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Abstract— A major challenge in OFDMA cellular networks
is to efficiently allocate scarce channel resources and optize
global system performance. Specifically, the allocation mblem
across cells/base-stations is known to incur extremely higcom-
putational/communication complexity. Recently, Gibbs sm-
pling has been used to solve the downlink inter-cell allocain
problem with distributed algorithms that incur low computa -
tional complexity in each iteration. In a typical Gibbs samgding
algorithm, in order to determine whether to transit to a new

state, one needs to know in advance the performance value

after the transition, even before such transition takes plae.
For OFDMA networks with many channels, such computation
of future performance values leads to a challenging tradedf
between convergence speed and overhead: the algorithm edth
updates a very small number of channels at an iteration,
which leads to slow convergence, or incurs high computation
and communication overhead. In this paper, we propose a
new multi-channel Gibbs sampling algorithm that resolves his
tradeoff. The key idea is to utilize perturbation analysis ® that
each base-station can accurately predict the future perfanance
values. As a result, the proposed algorithm can quickly updee
many channels in every iteration without incurring excessie
computation and communication overhead. Simulation resus
show that our algorithm converges quickly and achieves systm
utility that is close to the existing Gibbs sampling algoritm.

I. INTRODUCTION

In this paper, we focus on the downlink of OFDMA
(Orthogonal Frequency-Division Multiple Access) systems
(as in 4G LTE [4]), and our goal is to design such an
adaptive and distributed algorithm for allocating fregoyen
and time resources across cells and users under irregular
topology and non-uniform load. Note that such a resource
allocation problem can be decomposed into two parts. Within
a cell, based on the set of frequency channels allocated to
the cell and to its neighboring cells, the base-station can
decide which user to serve over each channel at each time.
This intra-cell resource allocation problem can be cast as
a convex optimization problem, which can be easily solved
[5,6]. Then, across cells, thimter-cell resource allocation
problem decides which set of channels should be allocated to
each cell. Due to the inherent non-convex nature of wireless
interference, this inter-cell problem incurs extremelghhi
complexity, and existing studies mostly focus on solutions
without optimality or efficiency guarantees [7,8].

Recently, a class of randomized algorithms based on Gibbs
sampling has been used to solve the downlink inter-cell
resource allocation problem in OFDMA cellular networks
[8,9]. At a high level, in each iteration of a Gibbs-sampling
algorithm, a subset of base-stations distributively de&idw
they will adjust their channel allocation. Each base-stati

In order to accommodate the exponential growth of dat@ the set will evaluate all possible adjustments of channel
traffic in mobile wireless networks [1], current and futureyjipcation and learn how these adjustments will affect the

cellular systems will increasingly rely on high-densityadn

performance (which is often modeled as “utility” values

cells (such as pico- and femto-cells) to significantly irs® [ 9]y of itself and its neighboring cells. Then, the base-
the traffic-carrying capacity [2]. However, the proliféatof  station chooses one of the “proposed” adjustments with a
small-cells leads to a challenging problem of how to managgtain probability. This probability is carefully desig so
inter-cell interference. First, since the placement of Ismaynat the entire system follows a reversible Markov chain and
cells often faces S|gr_1|f|car_1t constraints, the resultlriqum has high probability to move towards the globally-optimal
topology becomes highly irregular. Second, the traffic @gns channel allocation. In theory, a Gibbs-sampling algorithm
across cells can be highly non-uniform and may exhibit iméan be used to develop distributed solutions to any non-
varying patterns. As a result, traditional resource plagni conyex optimization problems with a suitable structure (al
strategies based ostatic and regular reuse patterns are though the convergence time to the global optimal solution
no longer adequate [3]. There is thus a pressing need ﬁ?ay still be large [8,10]).
develop adaptive and even distributed resource-allatatio Hgwever, when applied to OFDMA cellular networks with
mechanisms that can dynamically adapt to irregular topolog, large number of frequency channels, the above generic
and non-uniform traffic patterns to best utilize the limited,ersion of Gibbs sampling leads to a difficult tradeoff be-
spectrum resources. tween convergence speed and computation/communication
overhead. Note that the allocation decision of every chlanne
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tation/communication overhead if each base-station has i® slotted. Let P; be the maximum power that a base-
calculate the potential increase/decrease of the utiityes stationj can apply over all channels. We do not consider
at the affected celléor every possible adjustment. power control in this paper. Hence, we assume that the power
In this paper, we propose a fast multi-channel Gibbs sarthat a base-statiop can apply on a channel iB; /K. We
pling algorithm that addresses this difficulty. In our prepd assume that each mobile user is associated with a unique
algorithm, each base-station can evaluate the “proposebése-station. For each base-statjgrlet S; be the set of
adjustments covering multiple channels without incurringS;| users associated with it. Correspondingly, for a user
excessive computation and communication overhead. If wet A(i) be the base-station that uses associated with, i.e.,
view the utility value under each adjustment as the solu-€ S4(;). LetG; be the channel gain from base-statjoto
tion to an optimization problem, then the key idea behindseri, which captures channel attenuation due to path loss
our proposed algorithm is to view each adjustment as and slowly-varying shadow fading.
perturbation to acommon optimization problem. We can In this paper, we will focus on the resource allocation
then quickly and accurately estimate the perturbed utilitproblem for downlink transmission. This problem can be
values for each base-station without actually solving addviewed in two parts: the intra-cell control problem and
tional optimization problems. We derive conditions undethe inter-cell control problem. The intra-cell control elet
which the transition probabilities of the resulting Markovmines user scheduling within a base-station, while the-inte
chain approach those of the original Markov chain undesell control determines the channel allocation across-base
standard Gibbs sampling. Our simulation results confirrh thatations. Since inter-cell control incurs a higher ovethea
the proposed algorithm achieves both fast convergence aodr goal is to find one fixed inter-cell channel-allocation
low computation/communication overhead. Further, it capattern based on a given system setting. Then, based on the
dynamically adjust the global channel allocations to adapixed channel allocation, each base-station can schediile di
to different network conditions and load patterns. ferent users across channels and time-slots. In prackice, t
There have been a number of recent studies that use Gilllscomposition means that the inter-cell channel allonatio
sampling to design distributed algorithms for the complexipdated at a slower time-scale than intra-cell user schregul
optimization problems in wireless networks [8,9,11]-[16]Specifically, define the indicator variablg, = 1 if base-
Under a graph-based interference model, Gibbs samplisgation;j uses channet, andI;, = 0, otherwise. Letl =
has been used to study link scheduling [12]-[14], channél;,] represent the global channel-allocation vector across
selection and user association [11]. However, the interfeg  all base-stations and all channels. For a us@ssociated
model used in these studies does not account for SINR amdth base-stationA(i), the rater;; that useri will receive
is impractical for cellular systems. With a more accuraten channelk (assumingl ;) = 1) is a function of the
SINR-based interference model, recent studies use Gib$ignal-to-interference-plus-noise ratio (SINR). Withdoss
sampling to study scheduling and power control [15,17,18hf generality, we use the Shannon formula [19], i.e.,
joint power control and user association [16], channel-allo

. . . PacnIaciy wGi acn /K
cation [9], and joint power-control/user-associatiomithel- rie = Welogy(1+ wms 7I(<LLAZ(;Z<>IA% }j/kGij %)
allocation [8]. Our work differs from these studies by uti- = W, log,(1 + PacyLacynGi,ng ) 1)
lizing a new method to estimate the perturbed utility values e WrNo+22; 2 a0) PilieGij 7

across multiple channels and hence can achieve fast CONMGfrere N, is the thermal noise density. Note that Equation
gence with low computation/communication overhead. Oy?) accounts for the interference from all base-stations. |
work is also closely related to [7]. However, the latter uaes reality, the interference between two distant base-statio
greedy approach for inter-cell channel allocation and powgiii be small. Hence, in practice it is reasonable to ap-
control, and thus the resulting solution does not POSSegfoximate (1) by only considering the interference from

global optimality. Finally, for a comprehensive review ofpeighhoring base-stations. Specifically, 6t denote the set
other existing algorithms for resource allocation probiem s neighboring base-statichfor base-statiop. Letpmax, —
wireless networks and their relationship to Gibbs samplin »AG)

we refer the readers to [8]. gz{#A(i)’ngA(“} F-Gi. We can then approximate (1) by
The rest of the paper is organized as follows. The systemr_ — W, log,(1 + PaiyIac) kGi, ac )
model is presented in Section Il. In Section I, we provide a ik ce Wr No+ni 50+ 2 (en g iy PilinGis 7
overview of the Gibbs sampling and explain the difficulty in . o )
existing Gibbs-sampling algorithms. We propose and amaly2Note thatri, < 17, . Further, since;;;* is independent of,
the fast Gibbs sampling algorithm in Section IV and preserifi€ value ofri; only depends on the channel allocation of

the simulation results in Section V. Then, we conclude. the neighboring base-stations 4fi). Later, we will see that
this property is critical for developing a distributed afigiom.

Il. SYSTEM MODEL Hence, in the rest of the paper, we will use (2) to model the

Consider a cellular system using OFDMA (as in LTE
[4]) There are.J base-stations sharing’ channels. Each 1n LTE, each channel in a time slot represents a resource et can

. . be assigned by each base-station to one associated user. [4]
channel has a bandwidtV. = Wr /K, whereWr is the 2For example,\; could be the base-stations within a certain distance

total available bandwidth in the system. Assume that timeom j. However, our result does not depend on a specific definitio’p




rate of each user. Further, we assume that the neighborisgch that the stationary distribution of the chain has thmfo

relationship is symmetric, i.e., i € N}, thenj € Nj,. of the Gibbs distribution:
For intra-cell control, we assume that at any given time- - ~ 1 . =
v 9 Pl =D 2a(l)= —et == %D (5)

slot and for a given channel, the base-station can only serve

Zr
one associated user. However, a base-stapon canuse tbe_ SAhereT is called the temperature of the Gibbs distribution
channel to serve different users across time slots, i.e-tim

division multiplexing. Let ¢;;. be the fraction of time that [20, Chapter 7], and’y is a normallza}tlon constgnt: Clearly,
. , ; whenT is small, the channel-allocation vector@ith the
base-statior4 (i) serves uset on channelt. Note that we

must havey™ s ¢u < 1 for each base-station and each optimal utility will be reach_ed with probab|I|ty_ clos_e to. _
i€S; . o Hence, such a Markov chain can be used to iteratively find

channelk. The average rat®; received by user is given by . -
R; = S°F  $ura. We associate a utility functiofV; (R;) the optimall. : : .

§ k=1 PLRT . . N To form such a Markov chain, Gibbs sampling sets the
for useri, which captures the satisfaction level of usarhen - S :
. . . transition probabilities in a particular way [20, Chapter 7
its service rate idz;. Recall from (2) that the rate;, of each . . .

- . . - Section 6.1]. We start with a few notations. Let =

useri is determined by the channel-allocation vectowith

. - . X j <j< <k< -
a fixed vector/, the intra-cell control for base-statighcan {(],_k)|1 <js 1. < k < K} denote the set of al b"’?se
. e . station/channel pairs, and 1&f C A be a subset for which

then be modeled as the following optimization problem:

the network considers to update the channel allocation in a
Z Ui(R)) given iteration. Recall that is a vector of indicator variables,
[pir]20 = e each of which corresponds to an elementdnWe further
subject to R; = S5 puerir, and 3. I use I(H) and I(A\H) to denote those components of

) i = Dpy DikTik Zzesﬂ' P that correspond to elements i and A\ H, respectively.

3) o e T
Problem (3) is a convex optimization problem and can b§|m|lar to the vector, let ¥ andy be the indicator vectors

solved by standard technique [5]. L\é]t(f) denote the opti- before and after a given iteration, respectively. Sincey onl

mal objective value of problem (3) for base-statiprirhen,
the inter-cell channel-allocation problem can be written a

max

those components correspondingHowill be changed, we
must haver(A\H) = y(A\H). Further, for anyZ and g,
we use(y(H),Z(A\H)) to denote another indicator vector
J . whose components correspondingHoand A\ H are taken
Cmax V(D) (4)  from 7 and Z, respectively.
I=lelet 5= At each iterationt, a setH is chosen with probability g,
whereZ is the set of all channel-allocation vectors. and only the elements iff will be updated. The requirement

Unfortunately, Problem (4) is a combinatorial problem thaP" the probability distributiorps, H C A] is that:

is in general very difficult [8]. In particular, since the nber Every base-station/channel pdir, k) must belong to
of all channel-allocation vector@{*) grows exponentially at least oneld C A such thatpy > 0.
with the number of base-stations and the number of channels, (6)

even a centralized solution will incur extremely high comHence, every(j,k) has a non-zero probability of being

plexity?. In the next section, we will introduce distributedchosen for update. L&f(H ) be the set of all possible values

and low-complexity algorithms based on Gibbs sampling. of f(H). Based on the channel-allocation vecthr= 7,
Gibbs sampling uses the following transition probability:

) ) ) ) o P(E+1 = ?ﬂfl; = f) (7)
In this section, we provide an overview of distributed = 3=, - i\ py s\ myy P T(G(H)[T(A\H)),
algorithms based on Gibbs sampling, which can be used t ‘

Ill. GIBBS SAMPLING

solving Problem (4). We then review several types of e>«ystinw ere i
Gibbs-sampling algorithms and explain their performance  _ _ eT i1 Vi(U(H),Z(A\H))
tradeoffs in terms of the convergence speed and the com-™(¥(H)IZ(A\H)) = V,(Z3(A\H))

. s o . . S eT i1
putation/communication overhead. This discussion mta {zeZ(H)} (®)

the new algorithm that we will propose in Section IV. In other words, if / is chosen, then updat&(H) to

) . . §(H) with probability given by (8). Note that (8) is simply
A. Overview of Gibbs Sampling the conditional probability forT(H) = ¢(H), given that

Suppose that the channel-allocation veciois updated I(A\H) = #(A\H), when I follows the distribution in
in an iterative manner, and Igt be the vector at the-th  (5)°. It can be easily verified that the resulting Markov
iteration. In Gibbs sampling (and many other randomizedhain is aperiodic and irreducible. Further, it is revelesib
algorithms), one forms a Markov chain with as the state (satisfying the detailed balanced equations), and itgstaty

distribution is exactly (5).
3This is standard in LTE system.
“4In a LTE system witl20MHz of total bandwidth, the number of channels  °Note that the normalization constaf#t- does not appear in (8). This

is around100. If we consider al9 cells (two rings) layout, the number of is very useful because calculating would have incurred exponential
channel-allocation vectors i&'9001 complexity.



However, in general the transition probability in (7) de-ransition probability in (11), each base-statios {j (JN;}
pends on the update at all base-stations. Hence, this prooeeds to compute the value f,(Z;, #(A,\H;) for every
dure requires centralized implementation. In order towderi possible value ofz; € Z(H,). Further, if h € N, the
a distributed algorithm, we exploit the fact that the valde oresult also needs to be sent to base-stajiofRecall that
Vj(f) only depends on the channel allocation at base-stati@ach computation o¥;(-) requires solving the optimization
j and the base-stations iK; (see (2)). In other words, let problem (3). Hence, depending on the different implemen-
A; = {(h,k)lh = jorh € N,k = 1,...K}. Then, we tation options outlined below, there will be a challenging
can write V;(I) = V;(I(A;)). We then use the following tradeoff between computation/communication overhead and
distributed procedure. At each iteration, first choose afet convergence speed.
base-station®® without common neighbors, i.e., Option 1 (Sngle-channel update): In each iteration, each

. base-statiory € D only updates one channel, i.éH;| = 1.
For anyj,j" € D, Nj NNy = 0. ) Hence, |Z(H;)| = 2, and the computation/corﬁlr{ﬁﬂnication
Then, each base-statigne D chooses a subset of channel®verhead is the lowest. However Af is large, updating one
H; c {(j,k)|k = 1,.., K} to update. Forj ¢ D, we let channel at a time may lead to slow convergence, as can be

H; = 0. Let H = U;-Izl H;. Note that by this procedure, observed from our simulation results in Section V and in [8].

the value of V;(-) in"(8) can only change either because Option 2 (Multi-channel update): In each iteration, each
base-statiory itself updates its own channel$; (if j € D) base-statiorj € D can update multiple channels, i.gf;| >

or because at mogine neighboring base-statioh € A; 1. The convergence speed will become faster as we increase
updates its channels (jf € A, andh € D). We can then |H;|. However,|Z(H;)| = 2/%]. Hence, the computation

show that the expression (8) can be decoupled as followsoverhead increases exponentially witt;|.
Option 3 (Sequential update): This option can be concep-

n(G(H)|#(A\H)) = [ =(#(H;)|#(A\H;)),  (10) tually viewed as a hybrid between Option 1 and Option 2.

J€D In each iteration, like Option 2, each base-statjore D
wheren (y(H;)|#(A\H;)) is equal to can update multiple channels, i.&{,| > 1. However, base-
. B B - - station j updates these channels sequentially. Specifically,
o [V T EAN D)+ ey Vi (T, F(ARN,))] base-stationj chooses uniformly at random a permutation
3 [V EGFANT) A ey Vi Gaana))] - (UL V2 ) OF the elements inf, i.e., each permu-
{Z,€T(H;)} 1) tation is chosen with probability/|H;|!. Then, the iteration

, , ) ] , is divided into|H;| rounds, and only channe} is updated
(Details are available in our online technical report [21].in each round — 1,....|H;| as in Option 1. It can be shown

Note that for a base-statiohe D, expression (11) does not it the resulting Markov chain still has the same statipnar
depend on the updates at other base-statiorB.ifence, yistribution as (5) [14]. Note that the computation overhea
each base-statiopi can do the update independently, i.€.nqy increases linearly with¥;|. However, after each round,
base-statiory uses the transition probability (11) to decidehe ypdated channel allocation must be communicated to
which new channel-allocation decisigiiH;) it will pick. the neighboring base-stations so that future computation

_ Finally, if each base-station only updates one channel, 5¢ proplem (3) can use the most-recently updated channel
e, H; = {(j,k)} for somek € 1,... K, then Zj only  4ncation. As a result, more rounds lead to more control
contains one element;, that can take either 0 or 1. Hence, nessages exchanged between base-stations and slower speed
the expression (11) can be further simplified to: In sum, whenkK is large, all options either suffer slow

(G |FA\H,)) = f)fizﬁ(iji))’ (12) convergence or high computation/communication overhead.
and the value of\;;, is given by IV. FAST GIBBS SAMPLING ALGORITHMS
Aj = £ [Vi(1,2(A;\H;)) — V;(0, Z(A;\ Hy))] In this section, we propose a fast Gibbs sampling algo-
+7 Lnen;y V(L Z(A\H;)) = Vi (0, Z(An\H;))] , rithm with only one round of communication, low compu-

] tation overhead, andhulti-channel update in each iteration.
where the first argument df;(-, -) and Vi,(-, -) corresponds e first sketch the basic skeleton of this algorithm below.
to the element?; = {(j, k)}. Fast Multi-Channel Gibbs Sampling: In each iteration,

B. Existing Multi-Channel Gibbs Sampling Algorithms 1) Each base-station = 1,...,J solves Problem (3)

The approach described in Section I11-Aimmediately leads __ Pased on the existing channel-allocation decisions.
to distributed implementation. However, when the number of 2) Randomly choose a subsgt of base-stations and a
channels to be updated is large, this procedure can still lea ~ SUDSetH; of channels for each base-stations: D
to high computation/communication overhead. To see this,  Such that the conditions in (6) and (9) are satisfied.
let Z(H,) denote the set of possible values HTHJ-) that 3) Base-statiorj chooses uniformly at random a permu-

base-stationy may transit to. Then, in order to compute the tation (v1, ..., v ) of the H; channels.
4) The iteration is divided intdH;| rounds. In thel-th

6This setD is similar to the “decision schedule” in [13,14]. round, the base-statioghupdates channel, using the



transition probability in (19) and (20) shown later. 0 for all usersi. Since Problem (3) is convex, the KKT

The above procedure is similar to Option 3. However, theondition [5] must hold, and we have'
key difference is in Step 4, where we will propose a new
method in (19) and (20) to compute the transition probapbilit A; = U/(R}), Z GkTik- (16)
with low overhead. We explain the thought process as fol-
lows. Let# andj/ again denote the channel-allocation vectordf user: is served at channd, i.e., ¢ik > 0, we also have:
before and after an |terat|on respectlvely At kil round, A = max A rup. (17)
we can use? = (F(U._, vn), Z2(A\ U, v.)) to express j
the channel allocation to update frESnIRecaII that in Option A similar set of equations will also hold for Problem (3)
3 (and similarly in Option 1), the transition probability atwithout channel;. Intuitively, this set of equations suggest
round! is given by (12), which is rewritten below after takingthat if a channeb, is taken away from a base-statignit

into account the changes in previous rounds: will be taken away from uset (see (17)). For this user,
exp(Ys0 A o) the corresponding utility decrease will be approximately
T(J(Hjw)| 2 (A\Hj0,)) = Héi—&, (A3)  U/(R})riw, = AfTin, = maxyes, Airuw,. Hence, it sug-
PLSu gests that the value ahax,cs, A\j;r.,,, would be a good
whereHj ., = {(j,u)}, andA;,, can be written as estimate of the utility difference betweaf and V™. The
11 A(ANT 0 AN T following lemma makes this intuition more preC|se
ﬁi’” _ZT [Kj/(h ES?A\I\T%@)))) B V( 0 ;?A\ilﬁ-l))%)] Lemma 1: Suppose that there exists a const@htsuch
T (X h\4y h AL 50 h\Y, h \ {13 v, : that |/\;<(W0) . /\;kl < D. Then,

(14) 1) V; > V.(WO) + max Al T

Note that the first argument i;(-,-) and V;(-,-) corre- (wo)
sponds to the channel allocation far 2) V; <V 4+ maX)\ Tiw, + D Z D50, Ty -

Now, when the number of channels is large, and the size of
|H;| is not too large, the channel-allocation vectbdiffers
from Z by only a few elements. L&t andV, be the optimal
objective values of Problem (3) for base- statpand base-
stationh € N;. Then, we can expect th& andV}, should

Proof: Detailed proof can be found in [21] |
When the number of channel& is large, and only a
few channelsH,| are updated in one iteration, we would
expect that the dual variables will not change much across
rounds, i.e., the value oD will be small. Lemma 1 then

be close toV-0 and V0. The key idea is then to use the N .
. J o 0 . . states thainax;cs. A\fr;,, becomes a good estimate of the
solutions to Problem (3) for’ andV,’ to predict the valuein ~ .~ . g bl .
J .utility difference when a channel, is removed from base-

(14). In this way, we can approximate the transition probabi "~ 7 = . #(wo)
ity without incurring additional computation/communiicat station j. I:‘&ES that we cen replace; by /\i. and use
maxies,; /\ r;v, O estimate the utility difference. The

overhead in each round.
To illustrate the idea, we start with some basic propertigatter will ‘add another error termi maxjes; Ti,u,, Which

of the solutions to Problem (3). Lt — [R;] and¢> [Bir]. again will be small |fD(|s )small Further, for any round
Associate dual variables; to the first equality constraint of I, we can replacé; or \;™" by the optimal dual variables

(3). Let® be the domain 0<f> given in (3). The dual objective before roundL. In that case, the error terms will accumulate
function of Problem (3) is then [5]: linearly in [. However, as long a$ is bounded, the error

terms can still be bounded.
- We have estimated the utility difference for a base-station
g) = max 3 Ui(Ri) = > Ni(Ri= ) durar). (15) j € D. For its neighboring base-statiéne \/j, the situation
€S, i€S; k=1 is slightly different because base-statiodoes not change its
Let us first focus on the change of utility at base-station own channel allocation. Instead, the user rates,i € Sy,
Recall that the value of\;,, is determined by the utility change due to the change of channel allocation by base-
difference with or without a channej, allocated to base- stationj. If the base-statio does not use channel, then
station j. Suppose that Problem (3) is solved twice for dhis change will not affect its utility. If the base-statiégn
base-stationj € D, firstly with a channely; assigned to does use channe|, suppose that the user rates without and
base-statiorj and secondlywithout the channeb, assigned with channely, assigned to base-statignarer; ,, to 7,
to it. Let (R*,¢*) and X* be a pair of optimal primal and respectively, for alli € S,. We can then view the change
dual variables for Problem (3) when channelis assigned at base-statiorh as the concatenation of two steps: base-
to base-statiory, and letV; be the correspondmg optimal station % first removes channel; with user rates;,, and
objectlve value. Similarly, letiR*(wo), g*(wo) X+(wo) and then adds back channej with user ratey*2 . In order to
v ") pe the corresponding values for prob|em () wheflifferentiate the base-stations, we usg and)\jh to denote
(wo) _  the optimal dual variables for Problem (3) at base-stafion
Hl and h, respectively. By Lemma 1, we can then approximate
7Of course, elements outsidel; and Unen; Ap may also change. the total utility difference by

However, their changes do not affect the transition prdipalait base-station ~ 17(wo) *
j as can be seen in (13) and (14). Vi ~ Vh r_naX/\»

J
channely; is not assigned to base-statignNote that-,

wz —l—max)\ sz’ (18)



wo)

whereV}, and Vh( are the optimal utility for base-station results without proofs. The interested readers are refdéae
h when base-statiorj uses or does not use channg| our technical report in [21] for detailed proofs.

respectively. Again, we focus on the setting in Lemma 1, where
Taking all the above into account, the transition probapili Problem (3) is solved twice, firstly with channelallocated
at round/ at base-statiori can be approximated as: to base-statiog and secondly without. Our first lemma is:
exp(y0 A 0r) Lemma 2: If the utility function is Ul-(Ri-) = log(R;),
(H(Hjo) |2 (A\H; 0, ) = ——22222 0 (19) then|ar — AY)| < D if and only if B2l < p,

1+ exp(Ajq,) ‘R
n Proof: The result can be easily shown by (16). &

where ;,, = {(j, )} andA;,,, can be written as This lemma shows that to bound the difference)in and

A, = 7 Max Af T 0, )\;‘(W‘)), we can instead focus on the difference it and

! R;‘(WO). Hence, in the following, we will letU;(R;) =

T Lhens) |~ max NinTi + max AT o | Thyor- log(R;) and focus on the difference betweBn and R; ™.
K3 h T h

(20) Lemma 3: R > R, for all i € S;.
where all the optimal dual variableg; and )}, can be taken Lemma 3 is quite intuitive. It states that after an additiona
as those before rountl. Our proposed fast multi-channel channely; is allocated to base-statigi the optimal rate for
Gibbs sampling algorithm then uses (19) and (20) in Step all associated users of base-statjpopannot decrease. Next,

Remark: Despite the similarity between (13) and (19)we would like to bound the increase; — R; ™. Here, we
we emphasize that they lead to significantly different speeteed a condition on the heterogeneity of the user rates. Let
and overhead. In (19) and (20), since the values of the PG
optimal dual variables before round 1, which are calculated Tmax = Wy maxlogy (1 + ——2———)
in Step 1 of the proposed algorithm, are used, base-station €8s WrNo +n3j
j can use one control message to send information abayd
Hj to base-statiorh and ask base-statioh to return the PG
corresponding values ia; ,, for all channels; in H;, again 7, = Wz min log, (1+ — ).
using one message. Then, base-stajiczan carry out the 1€5; WrNo + 1™ + X hen; P"Gigz
|H;| rounds of transitions without additional communica—Th ¢ 5 h _ L K( 21
tion/computation involving neighboring base-stationsug, ' oM (2), we havenaxjics, ky ik < Tmax/K an
the computation/communication overhead is significargty r """ {(¢€S;.k} Tik 2 rmi’:/K' Let B = rmax/Tmin-
duced, and the channel updates can be carried out with mucH-eémma 4. k7 < R; M) 4 Broax/K foralli € ;.
faster speed than Option 3 (using (13)). Lemma 4 implies that the increas®; — R;‘(W")) must be

, bounded byBry,.x/K, which decreases a3(1/K). The

A. Analysis bound can also be shown to be tight in the order sense. The

Next, we will analyze the performance. Ideally, we wouldnterested readers can refer to [21] for details. Combining
like to show that as the number of channélsincreases, Lemmas 3 and 4, we then have
the stationary distribution of the Markov chain using the

(21)

approximate (19) and (20) will approach the stationary Ry — Ry™)| - Briax _ (23)
distribution of the original Markov chain using (13) and R;R;*(WO) ~ Kmin R mian(Wo)
(14). However, since the stationary distribution of theyoral €S €S,

Markov chain also changes withi, it appears to be difficult |t remains to bound the denominator.

to directly analyze the convergence in terms of the stationa | emma 5: Let ¢ be a fixed constant if0, 1). Suppose that
probability. Instead, in this subsection, we will focus ongt |east a fraction: of the i channels is allocated to each
showing how the approximate transition probability in (19}ase-station. Thenpin[min R}, min Rf(wo)] > CTmin/|Sjl-
approaches (13). 1€S; €5

As we have discussed, it is sufficient to focus on onﬁ
base-stationj € D and study the utility difference with
or without a single channel; (see Lemma 1). Intuitively,
as the number of channels increases, the contribution of
any one channel, i.e., the tenmeax;cs; A7, in Lemma 1, n ;;?;?ignhgld;ppose that/,(R,) = log(R:), T —
decreases a®(1/K). Hence, if we can show that the : - i) = N -
error termD Y~ 67, riv in Lemma 1 decreases faster tharfé/ é;cingaas,teli?;:' c?nfr?icnr?ﬁeorf tshe Kogr;ann?;snﬁ ?}I.ocsrt:d
O(1/K), then by setting the temperatufe = o/K, the ion. Further, suppose [fgtand ||
effect of the error term will approach as & increases. UPPer-bounded by some constants. Then, we have

However, the bpund) in general depends on the pa}rtlcular lim sup |Aj., Aj,vzl —0. (24)
channel-allocation patterns. In the sequel, we will study K—00 2 ne i

conditions under whichD can be bounded uniformly over Proposition 6 confirms that whei is large, and each update
all transitions. Due to space constraints, we will preshat t involves a relatively small numbéf;| of channels, then the

Note that by Lemma 5 we can conclude that the right-
and-side of (23) does decreasedd/K). Combining with
Lemmas 1 and 2, we then obtain the following main result.
Let Z denote the set of all possibI?asuch that the condition



transition probability of the proposed fast Gibbs sampling The simulation result is shown in Fig. 1(a), where we plot
will approach that of the original Gibbs sampling. the total system utility as a function of the iterations. As
Remark: Note that the condition in Lemma 5 suggests theeaders can see, for all versions of Gibbs sampling algo-
following modification to the proposed algorithm. Supposgithms, updating fewer channels in each iteration leads to a
that the channel-allocation vect@rbefore an iteration satis- slower convergence speed. Further, although the Metspoli
fiesz € Z. Then, we only need to ensure that the vegtttat  Hastings algorithm can update a larger number of channels
the algorithm transits to is still if. Each base-statiohcan with low computation overhead, the proposed change in each
ensure this property distributively by setting the traipsit iteration may not always lead to larger utility. Thus, its
probability (19) to zero if the state after rouhds notinZ.  convergence speed is still slow. In contrast, the proposstd f
Remark: Our analysis may be conservative since we focu&ibbs-sampling algorithm enjoys much faster convergence
on the worst-case scenario. However, it gives us some corifihen updating multiple channels at a time. By comparing
dence that the proposed fast Gibbs sampling algorithm wilhe curves “sequential-5” and “fast-5", we can observe that
likely follow the trajectory of the original Gibbs sampling the utility evolution of the “fast” algorithm is close to thaf
In fact, our simulation results in Section V show that suchhe “sequential update” version. Finally, the “fast-15oe
convergence occurs even for a moderate number of chann@gnverges even more quickly than other curves. These sesult
A detailed discussion is provided in [21]. confirm that our proposed algorithm is sufficiently accurate
Finally, in our simulations, we found that the standardor finding the optimal channel-allocation. Further, itdsa
gradient algorithms [5] are still quite slow for solving Bro to fast convergence and low overhead.
lem (3) in each iteration. To resolve this problem, we depelo Next, we simulate a setting with non-uniform load and
a second-order algorithm [5, Chapter 10] [22] to expediée thevaluate whether the proposed algorithm can adapt to load

convergence. For details, please refer to [21]. patterns. Specifically, we compare fast Gibbs-sampling-alg
rithm with (1) universall-reuse, where each base-station uses
V. SIMULATION all the channels, and (2) strict FFR (Fractional Frequency

In this section, we use simulation to evaluate the fasﬁeuse), wherd /4 of the channels are shared by all base-

. ; . . . . Stations, and the rest/4 of the channels are allocated
Gibbs sampling algorithms proposed in Section IV. We firs . .

. . . according to &-reuse pattern [3]. Note that according to the
simulate a LTE network withl9 same-sized hexagon cells

arranged in a three-ring structure. (There are a centeragell 3-reuse pattern, we can divide the cells into three groups. We

. : . then let the cells in group, 2, and3 have20 users,10 users,
inner ring of 6 cells, and an outer ring of 12 cells.) Each base ; .

o ) . : and1 user, respectively. For all schemes, once the inter-cell
station is at the center of a cell, and the inter-site dISj"mn(%:hannel allocation is determined, each cell solves Problem
(ISD) is 500m. A total bandwidth of20Mhz is divided into ’

50 channels. The power of each base-statiod7dbm and Elgé)efro:;g ;al;%%li;Sd?frf:g:ﬁdslﬂlhngrhdear(éD;g\fv;h?n rliisumln(%)
is equally shared over th&0 channel. Each cell has0 g '

N ..As we can see, the user rates under univetsaduse are
users randomly placed inside its coverage area. The utili . . .
. . 6 : uch poorer due to the strong inter-cell interference ctri
function of each user i%og(-/10°). The channel gainé,;

are modeled by a path-loss component with expomert FFR performs better. However, since it does not react to the

: : ._.._non-uniform load, its performance is still significantly ke
2.2 and Iog-norme_ll shadpw fading with standard de.V'atIO'?han our proposed algorithm. A deeper analysis of the ®sult
o = 8dm. The neighboring set/; for each base-station

. ! : reveals that under our algorithm, roughly channels,20
consists of any base-stations withifiOm range. .
channels, and channels are allocated to the base-stations

_We first compare t_he cor_1verger‘1‘ce of thg proposed fa] tgroup 1, 2, and 3, respectively. As a result, the achieved
Gibbs-sampling algorithm with the “sequential-updatef-ve user-rates are consistently better

sngn of stalllndard_G|bbsf sa_lsgllng, "e'li Optiﬁm Section ll- We next simulate our algorithm for a heterogenous net-
Ef. th':eo(rsi"jtl)b;/?jrissltcr)irl]oit?on?é ngsz\a/\r/r;pailns%, éo?n;i\?ep\?v:?hﬂee work with both macro- and pico-cells (see Fig. 1(d)). Specif
Metropolis-Hastings algorifhm .[8] The Metropolis-Hawgs ically, there are three macro-cells with the ISD_5®Dm..On

: the boundary of every two macro-cells, there is a pico-cell.

algonthm. 15 similar to Q|bbs samplmgl,. but it Chooseﬁzurther, one additional pico-cell is placed in the interadr

the tranS|.t|on probability differently. Specifically, afteach the coverage area of each macro-cell and is placed away from
base-stat_|on ch(_)oses a SL.’bSEt of chanfigiso update, the_ Ithe boundary pico-cells. The power and coverage radius of
Metropolis-Hastings algorithm randomly chooses a feas'beach pico base-station 2dbm and75m, respectively. Each
proposed” statey(;) and compares:(y(H;), (A\H;)) macro- or pico-cell has0 users randomly placed in the cell.

with 7(z) qccording o (5), Wheré 's the original state. I The neighboring sel/; for each macro and pico base-station
the forr_ngr 's larger, the pase-statlon accepts Sl ) with consists of those base-stations that are immediate neighbo
probability one. Otherwise, the base-station accepte sta(trefer to [21] for details)

§(H;) with probability 7 (§(H;), Z(A\H;)) /7 (Z). We compare fast Gibbs-sampling with (1) universal

s . o reuse, where each base-station uses all the channels, and

We do not report the “multi-channel update” version, i.eptitn 2, 2) strict FER h b tati trict FER
due to the exponential computation/communication ovethewever, the ( ) S _”C ! where m_acro_ ase-sta |0n_s use stric
convergence speed of Option 2 should be comparable to OBtion described earlier [3], while pico base-stations usesuse.



Gibbs Sampling Algorithm CDF of optimal user rate

CDF of optimal user rate

Sequential-1}=**""
50| - - Fast-15
- - -Fast-5

Metro-5

1| ——ftrequency reuse—1
1| - - stictFFR
1+ |- =--Gibbs

probability

50/

optimal total utility

o0f+

o
©

probability
°
>

o
=

— frequency reuse—1
- - Strict FFR
= = = Gibbs

T

1000 0 10 20 30 40 50
optimal user rate (Mbps)

(b)

200 400 600

time

@)

800

Fig. 1.

0 10 20 30 40 50
optimal user rate (Mbps)

©

(d)

(a): The utility evolution of different Gibbs-sammg algorithms. “Sequential” represents Option 3 (segaénfpdate). “Fast” represents fast

Gibbs-sampling. “Metro” represents the Metropolis-Hags$i algorithm. The number behind the description of therdtgn is the number of channels
updated by the chosen base-station in each iteration. {®:climulative distribution function (CDF) of the user rategler non-uniform load. (c): The
cumulative distribution function (CDF) of the user rateslenheterogeneous topology. (d): The topology of a heteremes network with three macro-cells

and six pico-cells.

The simulation result is shown in Fig. 1(c), where our [3]
proposed algorithm demonstrates even more significant per-
formance gains. As we can see, the user rates under univerq |
1-reuse is again very poor due to the strong inter-cell
interference. The performance of pico-cells under striegRF 5]
is also poor because pico-cells still receive strong inter-[G]
cell interference. In contrast, with our fast Gibbs-samgli
algorithm, the channel allocation is automatically adjdst
to manage interference, and thus the user rates are improv
significantly. Specifically, the upper-right-hand side bgt
CDF represents interior pico-cells whose user rates amdynea (8]
doubled. The lower-left-hand side of the CDF represents the
macro-cells and boundary pico-cells whose user rates are
also significantly improved. We select the macro-céll, [0
the pico-cell #4, and the pico-cell#7 in Fig. 1(d) and [10]
observe the number of channels allocated to each of them to
be 7, 12 and 43, respectively. Moreover, only two channels(11]
allocated to the boundary pico-ce#4 are shared by the two
neighboring pico-cells or the three neighboring macrdscel [12]
Such an adaptive channel allocation not only improves the
overall system utility, but also helps to improve the CDF of
the user rates consistently across all users. [13]

VI. CONCLUSION [14]

In this paper, we propose a fast multi-channel Gibbs
sampling algorithm for frequency resource allocation ia th[15]
OFDMA cellular networks. The key idea of our proposed al-
gorithm is to view the update of one channel allocation decj g,
sion as a perturbation to the optimization problem. Henee, w
can utilize the perturbation analysis to let each baséestat [17]
quickly and accurately update many channels without exces-
sive computation/communication overhead. Our simulation
results show that fast Gibbs sampling algorithm can adapt ¢!
non-uniform load pattern and irregular cell deployment. In
the future, we will refine our analysis bound and extend thigo]
novel idea to power control and user association problems,

[20]
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