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Abstract— In this paper, we consider an aggregator that man-
ages a large number of Electrical Vehicle (EV) charging jobs,
each of which requests a certain amount of energy that needs
to be charged before a deadline. The goal of the aggregator is
to minimize the peak consumption at any time by planning the
charging schedules in order. A key challenge that the aggregator
faces in the planning is that there exists significant uncertainty
in future arrivals of EV charging jobs. In contrast to existing
approaches that either require precise knowledge of future
arrivals or do not make use of any future information at all,
we consider a more practical scenario where the aggregator
can obtain a limited amount of future knowledge. Specifically,
we consider a model where a fraction of the users reserve
EV charging jobs (with possible reservation uncertainty) in
advance and we are interested in understanding how much
limited future knowledge can improve the performance of
the online algorithms. We provide a general and systematic
framework for determining the optimal competitive ratios for
an arbitrary set of reservation parameters, and develop simple
online algorithms that attain these optimal competitive ratios.
Our numerical results indicate that reservation can indeed
significantly improve the competitive ratio and reduce the peak
consumption.

I. INTRODUCTION
Electrification of transportation is a major national priority

due to its environmental and societal benefits. Converting
fossil-fueled vehicles to EVs can increase the penetration of
cleaner energy sources, improve energy efficiency, decrease
the reliance on fossil fuels, and thus be more sustainable
[1]. However, large-scale transportation electrification comes
with both challenges and opportunities. In the US, transporta-
tion consumes 29% of total energy, while electricity con-
sumes 40%. Thus, once a significant portion of transportation
is electrified, if left uncontrolled they will significantly stress
the capacity of the electrical grid. On the other hand, EV
charging is a typical example of a deferrable load, and there
is often considerable flexibility in the charging schedule,
which may be exploited for the purpose of demand response
to improve the overall system stability and efficiency [2].

In this paper, we are interested in developing intelligent
EV charging algorithms under the scenario of an EV aggre-
gator serving potentially a large number of EVs. Such an
EV aggregator can represent a parking lot for an apartment
complex and/or an office building that manages the EV
charging of their customers. The EVs arrive with charging
requests, each of which has a deadline for the charging re-
quest to be completed. This scenario was studied in [10][11]
with the goal of minimizing the total energy cost of the
aggregator subject to time-of-day pricing. In contrast, in this

paper we focus on a different optimization objective, where
the EV aggregator attempts to minimize the peak energy
consumption at any given time during a billing period. Such
a peak-minimizing objective is relevant due to the following
reasons. First, meeting a higher peak demand requires a larg-
er generation capacity, which is usually more expensive and
“dirtier”. Further, a large peak demand closer to the system
capacity can potentially be a source of grid instability. Hence,
from the utility provider’s point of view, it is beneficial if
the peak energy consumption can be reduced. In this regard,
having the aggregator to reduce the peak consumption of a
set of EVs can be taken as a first step towards reducing the
overall peak consumption of the grid. Second, in light of
the importance of controlling the peak consumption, some
utility providers have introduced some forms of peak-based
pricing. In this tyoe of pricing schemes, the customers are
charged based on both the total usage in a billing period and
the maximum (peak) usage at any time in the billing period.
Specifically, if a customer’s energy consumption is given as a
sequence (E1, E2, ..., En), then the total bill is of the form
c1
∑

iEi + c2 maxi{Ei} [9]. In typical schemes (e.g., the
Fort Collins Utility [4]), the unit charge for peak usage c2
(between 4.75$/kWh and 5.44$/kWh) is over 100 times more
than the unit charge for total usage c1 (between 0.0245$/kWh
and 0.0367$/kWh). Under this type of pricing schemes, when
the aggregator defers EV charging jobs, the total energy
consumption does not change. It is the peak demand that is
changed. Hence, minimizing the EV aggregator’s operating
cost is also equivalent to minimizing the peak consumption.

A main challenge for designing peak-minimizing EV
charging algorithms is the uncertainty of future arrivals
and departures of EV charging requests. If all future EV
charging jobs are known in advance, one can then readily
compute the optimal charging schedule that minimizes the
peak [5][6]. Unfortunately, knowing the entire future demand
is usually infeasible in practice. On the other hand, if the
statistics of the future demand are known, one can potentially
formulate a stochastic control problem, e.g., as a Markov
Decision Program (MDP) [13]. However, estimating the
future statistics may not be easy either. If the statistics are
incorrect, the performance guarantee from the MDP solution
will also become unreliable. (Further, MDP typically suffers
from the “curse of dimensionality” when the problem size is
large.) At the other extreme, one may choose not to obtain
or use any future information at all. For example, a myopic
policy may compute the optimal charging schedule based



only on the jobs that have arrived before time t and that
remain to be served, as if it is an offline problem. Then, the
myopic policy can use the corresponding optimal decision at
time t [6]. However, we will show later that such a heuristic
algorithm can have extremely poor performance under non-
stationary demand. The Lyapunov optimization approach
in [10][11] also does not require any prior knowledge of
future information. However, it is commonly used to derive
algorithms that approach the optimal average-performance
(e.g., the operating cost) as queues [10] or other key system
resources (e.g., battery size [11])) go to infinity. As such,
it is unclear how it can be applied to obtain solutions for
achieving optimal peak-performance with finite deadline or
resource constraints. Another approach to deal with future
uncertainty is to develop competitive online algorithms. [12]
has studied EV charging using such a framework. However,
the goal there is not to reduce the peak either. In constrast,
our problem is most similar to the speed-scaling problem in
the CPU scheduling literature [5][7]. An online algorithm
called BKP is shown to achieve a competitive ratio of e.
In other words, no matter what the future workload patterns
look like, the peak of the BKP algorithm is at most e times
the peak of the optimal offline algorithm. Further, the ratio
e is shown to be the optimal competitive ratio [7], in the
sense that there exists worst-case workload patterns such that
no online algorithms can perform better. This algorithm can
also be used in the setting of EV charging with the same
performance bound, when there is no future information at
all.

In reality, a competitive ratio of e is still quite large.
(Having to pay e times more on the peak charge seems
to be a costly proposition.) How can we design online
algorithms that can achieve even better competitive ratios?
We believe that a promising avenue is to study the settings
that are in-between the two extremes described above, with
either full future information or no future information. In
practice, we usually have some degree of limited future
information, which intuitively should help us design more
efficient EV-charging algorithms. There are a number of
interesting questions. First, how much benefit can we obtain
by leveraging such limited future information, as compared
to utilizing no future information at all? Second, how can we
design online algorithms that optimially realize such benefits.

Specifically, in this work we study a practical setting with
reservation. Customers can make reservations in advance for
future EV-charging jobs. Note that such reservations natu-
rally “reveal” future information to the aggregator, without
the need for expensive forecasting1. In practice, the aggre-
gator may offer price incentives to encourage reservations.
However, not all customers will reserve in advance, and
hence there will still be uncertainty due to “walk-in” jobs2.

1In the literature, another way to capture limited future information is to
use the look ahead window [3]. We note the the case with precise look-
ahead window can be viewed as a special case of our general model. See
the detailed discussion in Section II.

2We use the term “walk-in” since it is analogous to patients visiting a
doctor’s office without appointments.

Suppose that the reserved jobs account for at least p fraction
of the total EV-demand (the value of p will likely increase
as the price incentives become more attractive), we can then
study the two questions outlined earlier. To the best of our
knowledge, competitive online algorithms under reservation
have not been studied in the literature. A key contribution
of our work is to develop a general framework that can
quantify the best competitive ratio under an arbitrary set
of parameters. Specifically, this general framework not only
gives a lower bound on the optimal competitive ratio under
each set of parameters, but also gives the corresponding
online algorithm with a competitive ratio that attains this
lower bound. Using these results, we can then quantify the
gain in the optimal competitive ratio and the reduction of
the peak energy consumption as key reservation parameters
change (e.g., the reservation time L and the ratio p of the
reserved demand). For example, when 60% of the jobs are
reserved 1

4 of the total time horizon ahead of their arrival
times, the optimal competitive ratio is reduced to 1.39. Our
numerical results indicate that our proposed online algorithm
is effective in reducing the peak consumption.

The rest of the paper is organized as follows. In Section
II, we present the system model. We discuss the necessity
for the design of better online peak-minimizing algorithms in
Section III. In Section IV, we develop a general framework
that can quantify the best competitive ratio under an arbitrary
set of parameters, and propose an online algorithm, called
EPS, that attains the optimal competitive ratio. The optimal
competitive ratio involves solving a linear programming
problem. We propose an effective way of reducing the
complexity of the linear program, and then study the impact
of reservation on the optimal competitive ratio in Section
V. Finally, we conduct simulations to demonstrate the effec-
tiveness and robustness of our proposed EPS algorithm in
Section VI.

II. SYSTEM MODEL

We consider an aggregator managing the EV-charging
jobs3 of its customers. We assume that time is slotted. Let
T be the total number of time-slots in a billing period,
which can be one day or one month depending on the billing
policy. We use t ∈ T to represent a typical time-slot, where
T = {1, 2, ..., T}. The goal of the aggregator is to reduce
the peak consumption across all time-slots in the billing
period. Consider a sequence J of EV-charging jobs. Each
job k ∈ J can be represented by a 4-tuple (sk, dk, ek, vk),
which indicates that this EV arrives at the beginning of time
slot sk ∈ T, departs at the end of time slot dk ∈ T, and
requires ek amount of energy to finish its request (we also
refer to ek as the demand). The 4-th term vk is the reservation
time for the job k. If this EV charging job k is reserved in
advance, we will have vk < sk. Otherwise, vk = sk, and we
refer to the job as a “walk-in” job. In practice, we expect
that the aggregator will offer price incentives to encourage

3In this paper, we will use the terms “EVs”, “EV charging jobs”, or “jobs”
interchangeably.



its customers to make reservations in advance. We assume
that each reserved job k must be reserved L time slots in
advance, i.e., vk ≤ sk−L. In other words, only jobs reserved
“truly” in advance can qualify for price incentives. Later on,
we will study the benefit of reservation as the parameter L
varies. Here, we allow vk to be non-positive, i.e., vk ≤ 0, in
which case this EV-charging job is known at the beginning
of the billing period4.

With suitable price incentives, we would expect that at
least a certain fraction of the users will reserve their EV-
charging jobs in advance. This assumption is modeled as
follows. Given a sequence of EV arrivals J , let rJi,j be the
total reserved demand with arrival time i and departure time
j, and let RJ

i,j =
∑j

j′=i r
J
i,j′ be the total reserved demand

with arrival time i and departure time no greater than j.
Similarly, let aJi,j be the total walk-in demand with arrival
time i and departure time j, and let AJ

i,j =
∑j

j′=i a
J
i,j′ be the

total walk-in demand with arrival time i and departure time
no greater than j. According to our reservation model, all
rJi,j’s are known at least L time-slots ahead of time i, while
aJi,j’s can only be known at time i. To model the relationship
between the reserved demand and the walk-in demand, we
assume that the following inequality holds for all i, j,

pl(R
J
i,j +AJ

i,j) ≤ RJ
i,j ≤ pu(RJ

i,j +AJ
i,j), (1)

where pl and pu are two positive constants that bound the
fraction of reserved demand over the total demand. Note
that in practice, even if a customer makes reservations, he
may not be able to honor the reservation 100% of the time.
He may predict his arrival time, deadline, or even demand
imprecisely, or he may cancel the reservation altogether. Our
model in (1) is sufficiently general to incorporate the case
where the reservations are not 100% certain. Specifically,
we can view RJ

i,j as the mean of the reserved demand,
and use AJ

i,j to represent both the walk-in demand and the
uncertainty from the reservation demand itself.

Note that the above model captures limited future informa-
tion in two ways. First, each reservation naturally “reveals”
to the aggregator about future demand patterns, without the
need for expensive forecasting. This revelation property can
be particularly useful when the demand patterns exhibits
daily changes. Second, the parameters pl and pu can be
extracted from historical data on consumer behavior, which
also represent limited knowledge of the future. Our goal in
this paper is thus to study how the aggregator can exploit
such limited future information to improve its decisions.

In the literature, a related way to model limited future
information is through a look-ahead window, i.e., at time
t, future arrivals for the time interval [t, t + L] are known
precisely [3]. Note that this precise look-ahead model can

4In this paper, we have assumed that the EV-charing jobs are the only
jobs that the aggregator needs to control as far as the peak consumption is
concerned. If there are other uncontrollable background load that contributes
to the peak consumption, it is also possible to extend our model to
incorporate background load. For example, assuming that the background
load can be estimated in advance, we can treat the background load at time
t as a reserved demand known at time vk = 0 with sk = dk = t. The rest
of the model will then apply.

be taken as a special case of our model by setting pl =
pu = 1. However, in practice look-ahead information may
not be precise either. Our model allows such uncertainty to be
captured. Further, in practice, some EV charging jobs may be
reserved more than L time-slots ahead, in which case we will
obtain some future information beyond L time slots. Thus,
our model with limited future information is more general
and practical.

Given a sequence J of EV charging jobs, the aggrega-
tor needs to determine the amount of energy EJ

t drawn
from the power grid at each time slot t ∈ T. We use
EJ = {EJ

1 , E
J
2 , ..., E

J
T } to denote the service profile of

the aggregator. We are interested in minimizing the peak
consumption, i.e., max

t
{EJ

t }, subject to the constraint that
all jobs are completed before their deadlines.

If all the charging jobs are known in advance, the problem
can be written as follows and solved by an offline algorithm
like the one in [5].

min
All jobs are completed before their deadlines

max
t
{EJ

t }. (2)

Let E∗J,off be the optimal offline solution to (2). However,
in practice, such perfect future knowledge is hard to obtain.
An algorithm π is called online if this algorithm computes
EJ

t (π) based only on the EV jobs arrived or reserved before
or at time t. This online algorithm π is called feasible if
all jobs are completed before their deadlines. Let E∗J(π) =
max{EJ

t (π)} be the peak energy drawn from the grid using
a feasible online algorithm π. We study the performance of
the online algorithm π using its competitive ratio (CR) η(π),
which is defined as the maximum ratio between E∗J(π) and
E∗J,off under all possible job sequences J , i.e.,

η(π) = max
J

{
E∗J(π)

E∗J,off

}
.

An feasible online algorithm π is called optimal, if it attains
the smallest competitive ratio. Our goal in this paper is to
find such optimal online algorithms, and reveal how limited
future information (e.g., reservation) improves the optimal
competitive ratio.

III. MOTIVATION
Unfortunately, developing competitive online algorithms

is not an easy task, either with or without reservation. In
this section, we will show that a myopic online algorithm
(possibly a very natural one) could perform very poorly.
Therefore, it is important to find better algorithms for online
EV-charging.

To start with, we briefly review the offline optimal algo-
rithm (called the YDS algorithm) proposed in [5].

A. Review of the Offline-Optimal YDS Algorithm
Let J be a sequence of EV-charging jobs. Define the

intensity on an interval I = [i, j] with respect to the job
sequence J as

gJ(I) =

∑j
i′=i(R

J
i′,j +AJ

i′,j)

j − i+ 1
. (3)



Then, the YDS algorithm [5] is re-stated in Algorithm 1.

1 Repeat steps 2-4 until the set J is empty.
2 Let I∗ = [i, j] be the time interval with the maximum

intensity, i.e., gJ(I∗) = maxI{gJ(I)}.
3 Let the service profile during interval I be
EJ

t = gJ(I
∗), t ∈ I , and serve all the jobs within the

interval I∗, i.e., all jobs satisfying i ≤ sk ≤ dk ≤ j, by
the earliest deadline policy.

4 Modify the job sequence J as if the time interval I∗

does not exist. More precisely, first delete from J all
the jobs within the interval I∗. Second, all deadlines
dk ≥ i are reduced to max{i− 1, dk − (j − i+1)}, and
all arrival times sk ≥ i are reduced to
max{i, sk − (j − i+ 1)}.

Algorithm 1: Offline-optimal YDS algorithm

Note that we do not update the reservation times in step
4 of the YDS algorithm. This is because that the reservation
times do not matter in the offline optimal algorithm, when
all future jobs are known in advance. Furthermore, it is easy
to see that the intensity of the maximum-intensity interval
decreases as the YDS algorithm proceeds. Therefore, the
optimal offline value E∗J,off of the peak consumption is given
by the maximum intensity at the first run of step 2, i.e.,

E∗J,off = max
I
{gJ(I)}. (4)

B. A Myopic Online Algorithm

The YDS algorithm cannot be used online when future
EV-charging jobs are not known in advance. The following
myopic algorithm represents a natural online algorithm. At
each time slot t, the myopic online algorithm uses the YDS
algorithm to compute the optimal serving rate based only
on the remaining workload and the future reserved workload
known at time t. It then uses this rate to serve its known
workload by the earliest deadline policy. A similar idea
has been proposed in [6]. However, we will show that this
myopic algorithm could have an arbitrarily poor CR.

Lemma 1: If there is no reservation, the competitive ratio
η∗ of the myopic algorithm can be arbitrarily large as T →
∞, i.e., for any constant M > 0, there exists T > 0 and
an arrival pattern, such that the peak rate under the myopic
algorithm is at least M times the optimal peak rate under
the optimal offline algorithm.

Proof: See technical report [17].
One would expect that reservation may improve the perfor-

mance of the myopic algorithm. Unfortunately, the following
lemma states that no matter how large is the fraction of the
reserved demand, the myopic online algorithm still has an
arbitrarily large CR.

Lemma 2: Under our reservation model (see Section II),
for any L and pl < pu = 1, the competitive ratio η∗ of the
myopic algorithm can be arbitrarily large as T →∞.

Proof: See technical report [17].
The above two lemmas indicate that, if EV charing is not

scheduled properly, the aggregator may potentially face a

huge peak rate. Hence, it is important to design better (even
optimal) online algorithms.

In fact, if there is no reservation, an online algorithm
called BKP is proposed in [7] and shown to achieve a
CR of e. Further, this CR e is shown to be the optimal.
However, in practice e is still a large number. In this
work, we are interested in how limited future knowledge
(through reservation) may help us to significantly improve
the competitive ratio. Unfortunately, the techniques for prov-
ing the competitive ratio and its optimality in [7] are very
specific and seems difficult to handle reservation. In the next
section, we will develop a very general framework that can
lead to optimal online algorithms under an arbitrary set of
reservation parameters.

IV. OPTIMAL PEAK-MINIMIZING ONLINE EV CHARING

In this section, we propose a general framework for
designing optimal online EV-charging algorithms with reser-
vations. For ease of exposition, we will focus on the case
where pu is 1 in constraint (1). In other words, the reserved
demand and the walk-in demand now satisfy the following
simplified constraint:

p(RJ
i,j +AJ

i,j) ≤ RJ
i,j ≤ RJ

i,j +AJ
i,j . (5)

We note that there is no loss of generality in this sim-
plification. If pu 6= 1, we know that there will be at least
( 1
pu
−1)RJ

i,j future walk-in demand. Thus, we can view this
part of walk-in demand as some pseudo “reserved demand”.
Specifically, let R̃J

i,j = RJ
i,j + ( 1

pu
− 1)RJ

i,j =
RJ

i,j

pu
, and

ÃJ
i,j = AJ

i,j − ( 1
pu
− 1)RJ

i,j , then constraint (1) can be
equivalently expressed as

pl
pu

(R̃J
i,j + ÃJ

i,j) ≤ R̃J
i,j ≤ R̃J

i,j + ÃJ
i,j .

Let p = pl

pu
. The constraint (1) is then converted to the form

in (5).
In addition, if we let C = 1−p

p , constraint (1)can be further
simplified as

0 ≤ AJ
i,j ≤ CRJ

i,j . (6)

The following analysis will be based on constraint (6).

A. Lower Bound on the Competitive Ratio

We first present a lower bound on the competitive ratio
(CR) of an arbitrary online algorithm. As readers will see,
the lower bound can be obtained by considering the following
sequence of job arrivals.

Fix n ∈ T. Consider a job sequence Jn with the following
form. The arrival time of each job k ∈ Jn satisfies 1 ≤ sk ≤
n. All jobs have the same deadline n. Further, for all reserved
jobs with arrival time i, they are reserved exactly L time-
slots ahead, i.e., at time i−L. The reserved demand and the
walk-in demand satisfy constraint (6). Let Jn be the set of
all Jn’s with such form.

Consider an arbitrary feasible online algorithm πn with
CR ηn. We apply this algorithm to an EV-arrival sequence
Jn ∈ Jn. Then, we have the following lemma.



Lemma 3: Given an online algorithm πn
with CR ηn, its service profile EJn(πn) =
{EJn

1 (πn), E
Jn
2 (πn), ..., E

Jn
n (πn)} under an EV-arrival

sequence Jn ∈ Jn must satisfy

EJn
t (πn) ≤ ηnEJn

pe (t), t = 1, 2, ..., n

where

EJn
pe (t) = max

j=1,...,hn(t)

{∑t
i=j A

Jn
i,n +

∑hn(t)
i=j RJn

i,n

n− j + 1

}
, (7)

and hn(t) = min{t+L, n}. (In (7), the subscript “pe” stands
for “peak estimation”.)

Proof: See technical report [17].
The intuition of Lemma 3 is as follows. At time t, the

aggregator knows all the walk-in demand with arrival time
no greater than t and all the reserved demand with arrival
time no greater than hn(t) = min{t + L, n} (since all the
reserved jobs are reserved exactly L time-slots ahead). Based
on such known demand, we can take EJn

pe (t) as the estimate
of the peak consumption at time t. In fact, if there were no
more new jobs after time t, EJn

pe (t) would have been the
offline-optimal peak service rate. If EJn

t (πn) > ηnE
Jn
pe (t),

then in the case where there is no demand after time t, πn
will violate the assumption that its CR is ηn.

With Lemma 3 in mind, we study another constraint on
πn. The feasibility of πn implies that all jobs can be finished
before the end of the time slot n (recall that all jobs have
the same deadline n). Therefore, we must have

n∑
t=1

EJn
t (πn) ≥

n∑
t=1

(
AJn

t,n +RJn
t,n

)
. (8)

Combining Eqn. (8) with Lemma 3, we then obtain

ηn ≥
∑n

t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1E

Jn
pe (t)

.

Define the following optimization problem:

sup
Jn

∑n
t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1E

Jn
pe (t)

subject to (6), (7) (9)

Let η∗n be the optimal solution to the optimization problem
(9). Let η∗ = maxn∈T{η∗n}. Then, the following theorem
shows that η∗ gives a lower bound on the optimal CR, i.e.,

Theorem 4: For any feasible online algorithm π, its CR
must be greater than or equal to η∗.

Proof: We prove by contradiction. Suppose that there
exists a feasible online algorithm π̃ with CR η(π̃) < η∗. Let
ε = η∗ − η(π̃) > 0.

According to the definition of η∗, there must exist n ∈ T,
and a job sequence Jn ∈ Jn, such that∑n

t=1

(
AJn

t,n +RJn
t,n

)∑n
t=1E

Jn
pe (t)

> η∗ − ε = η(π̃).

Apply the algorithm π̃ to the job sequence Jn. According

to Lemma 3, we must have EJn
t (π̃) ≤ η(π̃)EJn

pe (t). Then,
n∑

t=1

EJn
t (π̃) ≤ η(π̃)

n∑
t=1

EJn
pe (t) <

n∑
t=1

(
AJn

t,n +RJn
t,n

)
Thus, some job with deadline d ≤ n cannot be finished
before its deadline, which contradicts to the feasibility of π̃.

In general, the optimization problem (9) can be easily
converted to a linear programming problem and solved using
standard solvers (e.g., MATLAB CVX package [15]). Due
to space constraint, we provide the details in Section V of
our technical report [17].

Remark 1: Our formulation of the CR in (9) shares some
similarity to the results in [14]. However, [14] does not
consider reservation, and there is substantial difficulty in
extending the techniques in [14] to the case with reservation.
Specifically, a key step in [14] is to show that the problem
with variable deadlines has the same CR as the problem with
a single deadline (see Theorem 4.26 in [14]). However, for
our reservation model, there is another degree of freedom,
i.e., the time when the job is reserved. The formulation in
(9) suggests that we may focus on the case when the jobs are
reserved least in advance (i.e., exactly L time-slots ahead).
However, it is unclear that how to generalize the techniques
of [14] to show that the problem when reservation can be
made at least L time-slots ahead of arrival time also has
the same CR as the problem when all reservations are made
exactly L time-slots ahead of arrival time. In this paper, we
use a different strategy: in Theorem 4, we only show that (9)
provides a lower bound on the CR. In the following, we then
provide an online algorithm that attains this lower bound,
thus avoiding the above difficulty. This technique may also
be of independent interest for other problem settings.

B. Optimal Online Algorithms

Interestingly, the optimization problem (9) not only gives
a lower bound on the competitive ratio, but also leads to
an online algorithm that can attain the lower bound as we
will demonstrate below. Next, we propose the Estimated Peak
Scaling (EPS) algorithm, and show that the competitive ratio
of this online algorithm achieves the lower bound η∗.

Given a sequence J of EV-charging jobs (jobs in J could
have different deadlines), let J(t) ⊆ J be the set of jobs
known before or at time t, which includes all the walk-in
jobs with arrival time no greater than t, and all the reserved
jobs with reservation time no greater than t. Then, the EPS
algorithm is formally stated as follows.

The following theorem states that the EPS algorithm is
a feasible online algorithm with competitive ratio η∗. Thus,
the EPS algorithm is an optimal online algorithm.

Theorem 5: Given any job sequence J , the EPS algorithm
satisfies the following two requirements:

1) (η∗ optimality) at each time slot t, the service rate EJ
t

satisfies EJ
t ≤ η∗E∗J,off;

2) (feasibility) all jobs can be completed before their
deadlines.



Input: Job sequence J , time slot t
1 Assume that there is no new jobs after time t, use the

YDS algorithm on the known jobs J(t) to compute the
optimal peak, i.e., E∗J(t),off as if it is an offline problem.
Let EJ

t = η∗E∗J(t),off.
2 Serve jobs by the earliest deadline policy. Specifically,

we sort all unfinished EV jobs with arrival time no
greater than t according to their deadlines in an
ascending order, i.e., dk1 ≤ dk2 ≤ ... Then, we use EJ

t

amount of energy to charge the EV k1, and then
k2, k3, ... until all these EV jobs are completed or the
amount of energy EJ

t is exhausted.
Algorithm 2: EPS algorithm

The first part of Theorem 5 is easy. Note that since J(t) ⊆
J , we must have E∗J(t),off ≤ E

∗
J,off. Then,

EJ
t = η∗E∗J(t),off ≤ η

∗E∗J,off.

Now, we focus on the second part. The proof of the feasibility
of the EPS algorithm is based on the following lemma.

Lemma 6: A sufficient and necessary condition for a
service profile EJ = {EJ

1 , E
J
2 , ..., E

J
T } to be feasible, i.e.,

all jobs can be completed before their deadlines, is that for
all t1 ≤ t2, t1, t2 ∈ T, the following inequality holds,

t2∑
t=t1

(AJ
t,t2 +RJ

t,t2) ≤
t2∑

t=t1

EJ
t .

Proof: See technical report [17].
Now, we are ready to present the proof of Theorem 5.

Proof: Based on Lemma 6 and the above discussion, we
only need to show that for all t1 ≤ t2, t1, t2 ∈ T,

t2∑
t=t1

(AJ
t,t2 +RJ

t,t2) ≤
t2∑

t=t1

η∗E∗J(t),off.

Equivalently, we need to show that

η∗ ≥
∑t2

t=t1
(AJ

t,t2 +RJ
t,t2)∑t2

t=t1
E∗J(t),off

. (10)

To show inequality (10), we need to draw a connection
between the right hand side (R.H.S.) of (10) and the opti-
mization problem (9). We first simplify (9) by substituting
AJn

t,n by at, RJn
t,n by rt, and EJn

pe (t) by bt. Then, (9)
can be transformed to the following equivalent optimization
problem:

max
at,rt≥0

∑n
t=1(at + rt)∑n

t=1 bt

subject to bt = max
j=1,...,hn(t)

{∑t
i=j at +

∑hn(t)
i=j rt

n− j + 1

}
0 ≤ at ≤ Crt (11)

For n = t2− t1+1, the optimal solution of the optimization
problem (11) is then η∗t2−t1+1.

We now consider (10). Since the job sequence J satisfies

(6), we must have 0 ≤ AJ
t,t2 ≤ CRJ

t,t2 for all t = t1, ..., t2.
Suppose that the following inequality holds,

E∗J(t),off ≥ max
j=t1,...,h′(t)

{∑t
i=j A

J
i,t2

+
∑h′(t)

i=j RJ
i,t2

t2 − j + 1

}
,

(12)
where h′(t) = min{t + L, t2}. Then, if we substitute AJ

t,t2

by a′t−t1+1, RJ
t,t2 by r′t−t1+1, and E∗J(t),off by b′t−t1+1 for

all t = t1, ..., t2, we must have that the R.H.S. of (10) is no
greater than the optimal value of the following optimization
problem.

max
a′t,r

′
t≥0

∑t2−t1+1
t=1 (a′t + r′t)∑t2−t1+1

t=1 b′t
(13)

subject to 0 ≤ a′t ≤ Cr′t

b′t ≥ max
j=1,...,ht2−t1+1(t)


∑t

i=j a
′
t +
∑ht2−t1+1(t)

i=j r′t

t2 − t1 + 1− j + 1


It is easy to see that the optimal value of (13) is smaller
than or equal to the optimal value of (11) with n replaced
by t2 − t1 + 1. Therefore,

R.H.S. of (10) ≤ η∗t2−t1+1 ≤ η∗,

where the second inequality comes from the fact that η∗ =
maxn∈T{η∗n}.

Based on the above discussion, it only remains to prove
Eqn. (12). Recall that E∗J(t),off is equal to the maximum
intensity over all possible intervals (see Section III-A).
Consider only a subset of intervals I = {[t1, t2], [t1 +
1, t2], ..., [h

′(t), t2]}. We must have

E∗J(t),off = max
I
{gJ(t)(I)} ≥ max

I∈I
{gJ(t)(I)}. (14)

For each interval I = [j, t2] ∈ I, the intensity with respect
to J(t) is given by (3), i.e.,

gJ(t)(I) =

∑t2
i=j(A

J(t)
i,t2

+R
J(t)
i,t2

)

t2 − j + 1
. (15)

Note that at time t = t1, ..., t2, for any walk-in job k that con-
tributes to the term

∑t
i=j A

J
i,t2

(i.e., it arrives no later than
t), it must belong to the set of walk-in jobs in J(t). Thus, it
must also contribute to the term

∑t2
i=j A

J(t)
i,t2

. Similarly, for

any reserved job k that contributes to the term
∑h′(t)

i=j RJ
i,t2

(i.e., it arrives no later than h′(t) = min{t+L, t2}), it must
be reserved no later than h′(t) − L ≤ t. Hence, this job k
must belong to the set of reserved jobs in J(t), and thus
also contributes to the term

∑t2
i=j R

J(t)
i,t2

. Therefore, we must
have

t2∑
i=j

(A
J(t)
i,t2

+R
J(t)
i,t2

) ≥
t∑

i=j

AJ
i,t2 +

h′(t)∑
i=j

RJ
i,t2 . (16)

Combining Eqn. (15), (14) and (16), we immediately obtain

E∗J(t),off ≥ max
j=t1,...,h′(t)

{∑t
i=j A

J
i,t2

+
∑h′(t)

i=j RJ
i,t2

t2 − j + 1

}
.



Therefore, Eqn. (12) holds, and thus Eqn. (10) follows.
We then conclude that the EPS algorithm is a feasible online
algorithm with CR η∗.

Remark 2: The above results can be viewed as a superset
of the results in [7][14]. Specifically, when there is no
reservation (p = 0 or C = ∞), the above algorithm
reduces to one that is similar to the BKP algorithm [7]. The
competitive ratio is also close to e. (It is not exactly e because
the time horizon is finite [14].) However, with reservation,
the competitive ratio will improve as can be seen soon in
Section V.

V. DISCUSSION ON THE OPTIMAL CR

We have proposed a peak-minimizing online EV-charing
algorithm with the optimal competitive ratio (CR) η∗. It is
easy to see that η∗ depends on the reservation parameters
(L and p). In this section, we will study the impact of the
demand reservation on the optimal CR η∗.

We assume that the billing period is a day, and the duration
of each time slot is 10 minutes. Therefore, T = 144, and
η∗ = max144n=1{η∗n}. There are two parameters related to the
reservation, p (or C) and L. We will vary p and L, and
characterize their impact on η∗. Such results will help us
understand how reservation improves the optimal CR.

For L = 0, 36, 72, 108, 144, we compute η∗ for different
p’s. From Fig. 1, we can see that when L = 0, η∗ remains
at the highest value5 of 2.39 regardless of the value of p.
The reason is that in the case of L = 0, the reserved jobs
are allowed to reserve upon its arrival, and thus the worst
case CR would be the same as if there is no reservation. As
this L increases, we know more advance information about
the future. Therefore, as L increases, η∗ will decrease. As
for p, it is the fraction of reserved demand over the total
demand. As p increases, the total demand uncertainty will
decrease, and thus the CR η∗ will decrease. For example,
when L = 72 and p = 0.6 (i.e., 60% of the total demand is
from the jobs that are reserved 1

2 of the time horizon ahead of
their arrivals times), the optimal competitive ratio is reduced
to 1.39. In the extreme case where L = 144 and p = 1, i.e.,
all the future knowledge are known exactly at the beginning,
the CR becomes η∗ = 1. An interesting observation is that,
for a moderate value of L, e.g., L = 36, we already attain
most part of the benefits from reservation. Hence, in practice,
the aggregator can focus on price incentives for comparable
time-intervals of advanced reservation.

VI. SIMULATION

In this section, we compare the performance of our EPS
algorithm with two online algorithms for EV charging. The
first algorithm does not coordinate among different EV’s.
For each EV k, the aggregator simply charge this EV k at
a constant rate of ek

dk−sk+1 . We call it the uncoordinated
algorithm, which can be view as the scenario when each
user manages its own EV charging. The second algorithm is
the myopic algorithm we discussed in Section III-B.

5Note that here we have η∗ < e because the time horizon T = 144 is
finite. If T → ∞, we will have η∗ → e [14].
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Fig. 1. Impact of Reservation on CR η∗.

We generate the arrival pattern in the following way. We
assume that there are EV charging jobs arriving continuously
from time t1, but all of these jobs must leave before time
t2. Specifically, we simulate 200000 jobs. The arrival time
of each job is uniformly distributed in [t1, t2 − σ], the
deadline of each job is t2, and the EV-charging demand is
a random variable uniformly distributed in [0, 1]. Such an
arrival pattern may arise for a parking lot near an office
complex, where most offices open at 8am, and close at 6pm.
Thus, we set t1 = 48, and t2 = 108. An example of this
arrival pattern is plotted in Fig. 2. (a).
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(a) Total demand vs. time
in the first arrival pattern
(t1 = 48, t2 = 108, σ = 3).
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(b) Total demand vs. time in the
second arrival pattern.

Fig. 2. Two arrival patterns.

We would like to see the benefit of reservation on reducing
the peak-load. We assume that the reserved demand ri,j is
at lease p fraction of the total demand ri,j +ai,j (Fig. 2.(a)).
Specifically, we assume that ri,j

ri,j+ai,j
is a random variable

uniformly distributed in [p, 1]. Further, we assume that the
reserved EV-charging jobs are reserved exactly L time slots
ahead. Given an online algorithm, we define its empirical
ratio ηe as the ratio between the peak consumption under
this algorithm and the optimal peak consumption under the
offline optimal algorithm. Then, we vary L, and compute
the empirical ratio ηe, for different p’s under all the three
algorithms. From Fig. 3-5.(a), we can see that both the EPS
algorithm and the myopic algorithm perform much better
than the uncoordinated algorithm, while the EPS algorithm
and the myopic algorithm have comparable performance.
Therefore, by coordinating among different EV’s, we can
significantly reduce the peak consumption.

To better understand the performance of the EPS algorithm
and the myopic algorithm, we generate another arrival pattern
(Fig. 2.(b)). The second arrival pattern is similar to the arrival



pattern we studied in Section III-B. In Section III-B, we have
shown that if we have infinite batches of jobs, the myopic
algorithm does not have a finite CR. However, the second
arrival pattern here only has finite batches of jobs. Thus,
we would expect that the gap between the empirical ratio
of the myopic algorithm and the optimal CR will not be as
dramatic. Nevertheless, from Fig. 3-5.(b), we can see that
the EPS algorithm performs much better than the myopic
algorithm. Further, we note that the empirical rate ηe’s are
the same for the two arrival patterns under the EPS algorithm,
while the empirical rate ηe’s are dramatically different across
the two arrival patterns under the myopic algorithm. Such an
observation indicates that the EPS algorithm is more robust
in reducing the peak than the myopic algorithm. One may
argue that the arrival pattern in Fig. 2.(b) may occur rarely
in practice. However, from the grid stability point of view, it
is indeed rare events that lead to costly failures [16]. Hence,
the ability of the EPS algorithm to gracefully handle the peak
even in the worst case is highly desirable in practice.
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(a) ηe vs. p for the first arrival
pattern.
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Fig. 3. L = 36.
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(a) ηe vs. p for the first arrival pat-
tern.
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(b) ηe vs. p for the second arrival
pattern.

Fig. 4. L = 72.
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(a) ηe vs. p for the first arrival
pattern.
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Fig. 5. L = 144.

VII. CONCLUSION

We study online peak-minimizing algorithms for an aggre-
gator, which manages a large set of EV charging jobs with
deadlines. Existing algorithms either require precise future

knowledge or do not make use of any future knowledge. In
contrast, we focus on a more practical scenario where some
limited future knowledge can be obtained. Specifically, we
consider the scenario where such limited future knowledge
is revealed by job reservation. We then propose a general
and systematic approach to design competitive online algo-
rithms. Our proposed algorithm, called EPS, can attain the
optimal competitive ratio under an arbitrary set of reservation
parameters. We also characterize the benefit of reservation in
reducing the peak consumption. Compared to the previous
online algorithms (e.g. BKP [7]) that do not make use
of any future knowledge, the proposed EPS algorithm can
significantly reduce the competitive ratio. Finally, Simulation
results demonstrate that the EPS algorithm is indeed very
robust and effective in reducing the peak.
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