be able to offset
the high generation cost either. Such detrimental behavior is
the result of the aggregate opportunistic behavior of users
with deferrable demand against a single market price that is
determined myopically by the ISO ignoring the opportunistic
consumer behavior.
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Fig. 2. Scheme 1 with 10 consumers having Poisson arrivals of demand
with different rates, κun = 100, C(x) = 1

2
x2. The Average supply cost is

30624 (optimum is 15312), price and total load volatility are both 350.

ii) Scheme II: The previous scheme reveals the undesirable
market dynamics if the ISO directly uses the marginal
price of supplying. One plausible direction to overcome this
problem is to smoothen the price. For instance, we can
calculate the price based on an iterative solution that solves
an optimization problem. Specifically, note that from the
convexity of the cost function, we can easily see that a lower
bound for the minimum cost in (1) is given by a the solution
to the following optimization problem.

min
x

C (s) (11)

s.t.
N∑
n=1

xn ≤ s (12)

λn ≤ xn, ∀n (13)

However, the values of λn are not known in advance,
hence we can consider an iterative solution by means of
a primal-dual approach, and obtain the following real-time
pricing mechanism. Scheme 2, which is presented next,
achieves the optimal solution of problem (11) asymptotically
as κs →∞.

Scheme 2. At time t:
• Consumer n computes:

xn(t) = xn,max1

{
p(t) ≤ qn(t)

κun

}
(14)

qn(t+ 1) = [qn(t) + an(t)− xn(t)]
+ (15)

• The supplier must meet the real load
∑
n xn(t). In

addition it computes:

s(t) = Ċ−1 (p(t)) (16)

• The ISO computes:

p(t+ 1) =

[
p(t) + κs

(∑
n

xn(t)− s(t)

)]+
(17)

Note that in (16), the suppliers compute a fictitious amount
of supply s(t) based on the current price although the real
supply should always be equal to the instantaneous load. On
the other hand, this fictitious supply s(t) is used by the ISO
to gradually adjust the price in (17). It may be possible to
derive another algorithm that uses the real supply into (17)
to update the price. However, the analysis will become more
complicated, and the revised scheme will likely still lead to
the volatility problem demonstrated below.

In this scheme, s(t) changes slowly due to the dampening
effect of κs, and price volatility is reduced compared to
Scheme 1. However, supply cost is still high because of
the abrupt fluctuations exhibited in load (cf. Figure 3). The
reason behind the fluctuations in load is that the consumers
still exhibit their opportunistic behavior despite the smaller
fluctuations in price; the threshold rule (14) allows them to
consume the maximum amount xn,max that they can when
the price is at its lowest level.
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Fig. 3. Scheme 2 with 10 consumers having Poisson arrivals with different
rates, κun = 100, κs = 100, C(x) = 1

2
x2. Average supply cost is 30601

(optimum is 15312) and price volatility is 1.758.

IV. DISTRIBUTED REAL-TIME PRICING AND
SCHEDULING ALGORITHM

Investigations in the previous section reveal that oppor-
tunistic consumer behavior resulting from demand flexibili-
ties causes price and load volatility, which increases supply
cost under real-time pricing mechanisms. In this section,
we aim to design a new pricing scheme that not only is
aligned with the customer’s interest but also helps the ISO to
minimize supply cost and mitigate the volatility in price and
total load. To that end, we start with the static optimization
in (11). Recall that problem (11) provides a lower bound to
problem (1). We then augment the objective of problem (11)
with an additional cost term motivated by the proximal
optimization algorithm [8], [9]. Therefore, the optimization
problem is

min
x,y

C (s) +
γ

2

N∑
n=1

(xn − yn)
2 (18)



s.t.
N∑
n=1

xn ≤ s (19)

λn ≤ xn, ∀n (20)

where γ is a positive constant and yn ∈ R are auxiliary
variables. It is easy to see that if x∗n and s∗ are the optimal
solution to problem (11), then xn = x∗n, yn = x∗n, and s = s∗

are trivially the optimal solution to problem (18). However,
the quadratic term in (18) makes the problem strictly convex
in xn, which helps to alleviate volatile behaviors as we will
see shortly. As in other proximal optimization algorithms [8],
in each iteration we first fix yn(t) and optimize the objective
of (18) over xn. Let the corresponding optimal solution be
xn(t). We then set yn(t+ 1) = xn(t) and continue with the
next iteration. By setting yn(t + 1) = xn(t), the quadratic
term in (18) becomes γ

2

∑N
n=1 (xn(t)− xn(t− 1))

2, which
penalizes the difference between the load at slot t and slot
t − 1. Accordingly, we propose the following new pricing
mechanism for consumption:
New Consumer Pricing Mechanism: At each time t a
price p(t) is announced for each consumer n. The resulting
payment at time t of the consumer to with a load xn(t) is:

p(t)xn(t) +
γ

2
(xn(t)− xn(t− 1))2.

Here, the second term is the new component that incurs a
penalty (with a fixed and uniform scaling γ across users) on
the change of load for each consumer. Intuitively, this penalty
encourages the flexible users to smooth out their loads and
reduces the potential volatility. We note that this measure of
change with respect to the last load can also be made over
an average of the load levels of the consumer over a finite
time horizon to have a similar effect. We will demonstrate
soon that this simple pricing scheme is able to align users’
interest with global grid stability.

For a fixed yn = xn(t − 1) we can write the Lagrangian
function for the problem (18) w.r.t. xn as:

L (x, s, p,q) = C (s) +
γ

2

N∑
n=1

(xn − yn)2

+ p

(
N∑
n=1

xn − s

)
+

N∑
n=1

qn(λn − xn) (21)

where p ≥ 0 and q , [qn ≥ 0, n = 1, 2, . . . , N ] are the dual
variables corresponding to the constraints in (19) and (20),
respectively. Then, the dual function is given by

D(p,q) =

N∑
n=1

min
xn

{(
(p− qn)xn +

γ

2
(xn − yn)2

)}
+ min

s≥0
{C(s)− ps}+

N∑
n=1

λnqn (22)

The first optimization in (22) leads to the following
intuitive interpretation of a new pricing scheme. We can
interpret p as the price of electrical energy. Then, in addition
to this common price, each user also receives a penalty for
the deviation from its load in the previous time slot. The

corresponding objective is strictly convex in xn. Hence, if yn
is kept fixed, the solution to the sub-minimization is given
by x∗n =

[
yn + 1

γ (qn − p)
]xmax

0
, where the operator [.]

b
a

projects its argument onto the interval [a, b]. The second op-
timization in (22) is the profit maximization for the supplier.
Then, the dual problem is simply maxp≥0,q≥0 D(p,q).

Our distributed real-time pricing and scheduling algorithm
then employs an iterative dual method where the primal
variables x, s and the dual variables p, q are updated at
each iteration first with y kept fixed, and then y is updated
at the end of each iteration by setting y(t + 1) = x(t).
Hence, y(t) is dropped from the algorithm since we replace
it with x(t− 1). The algorithm is formally presented in the
following.

Algorithm 1. At iteration t:
• Consumer n takes a common price p(t) plus a quadratic

penalty parameter γ. Then, it computes its optimum load as

xn(t) =

[
xn(t− 1) +

1

γ
(qn(t)− p(t))

]xmax

0

(23)

qn(t+ 1) = [qn(t) + α(an(t)− xn(t))]
+ (24)

• The supplier must meet the real load
∑
n xn(t). Further

it computes:

s(t) = Ċ−1(p(t)) (25)

• The ISO computes:

p(t+ 1) =

[
p(t) + β

(
N∑
n=1

xn(t)− s(t)

)]+
(26)

We note that Algorithm 1 is similar to the proposed
algorithm in [9] in the sense that it takes one step towards the
solution of the optimization (18)-(20) with y kept fixed. One
difference, though, is that our algorithm directly sets yn(t) =
xn(t − 1), bypassing another optimization step involving
the recently updated dual variables [9]. However, this small
difference changes the behavior of the algorithm significantly
from that of [9]. In particular, while the algorithm in [9]
converges for each variable, our algorithm does not converge
for each xn. Indeed, we will show later that each consumer’s
load xn(t) still exhibits some sinusoid-like behavior. On
the other hand, our proposed pricing scheme with quadratic
penalties ensures that the overall load is stable, and thus
prevent the system instability reported in existing schemes
in Section III.

In the following subsection, we propose a continous-
time approximation of the dynamics of Algorithm 1 and
investigate its convergence properties, with an emphasis on
the convergence of the total load, total generation, and price.

A. A Continuous-Time Approximation and its Convergence

In order to study the dynamics and convergence of Al-
gorithm 1, we first present a continuous-time approximation
of the algorithm, investigate its convergence, and relate our
findings to the original discrete-time algorthm. In Algo-
rithm 1, as the step sizes α and β become very small



the difference equations can be approximated by differential
equations given below.

Algorithm 2 (Algorithm A1-C). The continuous-time algo-
rithm is governed by the following differential equations:

ẋn(t) =

{
1
γ (qn(t)− p(t)) if xn(t)>0, or

qn(t)−p(t)≥0
0 otherwise

(27)

q̇n(t) =

{
α(λn − xn(t)) if qn(t)>0, or

λn−xn(t)≥0
0 otherwise

(28)

s(t) = Ċ−1(p(t)) (29)

ṗ(t) =

{
β
(∑N

n=1 xn(t)− s(t)
)

if
p(t)>0, or

(
∑N

n=1 xn(t)−s(t))>0

0 otherwise
(30)

Before beginning the convergence study of Algorithm 2
dynamics, we give a definition of a stationary point of the
sum of variables.

Definition 2. Define Φ(t) , (
∑
n xn(t),

∑
n qn(t), p(t),

s(t)). Φ∗ , (X∗, Q∗, p∗, s∗) is a stationary point of Al-
gorithm 2 in the sum sense, if Φ(t0) = Φ∗ for some t0 <∞
and Φ(t) = Φ(t0) for all t > t0.

The following proposition states that the system of equa-
tions given in A1-C has equilibrium properties for the sums
of user loads

∑
n xn(t), the sums of user queues

∑
n qn(t),

the price p(t), and the total supply s(t).

Proposition 1. In the system characterized by the
continuous-time algorithm A1-C, Φ(t) converges to a sta-
tionary point Φ∗. Furthermore, Φ∗ is a stationary point of
the discrete-time Algorithm 1.

Proof. To begin with, we define the system state at time t
as Θ(t) , (~x(t), ~q(t), p(t), s(t)). We consider the following
Lyapunov function:

V (Θ(t)) =
N

2α
(p(t)− p∗)2

+
γ

2

(∑
n

xn(t)−X∗
)2

+
1

2β

(∑
n

qn(t)−Q∗
)2

(31)

where Φ∗ , (X∗, Q∗, p∗, s∗) is a stationary point of Algo-
rithm 1 as described in Definition 2. We did not include s(t)
in the Lyapunov function, because it is solely determined by
p(t). The derivative of V (Θ(t)) w.r.t. time t is

V̇ (Θ(t)) = γ

(∑
n

xn(t)−X∗
)∑

n

ẋn(t)

+
1

β

(∑
n

qn(t)−Q∗
)∑

n

q̇n(t) +
N

α
(p(t)− p∗) ṗ(t)

(32)

≤

(∑
n

xn(t)−X∗
)∑

n

(qn(t)− p(t))

+

(∑
n

qn(t)−Q∗
)∑

n

(λn − xn(t))

+N (p(t)− p∗)

(∑
n

xn(t)− s(t)

)
(33)

where the derivatives are replaced with their corresponding
expressions in (27)-(30). Adding and subtracting the station-
ary values of Φ∗ in (33), we obtain

V̇ (Θ(t))

≤

(∑
n

xn(t)−X∗
)(∑

n

qn(t)−Q∗ +Np∗ −Np(t)

)

+

(∑
n

qn(t)−Q∗
)(∑

n

λn −X∗ +X∗ −
∑
n

xn(t)

)

+ (p(t)− p∗)

(∑
n

xn(t)−X∗ + s∗ − s(t)

)
(34)

=

(∑
n

xn(t)−X∗
)(∑

n

qn(t)−Q∗
)

+

(∑
n

xn(t)−X∗
)
N (p∗ − p(t))

+

(∑
n

qn(t)−Q∗
)(

X∗ −
∑
n

xn(t)

)

+N(p(t)− p∗)

((∑
n

xn(t)−X∗
)

+ (s∗ − s(t))

)
(35)

= N(p(t)− p∗)(s∗ − s(t)) (36)

In (34), we used Q∗ = Np∗, s∗ = X∗ =
∑
n λn, which

follows from Definition 2, and then we obtained (36) by
canceling the terms in (35). Noting that p(t) = Ċ(s(t)) and
C is convex, we conclude

V̇ (Θ(t)) ≤ N(p(t)− p∗)(s∗ − s(t)) ≤ 0. (37)

Now, we will show that limt→∞ V (Θ(t)) = 0 and that the
algorithm converges to Φ∗. First, we define an invariant set
with respect to algorithm A1-C to be the set of states such
that any trajectory with an initial point in this set indefinitely
remains in it. We also define S ,

{
Θ(t) : V̇ (Θ(t)) = 0

}
to be the set of states with the derivative of the Lyapunov
function V (Θ(t)) is 0, and I to be the largest invariant set
in S. Since V̇ (Θ(t)) ≤ 0 whenever Θ is outside of S , by
LaSalle’s principle [10] any trajectory {Θ(t), t ≥ 0} of the
algorithm asymptotically approaches to the set I.

It remains to show that the invariant set I consists of
the points which are stationary points of Algorithm 1 (c.f.
Definition 2). Formally, we want to show that

I =

{
Θ ∈ S :

(∑
n

xn(t),
∑
n

qn(t), p(t), s(t)

)
= Φ∗

}
(38)



Let Θ(0) ∈ I. Since V̇ (Θ(t)) = 0 in I, p(t) = p∗ and s(t) =
s∗ for t ≥ 0 due to (37). Hence, ṗ(t) = 0 and

∑
n xn(t) =

s∗ = X∗ for t ≥ 0 from (30). Observing (31), and noting∑
n ẋn(t) = 0 and ṗ(t) = 0, we have

∑
n q̇n(t) = 0. Thus,

it remains to show that
∑
n qn(t) = Q∗.

Let N1(t) , {n : ẋn(t) 6= 0} and N2(t) ,
{n : ẋn(t) = 0}. We assume that |N2(t)| > 0, and we
will show a contradiction in the following. First, we note
that xn(t) = 0 for n ∈ N2(t), and then plug it in (28) to
get
∑
N2(t)

q̇n(t) = α
∑
N2(t)

λn > 0. For sufficiently small
α we can assure, for n ∈ N2(t), that qn(t + δt) < p∗ and
xn(t+ δt) = 0, and consequently that n ∈ N2(t+ δt).

For n ∈ N1(t) consider two cases: (i) N1(t) = N1(t+δt),
and (ii) N1(t+ δt) ⊂ N1(t), i.e. some n ∈ N1(t) moves to
N2(t+ δt).

For case (i), summing (27) over all n we obtain∑
N1(t)

qn(t) =
∑
N1(t+δt)

qn(t + δt) = |N1(t)|p∗,
and hence

∑
N1(t)

q̇n(t) = 0, which is contradictory
because

∑
n q̇n(t) =

∑
N1(t)

q̇n(t) +
∑
N2(t)

q̇n(t) =
−α

∑
N2(t)

λn 6= 0.
For case (ii), let M , N1(t) \N1(t+ δt). Then we have∑

n

qn(t+ δt)−
∑
n

qn(t)

=
∑

N1(t+δt)

qn(t+ δt)−
∑
N1(t)

qn(t)

+
∑

N2(t+δt)

qn(t+ δt)−
∑
N2(t)

qn(t) (39)

= |N1(t+ δt)|p∗ − |N1(t)|p∗

+
∑
N2(t)

(qn(t+ δt)− qn(t)) +
∑
M

qn(t+ δt) (40)

= −|M|p∗ +
∑
N2(t)

(qn(t+ δt)− qn(t))

+
∑
M

(qn(t+ δt)− qn(t)) +
∑
M

qn(t) (41)

where we used
∑
N1(t+δt)

qn(t+δt) = |N1(t+δt)|p∗ > 0 to
obtain (40). Dividing by δt, and taking the limit as δt→ 0,
we get ∑

n

q̇n(t) =
∑
N2(t)

q̇n(t) +
∑
M

q̇n(t) (42)

0 =
∑

N1(t+δt)

q̇n(t) (43)

where (43) is obtained by subtracting
∑
n q̇n(t) from both

sides of (42).
From (27), qn(t) ≥ p∗ implies ẋn(t) ≥ 0. However,

if xn(t) > 0 we have n ∈ N1(t + δt); if xn(t) = 0
we have q̇n(t) > 0 and thus n ∈ N1(t + δt). Therefore
qn(t) < p∗ for n ∈M, and consequently

∑
N1(t)\M qn(t) =∑

N1(t+δt)
qn(t) > |N1(t) \ M|p∗ = |N1(t + δt)|p∗.

However,
∑
N1(t+δt)

qn(t + δt) = |N1(t + δt)|p∗ implying∑
N1(t+δt)

q̇n(t) < 0, which is in contradiction with (42).
As a result N2 = ∅, and |N1| = N . Therefore,∑
n qn(t) =

∑
N1
qn(t) = Np∗ = Q∗.

It can be deduced from Proposition 1 that the volatility
of price and total load converge to zero under the real-time
pricing algorithm. However, our algorithm does not converge
for each consumer’s load xn. The following corollary states
that each xn(t) exhibits a sinusoid-like behavior at its
stationary operating regime (X∗, Q∗, p∗, s∗).

Corollary 1. If the initial state of algorithm A1-C is
(~x(0), ~q(0), s(0), p(0)) = (~x, ~q, s∗, p∗) such that

∑
n xn =

X∗ and
∑
n qn = Q∗, then the trajectories of qn(t) and

xn(t) are characterized by

qn(t) = p∗ + (qn(0)− p∗) cos(
√
α/γt)

−√αγ(xn(0)− λn) sin(
√
α/γt) (44)

xn(t) = λn + (xn(0)− λn) cos(
√
α/γt)

+
1
√
αγ

(qn(0)− p∗) sin(
√
α/γt). (45)

In Figure 4, the sinusoid-like behavior described in Corol-
lary 1 is depicted. Although the load amount xn(t) of each
consumer depends on his own queue length qn(t), they
evolve asynchronously in time as seen in Figure 4 such that
the total load is constant.
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Fig. 4. Equilibrium behavior of Algorithm 1 with 2 consumers having
constant demand arrivals, γ = 1, α = 0.1, β = 0.01, C(x) = 1
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V. NUMERICAL RESULTS

In this section, we first demonstrate the convergence of the
real-time pricing algorithm, and its evolution in the stationary
regime under stochastic demand arrivals. Then, we compare
the cost, volatility, and ISO deficit (to be defined soon) of
the algorithm to those of Schemes 1 & 2.

The behavior of the system governed by Algorithm 1 under
Poisson distributed demand arrivals is depicted in Figure 5.
Observe that the price and the total load vary in time inside
a relatively small margin around the stationary values p∗ and
X∗, respectively. We note that the convergence of iterative
algorithms under stochastic dynamics usually requires de-
creasing step sizes. Nevertheless, individual consumer loads
xn(t) exhibit a sinusoid-like behavior in an asynchronous
manner so that the total does not change considerably.

In Figure 6, the price and total load volatility achieved by
Algorithm 1 and their effect on the supply cost are compared
to those of Schemes 1 & 2. As we already have seen in
Figure 2-3, the total load volatility is quite large for both
schemes, and only the price volatility is reduced in Scheme 2.
Along with these observations, Figure 6 reveals that both
price and total load volatility are significantly reduced by
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Algorithm 1 even under stochastic demand. The second plot
in Figure 6 demonstrates the effect of the total load volatility
on supply cost. For a convex cost function, volatility serves
as an indicator of the supply cost. We observe in Figure 6
that supply cost is reduced under Algorithm 1 together with
the total load volatility, whereas supply cost is high due to
high load volatility in Schemes 1 & 2.
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Next, we numerically investigate the ISO deficit, which
is defined as the difference between the payments from con-
sumers and the payments to suppliers. Remember that in both
Schemes 1-& 2 and Algorithm 1 the suppliers must always
follow the load generated by the consumers, even though
the current price does not maximize their profit. However, the
actual payments made by the ISO to the suppliers should also
coincide with suppliers’ interests. Therefore, we assume that
the ISO pays the suppliers the marginal cost of supplying
the realized demand. The resulting difference between the
payments from consumers and the actual payment made to
the suppliers is depicted in Figure 7.

We observe in Figure 7 that the payments to suppliers and
the payment from consumers are quite close to each other
under Algorithm 1, whereas in Schemes 1 & 2, they are far
from balancing each other due to high volatility of price and
total load. In the second plot in Figure 7, we plot the ISO
deficit for various values of the temporal penalty parameter
γ. Figure 7 suggests that γ can be adjusted so that the ISO
deficit can be reduced to zero. This observation raises the
interesting question whether iteratively updating γ can help
reduce the ISO deficit, which will be addressed in our future
work.
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VI. CONCLUSIONS

We have investigated the design of pricing mechanisms
for the stable and cost-effective service of opportunistic
consumers with deferrable demands in the electricity mar-
ket. Our initial investigations have revealed the signifi-
cant instability issues that arise from improper handling
of economically-driven consumers’ opportnistic behavior.
We have proposed a novel pricing basd on a proximal
optimization formulation that not only prices the absolute
consumption but also the change in the consumption of
users, which resolves the volatility and market clearance
issues of the benchmark strategies. Our proposed pricing
solution is: simple in that consumers need not predict ex-
post price corrections or other users’ behavior (which is
highly complex to estimate in a large heterogeneous demand
market); and fair in that all consumers are subject to the
same pricing levels at all times; and market clearing in that
by adjusting the change of load penalty level, the supply and
sonsumption payments can be balanced. The main insights
derived from this study is expected to be more generally
applicable to a wider class of demand flexibilities, and
suggests a promising means of harnessing the potential gains
of demand flexibilities without suffering from the detrimental
impact of opportunistic consumer behavior.
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