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Abstract— A major challenge in OFDMA cellular networks
is to efficiently allocate scarce channel resources and optimize
global system performance. Specifically, the allocation problem
across cells/base-stations is known to incur extremely high com-
putational/communication complexity. Recently, Gibbs sam-
pling has been used to solve the downlink inter-cell allocation
problem with distributed algorithms that incur low computa -
tional complexity in each iteration. In a typical Gibbs sampling
algorithm, in order to determine whether to transit to a new
state, one needs to know in advance the performance value
after the transition, even before such transition takes place.
For OFDMA networks with many channels, such computation
of future performance values leads to a challenging tradeoff
between convergence speed and overhead: the algorithm either
updates a very small number of channels at an iteration,
which leads to slow convergence, or incurs high computation
and communication overhead. In this paper, we propose a
new multi-channel Gibbs sampling algorithm that resolves this
tradeoff. The key idea is to utilize perturbation analysis so that
each base-station can accurately predict the future performance
values. As a result, the proposed algorithm can quickly update
many channels in every iteration without incurring excessive
computation and communication overhead. Simulation results
show that our algorithm converges quickly and achieves system
utility that is close to the existing Gibbs sampling algorithm.

I. I NTRODUCTION

In order to accommodate the exponential growth of data
traffic in mobile wireless networks [1], current and future
cellular systems will increasingly rely on high-density small-
cells (such as pico- and femto-cells) to significantly increase
the traffic-carrying capacity [2]. However, the proliferation of
small-cells leads to a challenging problem of how to manage
inter-cell interference. First, since the placement of small
cells often faces significant constraints, the resulting network
topology becomes highly irregular. Second, the traffic density
across cells can be highly non-uniform and may exhibit time-
varying patterns. As a result, traditional resource planning
strategies based onstatic and regular reuse patterns are
no longer adequate [3]. There is thus a pressing need to
develop adaptive and even distributed resource-allocation
mechanisms that can dynamically adapt to irregular topology
and non-uniform traffic patterns to best utilize the limited
spectrum resources.
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In this paper, we focus on the downlink of OFDMA
(Orthogonal Frequency-Division Multiple Access) systems
(as in 4G LTE [4]), and our goal is to design such an
adaptive and distributed algorithm for allocating frequency
and time resources across cells and users under irregular
topology and non-uniform load. Note that such a resource
allocation problem can be decomposed into two parts. Within
a cell, based on the set of frequency channels allocated to
the cell and to its neighboring cells, the base-station can
decide which user to serve over each channel at each time.
This intra-cell resource allocation problem can be cast as
a convex optimization problem, which can be easily solved
[5,6]. Then, across cells, theinter-cell resource allocation
problem decides which set of channels should be allocated to
each cell. Due to the inherent non-convex nature of wireless
interference, this inter-cell problem incurs extremely high
complexity, and existing studies mostly focus on solutions
without optimality or efficiency guarantees [7,8].

Recently, a class of randomized algorithms based on Gibbs
sampling has been used to solve the downlink inter-cell
resource allocation problem in OFDMA cellular networks
[8,9]. At a high level, in each iteration of a Gibbs-sampling
algorithm, a subset of base-stations distributively decide how
they will adjust their channel allocation. Each base-station
in the set will evaluate all possible adjustments of channel
allocation and learn how these adjustments will affect the
performance (which is often modeled as “utility” values
[8,9]) of itself and its neighboring cells. Then, the base-
station chooses one of the “proposed” adjustments with a
certain probability. This probability is carefully designed so
that the entire system follows a reversible Markov chain and
has high probability to move towards the globally-optimal
channel allocation. In theory, a Gibbs-sampling algorithm
can be used to develop distributed solutions to any non-
convex optimization problems with a suitable structure (al-
though the convergence time to the global optimal solution
may still be large [8,10]).

However, when applied to OFDMA cellular networks with
a large number of frequency channels, the above generic
version of Gibbs sampling leads to a difficult tradeoff be-
tween convergence speed and computation/communication
overhead. Note that the allocation decision of every channel
can potentially be adjusted to improve the global perfor-
mance. Thus, to expedite convergence, each base-station
should preferably evaluate a large set of “proposed” adjust-
ments across multiple channels. However, each “proposed”
adjustment affects its own cell and the neighboring cells in
different ways. Hence, it will then incur significant compu-



tation/communication overhead if each base-station has to
calculate the potential increase/decrease of the utility values
at the affected cellsfor every possible adjustment.

In this paper, we propose a fast multi-channel Gibbs sam-
pling algorithm that addresses this difficulty. In our proposed
algorithm, each base-station can evaluate the “proposed”
adjustments covering multiple channels without incurring
excessive computation and communication overhead. If we
view the utility value under each adjustment as the solu-
tion to an optimization problem, then the key idea behind
our proposed algorithm is to view each adjustment as a
perturbation to acommon optimization problem. We can
then quickly and accurately estimate the perturbed utility
values for each base-station without actually solving addi-
tional optimization problems. We derive conditions under
which the transition probabilities of the resulting Markov
chain approach those of the original Markov chain under
standard Gibbs sampling. Our simulation results confirm that
the proposed algorithm achieves both fast convergence and
low computation/communication overhead. Further, it can
dynamically adjust the global channel allocations to adapt
to different network conditions and load patterns.

There have been a number of recent studies that use Gibbs
sampling to design distributed algorithms for the complex
optimization problems in wireless networks [8,9,11]–[16].
Under a graph-based interference model, Gibbs sampling
has been used to study link scheduling [12]–[14], channel
selection and user association [11]. However, the interference
model used in these studies does not account for SINR and
is impractical for cellular systems. With a more accurate
SINR-based interference model, recent studies use Gibbs
sampling to study scheduling and power control [15,17,18],
joint power control and user association [16], channel allo-
cation [9], and joint power-control/user-association/channel-
allocation [8]. Our work differs from these studies by uti-
lizing a new method to estimate the perturbed utility values
across multiple channels and hence can achieve fast conver-
gence with low computation/communication overhead. Our
work is also closely related to [7]. However, the latter usesa
greedy approach for inter-cell channel allocation and power
control, and thus the resulting solution does not possess
global optimality. Finally, for a comprehensive review of
other existing algorithms for resource allocation problemin
wireless networks and their relationship to Gibbs sampling,
we refer the readers to [8].

The rest of the paper is organized as follows. The system
model is presented in Section II. In Section III, we provide an
overview of the Gibbs sampling and explain the difficulty in
existing Gibbs-sampling algorithms. We propose and analyze
the fast Gibbs sampling algorithm in Section IV and present
the simulation results in Section V. Then, we conclude.

II. SYSTEM MODEL

Consider a cellular system using OFDMA (as in LTE
[4]). There areJ base-stations sharingK channels. Each
channel has a bandwidthWc = WT /K, whereWT is the
total available bandwidth in the system. Assume that time

is slotted1. Let Pj be the maximum power that a base-
station j can apply over all channels. We do not consider
power control in this paper. Hence, we assume that the power
that a base-stationj can apply on a channel isPj/K. We
assume that each mobile user is associated with a unique
base-station. For each base-stationj, let Sj be the set of
|Sj | users associated with it. Correspondingly, for a useri,
let A(i) be the base-station that useri is associated with, i.e.,
i ∈ SA(i). LetGij be the channel gain from base-stationj to
useri, which captures channel attenuation due to path loss
and slowly-varying shadow fading.

In this paper, we will focus on the resource allocation
problem for downlink transmission. This problem can be
viewed in two parts: the intra-cell control problem and
the inter-cell control problem. The intra-cell control deter-
mines user scheduling within a base-station, while the inter-
cell control determines the channel allocation across base-
stations. Since inter-cell control incurs a higher overhead,
our goal is to find one fixed inter-cell channel-allocation
pattern based on a given system setting. Then, based on the
fixed channel allocation, each base-station can schedule dif-
ferent users across channels and time-slots. In practice, this
decomposition means that the inter-cell channel allocation is
updated at a slower time-scale than intra-cell user scheduling.
Specifically, define the indicator variableIjk = 1 if base-
station j uses channelk, and Ijk = 0, otherwise. Let~I =
[Ijk] represent the global channel-allocation vector across
all base-stations and all channels. For a useri associated
with base-stationA(i), the raterik that useri will receive
on channelk (assumingIA(i),k = 1) is a function of the
signal-to-interference-plus-noise ratio (SINR). Without loss
of generality, we use the Shannon formula [19], i.e.,

r′ik = Wc log2(1 +
PA(i)IA(i),kGi,A(i)/K

WTN0/K+
∑

j 6=A(i) PjIjkGij/K
)

= Wc log2(1 +
PA(i)IA(i),kGi,A(i)

WTN0+
∑

j 6=A(i) PjIjkGij
),

(1)

whereN0 is the thermal noise density. Note that Equation
(1) accounts for the interference from all base-stations. In
reality, the interference between two distant base-stations
will be small. Hence, in practice it is reasonable to ap-
proximate (1) by only considering the interference from
neighboring base-stations. Specifically, letNj denote the set
of neighboring base-stations2 for base-stationj. Let ηmax

i,A(i) =
∑

{z 6=A(i),z /∈NA(i)}
PzGiz . We can then approximate (1) by

rik = Wc log2(1 +
PA(i)IA(i),kGi,A(i)

WTN0+ηmax
i,A(i)

+
∑

{j∈NA(i)}
PjIjkGij

).

(2)
Note thatrik ≤ r′ik. Further, sinceηmax

ij is independent of~I,
the value ofrik only depends on the channel allocation of
the neighboring base-stations ofA(i). Later, we will see that
this property is critical for developing a distributed algorithm.
Hence, in the rest of the paper, we will use (2) to model the

1In LTE, each channel in a time slot represents a resource block that can
be assigned by each base-station to one associated user. [4]

2For example,Nj could be the base-stations within a certain distance
from j. However, our result does not depend on a specific definition of Nj .



rate of each user. Further, we assume that the neighboring
relationship is symmetric, i.e., ifh ∈ Nj , thenj ∈ Nh.

For intra-cell control, we assume that at any given time-
slot and for a given channel, the base-station can only serve
one associated user. However, a base-station can use the same
channel to serve different users across time slots, i.e, time-
division multiplexing3. Let φik be the fraction of time that
base-stationA(i) serves useri on channelk. Note that we
must have

∑

i∈Sj
φik ≤ 1 for each base-stationj and each

channelk. The average rateRi received by useri is given by
Ri =

∑K
k=1 φikrik. We associate a utility functionUi(Ri)

for useri, which captures the satisfaction level of useri when
its service rate isRi. Recall from (2) that the raterik of each
useri is determined by the channel-allocation vector~I. With
a fixed vector~I, the intra-cell control for base-stationj can
then be modeled as the following optimization problem:

max
[φik]≥0

∑

i∈Sj

Ui(Ri),

subject to Ri =
∑K

k=1 φikrik, and
∑

i∈Sj
φik = 1.

(3)
Problem (3) is a convex optimization problem and can be
solved by standard technique [5]. LetVj(~I) denote the opti-
mal objective value of problem (3) for base-stationj. Then,
the inter-cell channel-allocation problem can be written as:

max
~I=[Ijk]∈I

J
∑

j=1

Vj(~I), (4)

whereI is the set of all channel-allocation vectors.
Unfortunately, Problem (4) is a combinatorial problem that

is in general very difficult [8]. In particular, since the number
of all channel-allocation vectors (2JK) grows exponentially
with the number of base-stations and the number of channels,
even a centralized solution will incur extremely high com-
plexity4. In the next section, we will introduce distributed
and low-complexity algorithms based on Gibbs sampling.

III. G IBBS SAMPLING

In this section, we provide an overview of distributed
algorithms based on Gibbs sampling, which can be used to
solving Problem (4). We then review several types of existing
Gibbs-sampling algorithms and explain their performance
tradeoffs in terms of the convergence speed and the com-
putation/communication overhead. This discussion motivates
the new algorithm that we will propose in Section IV.

A. Overview of Gibbs Sampling

Suppose that the channel-allocation vector~I is updated
in an iterative manner, and let~It be the vector at thet-th
iteration. In Gibbs sampling (and many other randomized
algorithms), one forms a Markov chain with~It as the state

3This is standard in LTE system.
4In a LTE system with20MHz of total bandwidth, the number of channels

is around100. If we consider a19 cells (two rings) layout, the number of
channel-allocation vectors is21900 !

such that the stationary distribution of the chain has the form
of the Gibbs distribution:

P (~It = ~I) , π(~I) =
1

ZT
e

1
T

∑J
j=1 Vj(~I), (5)

whereT is called the temperature of the Gibbs distribution
[20, Chapter 7], andZT is a normalization constant. Clearly,
whenT is small, the channel-allocation vector(s)~I with the
optimal utility will be reached with probability close to1.
Hence, such a Markov chain can be used to iteratively find
the optimal~I.

To form such a Markov chain, Gibbs sampling sets the
transition probabilities in a particular way [20, Chapter 7,
Section 6.1]. We start with a few notations. LetA =
{(j, k)|1 ≤ j ≤ J, 1 ≤ k ≤ K} denote the set of all base-
station/channel pairs, and letH ⊂ A be a subset for which
the network considers to update the channel allocation in a
given iteration. Recall that~I is a vector of indicator variables,
each of which corresponds to an element inA. We further
use ~I(H) and ~I(A\H) to denote those components of~I
that correspond to elements inH and A\H , respectively.
Similar to the vector~I, let ~x and~y be the indicator vectors
before and after a given iteration, respectively. Since only
those components corresponding toH will be changed, we
must have~x(A\H) = ~y(A\H). Further, for any~x and ~y,
we use(~y(H), ~x(A\H)) to denote another indicator vector
whose components corresponding toH andA\H are taken
from ~y and~x, respectively.

At each iterationt, a setH is chosen with probabilitypH ,
and only the elements inH will be updated. The requirement
on the probability distribution[pH , H ⊂ A] is that:

Every base-station/channel pair(j, k) must belong to
at least oneH ⊂ A such thatpH > 0.

(6)
Hence, every(j, k) has a non-zero probability of being
chosen for update. LetI(H) be the set of all possible values
of ~I(H). Based on the channel-allocation vector~It = ~x,
Gibbs sampling uses the following transition probability:

P (~It+1 = ~y|~It = ~x)
=

∑

{H:~y(A\H)=~x(A\H)} pH π(~y(H)|~x(A\H)),
(7)

where

π(~y(H)|~x(A\H)) =
e

1
T

∑J
j=1 Vj(~y(H),~x(A\H))

∑

{~z∈I(H)} e
1
T

∑

J
j=1 Vj(~z,~x(A\H))

.

(8)
In other words, if H is chosen, then update~x(H) to
~y(H) with probability given by (8). Note that (8) is simply
the conditional probability for~I(H) = ~y(H), given that
~I(A\H) = ~x(A\H), when ~I follows the distribution in
(5)5. It can be easily verified that the resulting Markov
chain is aperiodic and irreducible. Further, it is reversible
(satisfying the detailed balanced equations), and its stationary
distribution is exactly (5).

5Note that the normalization constantZT does not appear in (8). This
is very useful because calculatingZT would have incurred exponential
complexity.



However, in general the transition probability in (7) de-
pends on the update at all base-stations. Hence, this proce-
dure requires centralized implementation. In order to derive
a distributed algorithm, we exploit the fact that the value of
Vj(~I) only depends on the channel allocation at base-station
j and the base-stations inNj (see (2)). In other words, let
Aj = {(h, k)|h = j or h ∈ Nj , k = 1, ...,K}. Then, we
can writeVj(~I) = Vj(~I(Aj)). We then use the following
distributed procedure. At each iteration, first choose a setof
base-stationsD6 without common neighbors, i.e.,

For anyj, j′ ∈ D, Nj ∩Nj′ = ∅. (9)

Then, each base-stationj ∈ D chooses a subset of channels
Hj ⊂ {(j, k)|k = 1, ...,K} to update. Forj /∈ D, we let
Hj = ∅. Let H =

⋃J
j=1 Hj . Note that by this procedure,

the value ofVj(·) in (8) can only change either because
base-stationj itself updates its own channelsHj (if j ∈ D)
or because at mostone neighboring base-stationh ∈ Nj

updates its channels (ifj ∈ Nh andh ∈ D). We can then
show that the expression (8) can be decoupled as follows:

π(~y(H)|~x(A\H)) =
∏

j∈D

π(~y(Hj)|~x(A\Hj)), (10)

whereπ(~y(Hj)|~x(A\Hj)) is equal to

e
1
T

[

Vj(~y(Hj),~x(Aj\Hj))+
∑

{h∈Nj}
Vh(~y(Hj),~x(Ah\Hj))

]

∑

{~zj∈I(Hj)}
e

1
T

[

Vj(~zj ,~x(Aj\Hj))+
∑

{h∈Nj}
Vh(~zj ,~x(Ah\Hj))

] .

(11)
(Details are available in our online technical report [21].)
Note that for a base-stationj ∈ D, expression (11) does not
depend on the updates at other base-stations inD. Hence,
each base-stationj can do the update independently, i.e.,
base-stationj uses the transition probability (11) to decide
which new channel-allocation decision~y(Hj) it will pick.

Finally, if each base-stationj only updates one channel,
i.e., Hj = {(j, k)} for somek ∈ 1, ...,K, then ~zj only
contains one elementzjk that can take either 0 or 1. Hence,
the expression (11) can be further simplified to:

π(~y(Hj)|~x(A\Hj)) =
exp(yjk∆jk)

1 + exp(∆jk)
, (12)

and the value of∆jk is given by

∆jk = 1
T [Vj(1, ~x(Aj\Hj))− Vj(0, ~x(Aj\Hj))]

+ 1
T

∑

{h∈Nj}
[Vh(1, ~x(Ah\Hj))− Vh(0, ~x(Ah\Hj))] ,

where the first argument ofVj(·, ·) andVh(·, ·) corresponds
to the elementHj = {(j, k)}.

B. Existing Multi-Channel Gibbs Sampling Algorithms

The approach described in Section III-A immediately leads
to distributed implementation. However, when the number of
channels to be updated is large, this procedure can still lead
to high computation/communication overhead. To see this,
let I(Hj) denote the set of possible values of~I(Hj) that
base-stationj may transit to. Then, in order to compute the

6This setD is similar to the “decision schedule” in [13,14].

transition probability in (11), each base-stationh ∈ {j
⋃

Nj}
needs to compute the value ofVh(~zj , ~x(Ah\Hj) for every
possible value of~zj ∈ I(Hj). Further, if h ∈ Nj , the
result also needs to be sent to base-stationj. Recall that
each computation ofVj(·) requires solving the optimization
problem (3). Hence, depending on the different implemen-
tation options outlined below, there will be a challenging
tradeoff between computation/communication overhead and
convergence speed.

Option 1 (Single-channel update): In each iteration, each
base-stationj ∈ D only updates one channel, i.e.,|Hj | = 1.
Hence, |I(Hj)| = 2, and the computation/communication
overhead is the lowest. However, ifK is large, updating one
channel at a time may lead to slow convergence, as can be
observed from our simulation results in Section V and in [8].

Option 2 (Multi-channel update): In each iteration, each
base-stationj ∈ D can update multiple channels, i.e.,|Hj | >
1. The convergence speed will become faster as we increase
|Hj |. However, |I(Hj)| = 2|Hj |. Hence, the computation
overhead increases exponentially with|Hj |.

Option 3 (Sequential update): This option can be concep-
tually viewed as a hybrid between Option 1 and Option 2.
In each iteration, like Option 2, each base-stationj ∈ D
can update multiple channels, i.e.,|Hj | > 1. However, base-
station j updates these channels sequentially. Specifically,
base-stationj chooses uniformly at random a permutation
(v1, v2, · · · , v|Hj |) of the elements inHj , i.e., each permu-
tation is chosen with probability1/|Hj|!. Then, the iteration
is divided into|Hj | rounds, and only channelvl is updated
in each roundl = 1, ..., |Hj| as in Option 1. It can be shown
that the resulting Markov chain still has the same stationary
distribution as (5) [14]. Note that the computation overhead
now increases linearly with|Hj |. However, after each round,
the updated channel allocation must be communicated to
the neighboring base-stations so that future computation
of Problem (3) can use the most-recently updated channel
allocation. As a result, more rounds lead to more control
messages exchanged between base-stations and slower speed.

In sum, whenK is large, all options either suffer slow
convergence or high computation/communication overhead.

IV. FAST GIBBS SAMPLING ALGORITHMS

In this section, we propose a fast Gibbs sampling algo-
rithm with only one round of communication, low compu-
tation overhead, andmulti-channel update in each iteration.
We first sketch the basic skeleton of this algorithm below.

Fast Multi-Channel Gibbs Sampling: In each iteration,

1) Each base-stationj = 1, ..., J solves Problem (3)
based on the existing channel-allocation decisions.

2) Randomly choose a subsetD of base-stations and a
subsetHj of channels for each base-stationsj ∈ D
such that the conditions in (6) and (9) are satisfied.

3) Base-stationj chooses uniformly at random a permu-
tation (v1, ..., v|Hj |) of theHj channels.

4) The iteration is divided into|Hj | rounds. In thel-th
round, the base-stationj updates channelvl using the



transition probability in (19) and (20) shown later.

The above procedure is similar to Option 3. However, the
key difference is in Step 4, where we will propose a new
method in (19) and (20) to compute the transition probability
with low overhead. We explain the thought process as fol-
lows. Let~x and~y again denote the channel-allocation vectors
before and after an iteration, respectively. At thel-th round,
we can use~zl = (~y(

⋃l−1
n=1 vn), ~x(A\

⋃l−1
n=1 vn)) to express

the channel allocation to update from7. Recall that in Option
3 (and similarly in Option 1), the transition probability at
roundl is given by (12), which is rewritten below after taking
into account the changes in previous rounds:

π(~y(Hj,vl)|~z
l(A\Hj,vl)) =

exp(yj,vl∆j,vl)

1 + exp(∆j,vl)
, (13)

whereHj,vl = {(j, vl)}, and∆j,vl can be written as

∆j,vl =
1
T

[

Vj(1, ~z
l(Aj\Hj,vl))− Vj(0, ~z

l(Aj\Hj,vl))
]

+ 1
T

∑

{h∈Nj}

[

Vh(1, ~z
l(Ah\Hj,vl))− Vh(0, ~z

l(Ah\Hj,vl))
]

.

(14)
Note that the first argument inVj(·, ·) and Vh(·, ·) corre-
sponds to the channel allocation forvl.

Now, when the number of channels is large, and the size of
|Hj | is not too large, the channel-allocation vector~zl differs
from ~x by only a few elements. LetV 0

j andV 0
h be the optimal

objective values of Problem (3) for base-stationj and base-
stationh ∈ Nj . Then, we can expect thatVj andVh should
be close toV 0

j and V 0
h . The key idea is then to use the

solutions to Problem (3) forV 0
j andV 0

h to predict the value in
(14). In this way, we can approximate the transition probabil-
ity without incurring additional computation/communication
overhead in each round.

To illustrate the idea, we start with some basic properties
of the solutions to Problem (3). Let~R = [Ri] and~φ = [φik].
Associate dual variablesλi to the first equality constraint of
(3). LetΦ be the domain of~φ given in (3). The dual objective
function of Problem (3) is then [5]:

g(~λ) = max
~R,~φ∈Φ

∑

i∈Sj

Ui(Ri)−
∑

i∈Sj

λi(Ri −
K
∑

k=1

φikrik). (15)

Let us first focus on the change of utility at base-stationj.
Recall that the value of∆j,vl is determined by the utility
difference with or without a channelvl allocated to base-
station j. Suppose that Problem (3) is solved twice for a
base-stationj ∈ D, firstly with a channelvl assigned to
base-stationj and secondlywithout the channelvl assigned
to it. Let (~R∗, ~φ∗) and~λ∗ be a pair of optimal primal and
dual variables for Problem (3) when channelvl is assigned
to base-stationj, and letVj be the corresponding optimal
objective value. Similarly, let~R∗(wo), ~φ∗(wo), ~λ∗(wo), and
V

(wo)
j be the corresponding values for Problem (3) when

channelvl is not assigned to base-stationj. Note thatr(wo)
i,vl

=

7Of course, elements outsideAj and ∪h∈Nj
Ah may also change.

However, their changes do not affect the transition probability at base-station
j as can be seen in (13) and (14).

0 for all usersi. Since Problem (3) is convex, the KKT
condition [5] must hold, and we have:

λ∗
i = U ′

i(R
∗
i ), R∗

i =

K
∑

k=1

φ∗
ikrik. (16)

If user i is served at channelk, i.e.,φ∗
ik > 0, we also have:

λ∗
i rik = max

u∈Sj

λ∗
uruk. (17)

A similar set of equations will also hold for Problem (3)
without channelvl. Intuitively, this set of equations suggest
that if a channelvl is taken away from a base-stationj, it
will be taken away from useri (see (17)). For this user,
the corresponding utility decrease will be approximately
U ′
i(R

∗
i )ri,vl = λ∗

i ri,vl = maxu∈Sj
λ∗
uru,vl . Hence, it sug-

gests that the value ofmaxu∈Sj
λ∗
uru,vl would be a good

estimate of the utility difference betweenVj andV (wo)
j . The

following lemma makes this intuition more precise.
Lemma 1: Suppose that there exists a constantD such

that |λ∗(wo)
i − λ∗

i | ≤ D. Then,
1) Vj ≥ V

(wo)
j +max

i∈Sj

λ∗
i ri,vl .

2) Vj ≤ V
(wo)
j +max

i∈Sj

λ∗
i ri,vl +D

∑

i∈Sj

φ∗
i,vlri,vl .

Proof: Detailed proof can be found in [21]
When the number of channelsK is large, and only a
few channels|Hj | are updated in one iteration, we would
expect that the dual variables will not change much across
rounds, i.e., the value ofD will be small. Lemma 1 then
states thatmaxi∈Sj

λ∗
i ri,vl becomes a good estimate of the

utility difference when a channelvl is removed from base-
station j. Note that we can replaceλ∗

i by λ
∗(wo)
i and use

maxi∈Sj
λ
∗(wo)
i ri,vl to estimate the utility difference. The

latter will add another error termDmaxi∈Sj
ri,vl , which

again will be small ifD is small. Further, for any round
l, we can replaceλ∗

i or λ∗(wo)
i by the optimal dual variables

before round1. In that case, the error terms will accumulate
linearly in l. However, as long asl is bounded, the error
terms can still be bounded.

We have estimated the utility difference for a base-station
j ∈ D. For its neighboring base-stationh ∈ Nj , the situation
is slightly different because base-stationh does not change its
own channel allocation. Instead, the user ratesri,vl , i ∈ Sh,
change due to the change of channel allocation by base-
stationj. If the base-stationh does not use channelvl, then
this change will not affect its utility. If the base-stationh
does use channelvl, suppose that the user rates without and
with channelvl assigned to base-stationj are r1i,vl to r2i,vl ,
respectively, for alli ∈ Sh. We can then view the change
at base-stationh as the concatenation of two steps: base-
stationh first removes channelvl with user ratesr1i,vl and
then adds back channelvl with user ratesr2i,vl . In order to
differentiate the base-stations, we useλ∗

ij andλ∗
ih to denote

the optimal dual variables for Problem (3) at base-stationj
andh, respectively. By Lemma 1, we can then approximate
the total utility difference by

Vh ≈ V
(wo)
h −max

i∈Sh

λ∗
ihr

1
i,vl +max

i∈Sh

λ∗
ihr

2
i,vl , (18)



whereVh andV (wo)
h are the optimal utility for base-station

h when base-stationj uses or does not use channelvl,
respectively.

Taking all the above into account, the transition probability
at roundl at base-stationj can be approximated as:

π̃(~y(Hj,vl)|~z
l(A\Hj,vl)) =

exp(yj,vl∆̃j,vl)

1 + exp(∆̃j,vl)
, (19)

whereHj,vl = {(j, vl)} and∆̃j,vl can be written as

∆̃j,vl =
1
T max

i∈Sj

λ∗
ijri,vl

+ 1
T

∑

{h∈Nj}

[

−max
i∈Sh

λ∗
ihr

1
i,vl

+max
i∈Sh

λ∗
ihr

2
i,vl

]

Ih,vl .

(20)
where all the optimal dual variablesλ∗

ij andλ∗
ih can be taken

as those before round1. Our proposed fast multi-channel
Gibbs sampling algorithm then uses (19) and (20) in Step 4.

Remark: Despite the similarity between (13) and (19),
we emphasize that they lead to significantly different speed
and overhead. In (19) and (20), since the values of the
optimal dual variables before round 1, which are calculated
in Step 1 of the proposed algorithm, are used, base-station
j can use one control message to send information about
Hj to base-stationh and ask base-stationh to return the
corresponding values iñ∆j,vl for all channelsvl in Hj , again
using one message. Then, base-stationj can carry out the
|Hj | rounds of transitions without additional communica-
tion/computation involving neighboring base-stations. Thus,
the computation/communication overhead is significantly re-
duced, and the channel updates can be carried out with much
faster speed than Option 3 (using (13)).

A. Analysis

Next, we will analyze the performance. Ideally, we would
like to show that as the number of channelsK increases,
the stationary distribution of the Markov chain using the
approximate (19) and (20) will approach the stationary
distribution of the original Markov chain using (13) and
(14). However, since the stationary distribution of the original
Markov chain also changes withK, it appears to be difficult
to directly analyze the convergence in terms of the stationary
probability. Instead, in this subsection, we will focus on
showing how the approximate transition probability in (19)
approaches (13).

As we have discussed, it is sufficient to focus on one
base-stationj ∈ D and study the utility difference with
or without a single channelvl (see Lemma 1). Intuitively,
as the number of channelsK increases, the contribution of
any one channel, i.e., the termmaxi∈Sj

λ∗
i ri,vl in Lemma 1,

decreases asΘ(1/K). Hence, if we can show that the
error termD

∑

i φ
∗
i,vl

ri,vl in Lemma 1 decreases faster than
Θ(1/K), then by setting the temperatureT = α/K, the
effect of the error term will approach0 as K increases.
However, the boundD in general depends on the particular
channel-allocation patterns. In the sequel, we will study
conditions under whichD can be bounded uniformly over
all transitions. Due to space constraints, we will present the

results without proofs. The interested readers are referred to
our technical report in [21] for detailed proofs.

Again, we focus on the setting in Lemma 1, where
Problem (3) is solved twice, firstly with channelvl allocated
to base-stationj and secondly without. Our first lemma is:

Lemma 2: If the utility function is Ui(Ri) = log(Ri),

then |λ∗
i − λ

∗(wo)
i | ≤ D if and only if |R∗

i −R
∗(wo)
i |

R∗
i R

∗(wo)
i

≤ D.

Proof: The result can be easily shown by (16).
This lemma shows that to bound the difference inλ∗

i and
λ
∗(wo)
i , we can instead focus on the difference inR∗

i and
R

∗(wo)
i . Hence, in the following, we will letUi(Ri) =

log(Ri) and focus on the difference betweenR∗
i andR∗(wo)

i .
Lemma 3: R∗

i ≥ R
∗(wo)
i , for all i ∈ Sj .

Lemma 3 is quite intuitive. It states that after an additional
channelvl is allocated to base-stationj, the optimal rate for
all associated users of base-stationj cannot decrease. Next,
we would like to bound the increaseR∗

i −R
∗(wo)
i . Here, we

need a condition on the heterogeneity of the user rates. Let

rmax = WT max
i∈Sj

log2(1 +
PjGij

WTN0 + ηmax
ij

) (21)

and

rmin = WT min
i∈Sj

log2(1+
PjGij

WTN0 + ηmax
ij +

∑

h∈Nj
PhGih

).

(22)
Then, from (2), we havemax{i∈Sj ,k} rik ≤ rmax/K and
min{i∈Sj ,k} rik ≥ rmin/K. Let B = rmax/rmin.

Lemma 4: R∗
i ≤ R

∗(wo)
i +Brmax/K for all i ∈ Sj .

Lemma 4 implies that the increase(R∗
i − R

∗(wo)
i ) must be

bounded byBrmax/K, which decreases asΘ(1/K). The
bound can also be shown to be tight in the order sense. The
interested readers can refer to [21] for details. Combining
Lemmas 3 and 4, we then have

|R∗
i − R

∗(wo)
i |

R∗
iR

∗(wo)
i

≤
Brmax

Kmin
i∈Sj

R∗
i min
i∈Sj

R
∗(wo)
i

. (23)

It remains to bound the denominator.
Lemma 5: Let c be a fixed constant in(0, 1). Suppose that

at least a fractionc of the K channels is allocated to each
base-station. Then,min[min

i∈Sj

R∗
i ,min

i∈Sj

R
∗(wo)
i ] ≥ crmin/|Sj|.

Note that by Lemma 5 we can conclude that the right-
hand-side of (23) does decrease asΘ(1/K). Combining with
Lemmas 1 and 2, we then obtain the following main result.
Let Ĩ denote the set of all possible~I such that the condition
in Lemma 5 holds.

Proposition 6: Suppose thatUi(Ri) = log(Ri), T =
α/K, and at least a fractionc of theK channels is allocated
to each base-station. Further, suppose that|Sj | and |Hj | are
upper-bounded by some constants. Then, we have

lim
K→∞

sup
~x,~y∈Ĩ

|∆j,vl − ∆̃j,vl | = 0. (24)

Proposition 6 confirms that whenK is large, and each update
involves a relatively small number|Hj | of channels, then the



transition probability of the proposed fast Gibbs sampling
will approach that of the original Gibbs sampling.

Remark: Note that the condition in Lemma 5 suggests the
following modification to the proposed algorithm. Suppose
that the channel-allocation vector~x before an iteration satis-
fies~x ∈ Ĩ. Then, we only need to ensure that the vector~y that
the algorithm transits to is still iñI. Each base-stationj can
ensure this property distributively by setting the transition
probability (19) to zero if the state after roundl is not in Ĩ.

Remark: Our analysis may be conservative since we focus
on the worst-case scenario. However, it gives us some confi-
dence that the proposed fast Gibbs sampling algorithm will
likely follow the trajectory of the original Gibbs sampling.
In fact, our simulation results in Section V show that such
convergence occurs even for a moderate number of channels.
A detailed discussion is provided in [21].

Finally, in our simulations, we found that the standard
gradient algorithms [5] are still quite slow for solving Prob-
lem (3) in each iteration. To resolve this problem, we develop
a second-order algorithm [5, Chapter 10] [22] to expedite the
convergence. For details, please refer to [21].

V. SIMULATION

In this section, we use simulation to evaluate the fast
Gibbs sampling algorithms proposed in Section IV. We first
simulate a LTE network with19 same-sized hexagon cells
arranged in a three-ring structure. (There are a center cell, an
inner ring of 6 cells, and an outer ring of 12 cells.) Each base-
station is at the center of a cell, and the inter-site distance
(ISD) is 500m. A total bandwidth of20Mhz is divided into
50 channels. The power of each base-station is47dbm and
is equally shared over the50 channel. Each cell has10
users randomly placed inside its coverage area. The utility
function of each user islog(·/106). The channel gainsGij

are modeled by a path-loss component with exponentn =
2.2 and log-normal shadow fading with standard deviation
σ = 8dm. The neighboring setNj for each base-stationj
consists of any base-stations within500m range.

We first compare the convergence of the proposed fast
Gibbs-sampling algorithm with the “sequential-update” ver-
sion of standard Gibbs sampling, i.e., Option3 in Section III-
B.8 For all versions of Gibbs sampling, the temperatureT
of the Gibbs distribution is0.002. We also compare with the
Metropolis-Hastings algorithm [8]. The Metropolis-Hastings
algorithm is similar to Gibbs sampling, but it chooses
the transition probability differently. Specifically, after each
base-station chooses a subset of channelsHj to update, the
Metropolis-Hastings algorithm randomly chooses a feasible
“proposed” state~y(Hj) and comparesπ(~y(Hj), ~x(A\Hj))
with π(~x) according to (5), where~x is the original state. If
the former is larger, the base-station accepts state~y(Hj) with
probability one. Otherwise, the base-station accepts state
~y(Hj) with probabilityπ(~y(Hj), ~x(A\Hj))/π(~x).

8We do not report the “multi-channel update” version, i.e., Option 2,
due to the exponential computation/communication overhead. However, the
convergence speed of Option 2 should be comparable to Option3.

The simulation result is shown in Fig. 1(a), where we plot
the total system utility as a function of the iterations. As
readers can see, for all versions of Gibbs sampling algo-
rithms, updating fewer channels in each iteration leads to a
slower convergence speed. Further, although the Metropolis-
Hastings algorithm can update a larger number of channels
with low computation overhead, the proposed change in each
iteration may not always lead to larger utility. Thus, its
convergence speed is still slow. In contrast, the proposed fast
Gibbs-sampling algorithm enjoys much faster convergence
when updating multiple channels at a time. By comparing
the curves “sequential-5” and “fast-5”, we can observe that
the utility evolution of the “fast” algorithm is close to that of
the “sequential update” version. Finally, the “fast-15” curve
converges even more quickly than other curves. These results
confirm that our proposed algorithm is sufficiently accurate
for finding the optimal channel-allocation. Further, it leads
to fast convergence and low overhead.

Next, we simulate a setting with non-uniform load and
evaluate whether the proposed algorithm can adapt to load
patterns. Specifically, we compare fast Gibbs-sampling algo-
rithm with (1) universal1-reuse, where each base-station uses
all the channels, and (2) strict FFR (Fractional Frequency
Reuse), where1/4 of the channels are shared by all base-
stations, and the rest3/4 of the channels are allocated
according to a3-reuse pattern [3]. Note that according to the
3-reuse pattern, we can divide the cells into three groups. We
then let the cells in group1, 2, and3 have20 users,10 users,
and1 user, respectively. For all schemes, once the inter-cell
channel allocation is determined, each cell solves Problem
(3) for intra-cell user scheduling. The CDF of the resulting
user rates under different schemes are shown in Fig. 1(b).
As we can see, the user rates under universal1-reuse are
much poorer due to the strong inter-cell interference. Strict
FFR performs better. However, since it does not react to the
non-uniform load, its performance is still significantly worse
than our proposed algorithm. A deeper analysis of the results
reveals that under our algorithm, roughly27 channels,20
channels, and3 channels are allocated to the base-stations
in group1, 2, and3, respectively. As a result, the achieved
user-rates are consistently better.

We next simulate our algorithm for a heterogenous net-
work with both macro- and pico-cells (see Fig. 1(d)). Specif-
ically, there are three macro-cells with the ISD of500m. On
the boundary of every two macro-cells, there is a pico-cell.
Further, one additional pico-cell is placed in the interiorof
the coverage area of each macro-cell and is placed away from
the boundary pico-cells. The power and coverage radius of
each pico base-station is27dbm and75m, respectively. Each
macro- or pico-cell has10 users randomly placed in the cell.
The neighboring setNj for each macro and pico base-station
consists of those base-stations that are immediate neighbors
(refer to [21] for details).

We compare fast Gibbs-sampling with (1) universal1-
reuse, where each base-station uses all the channels, and
(2) strict FFR, where macro base-stations use strict FFR
described earlier [3], while pico base-stations use1-reuse.



(a) (b) (c) (d)

Fig. 1. (a): The utility evolution of different Gibbs-sampling algorithms. “Sequential” represents Option 3 (sequential update). “Fast” represents fast
Gibbs-sampling. “Metro” represents the Metropolis-Hastings algorithm. The number behind the description of the algorithm is the number of channels
updated by the chosen base-station in each iteration. (b): The cumulative distribution function (CDF) of the user ratesunder non-uniform load. (c): The
cumulative distribution function (CDF) of the user rates under heterogeneous topology. (d): The topology of a heterogeneous network with three macro-cells
and six pico-cells.

The simulation result is shown in Fig. 1(c), where our
proposed algorithm demonstrates even more significant per-
formance gains. As we can see, the user rates under universal
1-reuse is again very poor due to the strong inter-cell
interference. The performance of pico-cells under strict FFR
is also poor because pico-cells still receive strong inter-
cell interference. In contrast, with our fast Gibbs-sampling
algorithm, the channel allocation is automatically adjusted
to manage interference, and thus the user rates are improved
significantly. Specifically, the upper-right-hand side of the
CDF represents interior pico-cells whose user rates are nearly
doubled. The lower-left-hand side of the CDF represents the
macro-cells and boundary pico-cells whose user rates are
also significantly improved. We select the macro-cell#1,
the pico-cell#4, and the pico-cell#7 in Fig. 1(d) and
observe the number of channels allocated to each of them to
be 7, 12 and43, respectively. Moreover, only two channels
allocated to the boundary pico-cell#4 are shared by the two
neighboring pico-cells or the three neighboring macro-cells.
Such an adaptive channel allocation not only improves the
overall system utility, but also helps to improve the CDF of
the user rates consistently across all users.

VI. CONCLUSION

In this paper, we propose a fast multi-channel Gibbs
sampling algorithm for frequency resource allocation in the
OFDMA cellular networks. The key idea of our proposed al-
gorithm is to view the update of one channel allocation deci-
sion as a perturbation to the optimization problem. Hence, we
can utilize the perturbation analysis to let each base-station
quickly and accurately update many channels without exces-
sive computation/communication overhead. Our simulation
results show that fast Gibbs sampling algorithm can adapt to
non-uniform load pattern and irregular cell deployment. In
the future, we will refine our analysis bound and extend this
novel idea to power control and user association problems.
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