
On the Large-Deviations Optimality of Scheduling Policies
Minimizing the Drift of a Lyapunov Function

Xiaojun Lin and V. J. Venkataramanan
School of ECE, Purdue University, West Lafayette, IN 47907

Email: {linx,vvenkat}@ecn.purdue.edu

Abstract— We show that for a large class of scheduling
algorithms, when the algorithm minimizes the drift of a
Lyapunov function, the algorithm is optimal in maximizing
the asymptotic decay-rate of the probability that the Lyapunov
function value exceeds a large threshold. The result in thispaper
extends our prior results to the important and practically-
useful case when the Lyapunov function is not linear in scale,
in which case the evolution of the fluid-sample-paths becomes
more difficult to track. We use the notion of generalized fluid-
sample-paths to address this difficulty, and provide easy-to-
verify conditions for checking the large-deviations optimality
of scheduling algorithms. As an immediate application of the
result, we show that the log-rule is optimal in maximizing the
asymptotic decay-rate of the probability that the sum queue
exceeds a thresholdB.

I. I NTRODUCTION

In this paper we are interested in link scheduling al-
gorithms for wireless networks supporting delay-sensitive
applications. In many cases, the performance objective of
these applications can be mapped to a bound on the queue-
overflow probability [1]–[6]. Specifically, in order to meet
delay constraints with high probability, we would like to
ensure that the probability with which some function of the
global queue-length vector exceeds an overflow threshold is
below a small value. For example, such a function of the
queue-length vector could be the maximum queue length
among all users, or the sum of the queue length over all
users. Often, a closed-form solution of the queue length
distribution is not available. In that case, we could instead use
large-deviations theory [7] to study the asymptotic decay-rate
of the queue-overflow probability, as the overflow threshold
increases to infinity [1]–[6]. A larger decay-rate may then be
interpreted as better delay performance.

Unfortunately, due to both the radio interference and the
time-varying channel conditions in wireless systems, even
the large-deviation decay-rate can be difficult to character-
ize. Specifically, in order to minimize the queue-overflow
probability, it is often necessary to use queue-length-based
link scheduling algorithms, which compute the link schedule
at each time based on the current queue backlog vector [1],
[2]. However, for such queue-length-based scheduling algo-
rithms, computing the asymptotic decay-rate of the queue-
overflow probability involves a multi-dimensional calculus-
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of-variations problem that is very difficult to track [1], [2].
Recently, there have been some progress in using Lyapunov
functions to deal with this difficulty [4]. Through this new
approach, the form of scheduling algorithms that maximize
the asymptotic decay-rate of the probability of some specific
form of overflow event is characterized [4], [5]. See also the
related results in [3]. However, the proof techniques in these
papers tend to be quite involved.

In this paper, we would like to establish a simpler and
more general result of the following type.

Statement 1: If an algorithm minimizes the drift of a
Lyapunov function at every time, then such an algorithm is
optimal in the sense that it maximizes the asymptotic decay-
rate of the probability that the Lyapunov function value
exceeds a threshold, as the threshold approaches infinity.

Note that many queue-length-based scheduling algorithms
are designed by minimizing the drift of some Lyapunov
functions. For example, the max-weight algorithm minimizes
the drift of the Lyapunov functionV ( ~X) =

∑

i X2
i where

Xi is the queue length of useri. Similarly, theα-algorithm
in [4], [5] minimizes the drift of the Lyapunov function
V ( ~X) =

∑

i Xα+1
i . Hence, if the above result indeed

holds, it will allow us to easily conclude the large-deviations
optimality of a large class of link scheduling algorithms.
Further, it will help us to search for the optimal scheduling
algorithm by choosing the appropriate Lyapunov function.

In our prior work [6], we have established Statement 1
for Lyapunov functions that satisfy the following conditions.
First, the Lyapunov functionV ( ~X) must be linear in scale. In
other words, if the global queue-length vector~X is multiplied
by a positive scalarβ, then V (β ~X) = βV ( ~X). Second,
the Lyapunov function must be convex. These conditions
are satisfied by Lyapunov functions of the formVα( ~X) =

(
∑

i Xα
i )1/α. Note that asα → ∞, Vα( ~X) → maxi Xi.

Hence, we can conclude that, asα → ∞, the α-algorithms
asymptotically achieve the maximum asymptotic decay-rate
of the probability thatmaxi Xi ≥ B. Note that this conclu-
sion recovers the result that was first reported in [4], [5].

However, not all Lyapunov functions (and their corre-
sponding scheduling algorithms) satisfy the afore-mentioned
conditions required in [6]. A notable case is the so-called log-
rule [8], which has been conjectured to maximize the asymp-
totic decay-rate of the overflow probability that

∑

i Xi ≥ B.
The log-rule can be viewed as minimizing the drift of the
Lyapunov functionV ( ~X) =

∑

i(Xi + 1) log(Xi + 1) − Xi.



This Lyapunov function is not linear in scale. Hence, we
cannot use the result of [6] to study its optimality.

In this paper, we extend the result of [6] to more general
forms of Lyapunov function, which include the Lyapunov
function for the log-rule. We show that under suitable condi-
tions, Statement 1 is true even when the Lyapunov function is
not linear in scale. A main difficulty in establishing Statement
1 for Lyapunov functions that are not linear in scale is that
the resulting fluid-sample-paths are more difficult to track.
We use the recently-developed theory of generalized fluid-
sample-paths [3] to address this difficulty. The result of
this paper allows us to apply Statement 1 to a much larger
class of Lyapunov functions and scheduling algorithms. In
particular, as an immediate application, we show that the log-
rule maximizes the asymptotic decay-rate of the probability
that

∑

i Xi ≥ B. This result generalizes the result of [8],
which was for a log-rule-like scheduling algorithm and was
for only two users.

II. T HE SYSTEM MODEL

For simplicity, we focus on the downlink of a single-cell
serving multiple users (although the techniques here can also
be applied to more general network settings, e.g., multi-hop
wireless networks). The wireless channel can be in one of
S states. We assume that time is divided to slots with unit-
length. At time-slott, let C(t) denote the channel state. We
assume that the channel states arei.i.d. over time, and let
pj = P[C(t) = j], j = 1, 2, ...,S, denote the probability
that the channel state isj at time t. The base-station serves
N users. LetAi(t) denote the number of packets for useri
that arrive at the base-station at time-slott. We assume that
Ai(t) are i.i.d. over time, and are independent across users.
We further assume thatAi(t) is bounded for all usersi and
all time-slotst. Defineλi , E[Ai(t)] and~λ = (λ1, . . . , λN ).
We assume that~λ belongs to the interior of the capacity
region [9], and hence the system can be stabilized by some
scheduling policy. Due to interference, at each time-slot the
base-station can only serve packets for one user. LetF i

j

denote the rate that the base-station can serve useri when
the channel state isj, if the base-station chooses to serve
useri. Let U(t) denote the index of the user that the base-
station chooses to serve at time-slott. Then the evolution of
the queue backlog for useri can be written as:

Xi(t + 1) =



Xi(t) + Ai(t) −

S
∑

j=1

F i
j1{C(t)=j,U(t)=i}





+

.

Let ~X = [Xi, i = 1, ..., N ]. Let Ṽ ( ~X) denote a given non-
negative and component-wise non-decreasing function of the
global queue vector~X . In this paper, we are interested in the
asymptotic decay-rate of the probability thatṼ ( ~X) exceeds
some thresholdf̃(B), when the scaling parameterB ap-
proaches infinity. In other words, for a particular scheduling
policy π under which the system is stationary and ergodic,
we are interested in the following quantity:

I(π) = − lim
B→∞

1

B
logPπ[Ṽ ( ~X(0)) ≥ f̃(B)], (1)

whenever such a limit exists, wherePπ[·] denote the sta-
tionary distribution under the scheduling policyπ. Further,
let Iopt denote the maximum value ofI(π) over all policies.
we are interested in finding the scheduling policy that can
achieve the maximum decay rateIopt.

Remark:The functionf̃(B) needs to be properly chosen
so that the limit in (1) does not become trivial. We will
provide more comments on the choice off̃(B) at the end of
Section III.

For anyB > 0 andT > 0, define the scaled channel-state
processsB

j (t), scaled arrival processgB
i (t), and scaled queue

processxB
i (t) assB

j (0) = gB
i (0) = 0, xB

i (0) = Xi(0)/B,

sB
j (t) =

1

B

Bt
∑

τ=1

1{C(τ)=j}, gB
i (t) =

1

B

Bt
∑

τ=1

Ai(τ),

xB
i (t) =

1

B
Xi(Bt),

for t = m
B , m = 1, ..., BT , and by linear interpolation

otherwise. Let~sB(t) = [sB
j (t), j = 1, ...,S], ~gB(t) =

[gB
i (t), i = 1, ..., N ], and ~xB(t) = [xB

i (t), i = 1, ..., N ].

For any ~φ = [φj , j = 1, ...,S] ≥ 0 and
S
∑

j=1

φj = 1, define

H(~φ||~p) =
S
∑

j=1

φj log
φj

pj
. (Here we use the convention that

0 log 0 = 0.) Further, define

Li(a) = sup
θ

(θa − logE[exp(θAi(0))]) .

For any~a = [ai, i = 1, ..., N ], let L(~a) =
N
∑

i=1

Li(ai). With

a suitable choice of the topological space, the sequence of
processes~sB(·) and~gB(·) are known to satisfy sample-path
large deviation principles [7, p176] with large-deviationrate-
functions given by

IT
s (~s(·)) =

∫ T

0

H(
d~s(t)

dt
||~p)dt

IT
g (~g(·)) =

∫ T

0

L(
d~g(t)

dt
)dt,

whenever the processes~s(·) and~g(·) are absolute continuous.
Finally, for any (~s(·), ~g(·)), define the large-deviations cost
over a time interval[t1, t2] as

J[t1,t2](~s(·), ~g(·)) =

∫ t2

t1

H(
d~s(t)

dt
||~p) + L(

d~g(t)

dt
)dt.

III. A N UPPERBOUND ON THE ASYMPTOTIC

DECAY-RATE OF THE QUEUE OVERFLOW PROBABILITY

Given any non-negative and component-wise non-
decreasing functioñV ( ~X) of the global queue-length vector
~X, define the following optimization problem for allB > 0,



~φ and~a:

l̃B(~φ,~a) = min Ṽ (B ~X)

subject to Xi = [ai −
S

∑

j=1

F i
j ui

j]
+

[ui
j ] ≥ 0,

N
∑

i=1

ui
j = φj

for all channel statesj = 1, ...,S.

The parameterui
j can be interpreted as the long-term fraction

of time that the base-station serves useri at statej. The value
l̃B(~φ,~a) can then be viewed as the slowest way thatṼ ( ~X)
can grow when the channel-state process and the arrival
process satisfyd~s

dt = ~φ and d~g
dt = ~a at all time. For an

increasing overflow threshold functioñf(B), assume that the
following limit exists for all ~φ and~a:

w̃(~φ,~a) = lim
B→∞

1

B
f̃−1(l̃B(~φ,~a)). (2)

Roughly speaking,̃w(~φ,~a) can be interpreted as the slowest
speed of growth of̃f−1(Ṽ ( ~X)) and hence1/w̃(~φ,~a) is the
maximum-timeṼ ( ~X) would take to exceed̃f(B) when the
channel-state process and the arrival process satisfyd~s

dt = ~φ

and d~g
dt = ~a. Let

Iopt = inf
w̃(~φ,~a)>0

H(~φ||~p) + L(~a)

w̃(~φ,~a)
.

We first have the following upper bound on the asymptotic
decay-rate of the queue-overflow probability.

Proposition 1: Assume that the limit in (2) exists for all
~φ and~a. Then

lim inf
B→∞

1

B
logPπ[Ṽ ( ~X(0)) ≥ f̃(B)] ≥ −Iopt.

Remark: The function f̃(B) must be chosen such that
the valueIopt is not trivial. Roughly speaking,̃f(B) must
be on the same order as̃V (B ~X) when B → ∞. For
example, wheñV ( ~X) =

∑

i X2
i , then f̃(B) may be chosen

asf̃(B) = B2. If f̃(B) “grows” too fast, it may happen that
w̃(~φ,~a) = 0 for all ~φ and~a. In this case,Iopt = +∞, and
hence the probabilityP[Ṽ ( ~X(0)) ≥ f̃(B)] decreases super-
exponentially to zero asB → ∞. The other extreme is when
f̃(B) “grows” too slowly. Specifically, if for all ~X

lim
B→∞

f̃−1(Ṽ (B ~X))

B
= +∞,

then w̃(~φ,~a) = +∞ and Iopt = 0. In this case, the
probability P[Ṽ ( ~X(0)) ≥ f̃(B)] may approach a non-zero
constant asB → ∞. Neither of these two situations are
desirable for an LDP result. To summarize, the suitable
choice off̃(B) should ensure that:

(a) w̃(~φ,~a) > 0 for some~φ and~a.

(b) For some~X , limB→∞
f̃−1(Ṽ (B ~X))

B < +∞.

Proof: [of Proposition 1] Fix a smallε > 0. By the
definition of Iopt, there exist~φ0 and~a0 such that

H(~φ0||~p) + L(~a0)

w̃(~φ0,~a0)
≤ Iopt + ε.

Let T0 = 1

(1−ε)w̃(~φ0,~a0)
and T = T0/(1 − ε). Consider

a scaled channel-state process~s0(·) and a scaled arrival
process~g0(·) in the interval [0, T ] such that~s0(t) = t~φ0

and~g0(t) = t~a0. Let δ > 0 be a small number, which we
will choose soon. Consider a setΓ of pairs of scaled channel-
state process~s(·) and scaled arrival process~g(·) such that
for each(~s(·), ~g(·)) ∈ Γ, the following holds

sup
t∈[0,T ]

||~s(t) − ~s0(t)|| < δ, sup
t∈[0,T ]

||~g(t) − ~g0(t)|| < δ.

We will show that with a suitable choice ofδ the queue must
overflow (in the sense that̃V ( ~X) > f̃(B) ) at timeBT for
any (~s(·), ~g(·)) ∈ Γ. To see this, for any(~s(·), ~g(·)) ∈ Γ, let
~φ = (~s(T ) − ~s(0))/T and~a = (~g(T ) − ~g(0))/T . Further,
let ūi

j be the corresponding fraction of time in the interval
[0, T ] that useri is served whenever the channel state isj.

Note that
N
∑

i=1

ūi
j = 1 for all statesj. Let

xi =



ai −

S
∑

j=1

φiF
i
j ūi

j





+

, xi,0 =



ai,0 −

S
∑

j=1

φi,0F
i
j ū

i
j





+

,

where ai, ai,0, φi and φi,0 are the components of~a,~a0, ~φ,
and ~φ0, respectively. Let~x = [xi], and ~x0 = [xi,0]. Then
by choosingδ to be sufficiently small, we can ensure that
xi ≥ (1 − ε)xi,0 for all (~s(·), ~g(·)) ∈ Γ. Hence, we have

V ( ~X(BT )) ≥ V ( ~X(BT ) − ~X(0)) ≥ V (BT~x)

≥ V (BT0~x0) ≥ l̃BT0(~φ0,~a0).

By the definition ofw̃(~φ,~a), there existsB0 such that for
all B ≥ B0, we have

f̃−1(l̃BT0(~φ0,~a0)) ≥ (1 − ε)BT0w̃(~φ0,~a0) = B.

Hence, we have

Ṽ ( ~X(BT )) ≥ l̃BT0(~φ0,~a0) ≥ f̃(B).

In other words, the queue must overflow at timeBT for any
(~s(·), ~g(·)) ∈ Γ. Hence,

lim inf
B→∞

1

B
logPπ[Ṽ ( ~X(0)) ≥ f̃(B)]

= lim inf
B→∞

1

B
logPπ[Ṽ ( ~X(BT )) ≥ f̃(B)]

≥ − inf
(~s(·),~g(·))∈Γo

J[0,T ](~s(·), ~g(·)) ≥ −J[0,T ](~s0(·), ~g0(·))

= −T (H(~φ0||~p) + L(~a0)) ≥ −
Iopt + ε

(1 − ε)2
.

Since this is true for allε > 0, the result of the proposition
then follows by lettingε → 0.



IV. A L OWER BOUND ON THE ASYMPTOTIC

DECAY-RATE OF THE QUEUE-OVERFLOW PROBABILITY

Next, we construct a lower bound on the asymptotic decay-
rate of the queue overflow probability using a Lyapunov
function.

A. Lyapunov functions

Often, the stability of the system under a particular
scheduling policyπ is established through a Lyapunov func-
tion. Let || ~X || be anLp norm with p ≥ 1. The Lyapunov
functionV ( ~X) for a given scheduling policyπ is a function
that satisfies the following conditions:

Assumption 1: (a) V ( ~X) is a continuous function of~X,
andV ( ~X) ≥ 0.

(b) V ( ~X) → +∞ as || ~X|| → ∞.
(c) There exists a largeB such that whenever|| ~X|| ≥ B,

E[V ( ~X(t + 1)) − V ( ~X(t))| ~X(t) = ~X ] < −ξ, (3)

for someξ > 0.
The last condition implies a negative drift of the Lya-

punov function. Hence, the system under policyπ must
be stable. Often, the negative drift is attained when the
scheduling policyπ chooses a schedule that minimizes the
drift V ( ~X(t + 1)) − V ( ~X(t)) at each time slott. Note that
if the Lyapunov function is differentiable, then under fairly
general assumptions, the drift of the Lyapunov function may
be written (for large~X(t)) as

V ( ~X(t + 1)) − V ( ~X(t)) =

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
Ai(t)

−

S
∑

j=1

1{C(t)=j}

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
F i

j1{U(t)=i}

+o(∇V ( ~X(t))),

where ∇V ( ~X) is the gradient ofV ( ~X) and is given by

∇V ( ~X) =
[

∂V
∂Xi

, i = 1, ..., N
]

. Hence, ignoring the small-o

term, we can define a scheduling policy that minimizes the
drift of the Lyapunov function as follows.

Definition 2: A scheduling policyπ is said to minimize
the drift of the Lyapunov functionV ( ~X) if at any time t,
when the channel state isj, the scheduling policy picks the
useri that maximizes the value∂V

∂Xi

∣

∣

∣

~X(t)
F i

j .

With such a scheduling policy, the one-step drift ofV ( ~X)
can be further simplified to

V ( ~X(t + 1)) − V ( ~X(t)) =
N

∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t)
Ai(t) (4)

−

S
∑

j=1

1{C(t)=j} max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t)
F i

j + o(∇V ( ~X(t))).

In this section, we will establish a lower bound on the
asymptotic decay-rate of the queue-overflow probability for
scheduling policies of the above form, which will then help
us prove Statement 1 for this class of scheduling policies.

However, for this purpose we need some stronger conditions
on the Lyapunov functions. These conditions essentially re-
quire that the scheduling policy not only minimizes theone-
stepdrift of the Lyapunov function, it must also minimize
the drift over each time-interval of lengthBη for someη ∈
(0, 1), whenever the queue-length vector~X(t) preceding this
time-interval is on the orderB. Such drift-minimization must
hold even when compared to another policy that knows the
channel-states and arrivals in this time-interval of length Bη

in advance. For this purpose, the condition below essentially
requires that the gradient of the Lyapunov function does
not change much during such a time-interval of lengthBη

(please see part (b) of Assumption 2). Since the drift of the
Lyapunov function is dependent on its gradient, under these
conditions a scheduling policy that minimizes the one-step
drift should also (approximately) minimize theBη-step drift
(see Proposition 4 below).

Assumption 2: (a) ∇V ( ~X) ≥ 0 for all ~X , and

∂V

∂Xi
→ +∞ asXi → ∞ for all i.

Further, for allM > 0 andi, ∂V
∂Xi

is bounded whenever
Xi ≤ M .

(b) For anyε > 0, M > 0 and0 < v0 < v1, there exists
B0 and η0 ∈ (0, 1) such that for allB ≥ B0, 0 <
η < η0, || ~X0|| ∈ (v0B, v1B), and ||∆ ~X || ≤ MBη,
the following holds

||∇V ( ~X0 + ∆ ~X) −∇V ( ~X0)|| ≤ ε||∇V ( ~X0)||.

(c) For any ε > 0, M > 0 and 0 < v0 < v1, there
existsB0 and η0 ∈ (0, 1) such that for allB ≥ B0,
0 < η < η0, || ~X0|| ∈ (v0B, v1B), and|| ~X1|| ≤ MBη,
the following holds,

||∇V ( ~X1)|| ≤ ε||∇V ( ~X0)||, for all i.

(d) The functionf(B) is convex and increasing, and the
following condition holds

lim sup
B→∞

1

f ′(B)
sup

{ ~X:V ( ~X)=f(B)}

||∇V ( ~X)|| < +∞.

From these conditions, we can obtain the following
lemma.

Lemma 3:Suppose that the Lyapunov functionV ( ~X)
satisfies Assumptions 1 and 2. For anyε > 0, M > 0,
and0 < v0 < v1, there existsB0 andη0 ∈ (0, 1) such that
for all B ≥ B0, 0 < η < η0, || ~X0|| ∈ (v0B, v1B), and
||∆ ~X || ∈ (0, MBη), the following holds,

V ( ~X0 + ∆ ~X) − V ( ~X0) ≤

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0

∆ ~Xi

+ε||∇V ( ~X0)|| · ||∆ ~X ||.

Proof: Let h(t) = V ( ~X0 + t∆ ~X). Then

h′(t) =

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
∆Xi.



Hence, by the mean-value theorem, we have

V ( ~X0 + ∆ ~X) − V ( ~X0) = h(1) − h(0)

=
N

∑

i=1

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
∆Xi,

for somet ∈ (0, 1). By part (b) of Assumption 2, we can find
B0 and η0 ∈ (0, 1) such that for allB ≥ B0, 0 < η < η0,
|| ~X0|| ∈ (v0B, v1B), and ||∆ ~X || ≤ MBη, we have,
∣

∣

∣

∣

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
−

∂V

∂Xi

∣

∣

∣

~X0

∣

∣

∣

∣

≤ ε||∇V ( ~X0)||, for all i.

Hence, we have,
∣

∣

∣

∣

∣

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0+t∆ ~X
∆Xi −

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X0

∆Xi

∣

∣

∣

∣

∣

≤ εN ||∇V ( ~X0)|| · ||∆ ~X ||.

The result of the lemma then follows.
We can then obtain the following proposition, which can

be viewed as a stronger version of (4). Recall that both the
arrivals and the departures are assumed to be bounded.

Proposition 4: Suppose that the scheduling policy min-
imizes the drift of the Lyapunov functionV ( ~X), and the
Lyapunov functionV ( ~X) satisfies Assumptions 1 and 2.
For any ε > 0 and 0 < v0 < v1, there existsB0 and
η0 ∈ (0, 1) such that for allB ≥ B0, 0 < η < η0,
|| ~X(t0)|| ∈ (v0B, v1B), and t ∈ (0, Bη), the following
holds,

V ( ~X(t0 + t)) − V ( ~X(t0)) (5)

≤ t

[

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(t0)
(ai + ε)

−

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(t0)
F i

j





where

ai =
1

t

t−1
∑

k=0

Ai(t0 + k) for all usersi

φj =
1

t

t−1
∑

k=0

1{C(t0+k)=j} for all statesj.

Due to space constraints, we do not provide the proof here.
Please refer to the technical report [10]. The key idea is to
use Lemma 3 to bound the change in the Lyapunov function
(from time t0 to t0 + t) by the gradient of the function at
the initial time t0.

B. The Lower Bound

Next, define the following optimization problem. For all
~φ and~a, let

lB(~φ,~a) = max

N
∑

i=1

∂V

∂Xi
ai −

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi
F i

j

subject to V ( ~X) = f(B).

Comparing with (5), the valuelB(~φ,~a) can be viewed
as, givenV ( ~X(t0)) = f(B), the fastest way with which
V ( ~X(t)) can grow locally when the channel-state process
and the arrival process satisfyd~s

dt = ~φ and d~g
dt = ~a at time

t0. Assume that the following limit exists for all~φ and~a:

w(~φ,~a) = lim
B→∞

1

f ′(B)
lB(~φ,~a).

Roughly speaking,w(~φ,~a) is the fastest way forf−1(V ( ~X))
to grow whenV ( ~X) = f(B). Hence 1

w(~φ,~a)
is the earliest

time thatV ( ~X) can exceedf(B). Let

θ0 = inf
w(~φ,~a)>0

H(~φ||~p) + L(~a)

w(~φ,~a)
.

Let P0[·] denote the distribution conditioned on~X(0) = 0.
Then we have the following result.

Proposition 5: Suppose that the scheduling policy min-
imizes the drift of the Lyapunov functionV ( ~X), and the
Lyapunov functionV ( ~X) satisfies Assumptions 1 and 2.
Assume that~X(0) = 0. Then for allT ≥ 0,

lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)] ≤ −θ0.

To prove Proposition 5, we will need the following Lemma 6
and Lemma 7 on the properties ofw(~φ,~a). The proofs are
omitted due to space constraints and are available in our
online technical report [10].

Lemma 6: If the limit in the definition ofw(~φ,~a) exists
for all ~φ and~a, then the functionw(~φ,~a) is continuous with
respect to~φ and~a.

Remark: If, in addition to the above result,~φ and ~a
are constrained within a bounded set (which is true for our
problem setting because the arrivals are bounded), then the
function w(~φ,~a) is uniformly continuous.

Lemma 7: If the limit in the definition ofw(~φ,~a) exists
for all ~φ and~a within a closed and bounded set, then the
convergence of the limit is uniform for all~φ and~a. In other
words, for anyε > 0, there existsB0 such that for allB ≥
B0 and for all ~φ and~a, the following holds

|
1

f ′(B)
lB(~φ,~a) − w(~φ,~a)| ≤ ε.

To prove Proposition 5, we will use the notion of a Gener-
alized Fluid Sample Path (GFSP) introduced in [3]. Consider
a sequence of scaled sample paths(~sB(·), ~gB(·), ~xB(·)) on
the time-interval[0, T ]. Define µB(t) = f−1(V (B~xB(t)))

B .
Fix η ∈ (0, 1). For each B, divide the time interval
[0, T ] into sub-intervals of lengthBη/B, i.e., [0, Bη/B],
[Bη/B, 2Bη/B], [2Bη/B, 3Bη/B], and so on. For any
scaled sample path(~sB(·), ~gB(·)) (which is an element of
the above sequence), linearize~sB and ~gB on each such
sub-interval. LetUB(~sB , ~gB) denote such a linearized ver-
sion of ~sB and ~gB. For eacht, let θB(t) = Bη

B b t
Bη/B c.

We can then define therefined costof the scaled sample
path (~sB(·), ~gB(·)) on the time-interval[0, t] as J̄B(t) =
J[0,θ(B)(t)](U

B(~sB , ~gB)).



Taking subsequence if necessary, assume that the
sequence(~sB(·), ~gB(·), ~xB(·), µB(·), J̄B(·)) converges to
(~s(·), ~g(·), ~x(·), µ(·), J̄(·)) uniformly over the time interval
[0, T ]. This entire sequence (along with its limit) is called a
Generalized Fluid Sample Path (GFSP).

The following theorem from [3] (in a slightly-varied form)
establishes a lower bound on the asymptotic decay-rate of the
queue overflow probability using GFSP.

Theorem 8:Assume that~X(0) = 0. For anyη ∈ (0, 1)
the following holds : For anyT > 0,

lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)]

≤ − inf{J̄(T )| for all GFSP’s such thatµ(0) = 0

andµ(T ) ≥ 1}.
We are now ready to show Proposition 5.

Proof: [of Proposition 5] FixT > 0. From Theorem 8,
we only need to show that there exists a functionβ(δ) such
that β(δ) → 0 as δ → 0 and that for everyδ > 0, there
existsη ∈ (0, 1) such that

J̄(T ) ≥ θ0 − β(δ) (6)

for all GFSP (corresponding toη) with µ(0) = 0 andµ(T ) ≥
1.

Fix δ > 0. Let v0 = δ and v1 be a large number such
that ||~xB(t)|| ≤ v1 for all B ≥ B1 (for someB1 > 0) and
t ∈ (0, T ). (Such av1 must exist because the arrivals are
bounded.) Note that for any GFSP, the derivatives of~s(·)
and ~g(·) exist almost everywhere and are within a closed
and bounded set. By Lemma 6, there existsε > 0 such
that w(~φ,~a + ~ε) ≤ w(~φ,~a) + δ for all ~φ and~a within this
set, where~ε denote a vector whose components are allε.
Let M be the bound on the change of~X in one time-slot.
Then, according to Proposition 4, there existsB2 ≥ B1 and
η0 ∈ (0, 1) such that the statement of Proposition 4 holds
for ε, v0, v1 andM .

Take any0 < η < η0. Take any GFSP corresponding to
thisη such thatµ(0) = 0 andµ(T ) ≥ 1. Define the following
for the limiting sample path(~s(·), ~g(·), ~x(·), µ(·)). Let T1 =
inf{t ≥ 0|µ(t) ≥ 1} be the first time such thatµ(t) ≥ 1.
Let T0 = sup{t ≤ T1 | ||~x(t)|| ≤ 3δ or µ(t) ≤ 3δ} be the
last time beforeT1 such that||~x(t)|| ≤ 3δ or µ(t) ≤ 3δ.
Further, there existsB3 such that for allB ≥ B3, the
difference between(~sB(·), ~gB(·), ~xB(·), µB(·), J̄B(·)) and
(~s(·), ~g(·), ~x(·), µ(·), J̄(·)) is less thanδ. Hence, during the
time interval (T0, T1), we must have, for allB ≥ B3 and
t ∈ [T0, T1],

||~xB(t)|| ≥ 2δ, 2δ ≤ µB(t) ≤ 1 + δ,

µB(T0) ≤ 4δ andµB(T1) ≥ 1 − δ.

Finally, according to Lemma 7, we can take another large
B4 ≥ B3 such that for allB ≥ B4 and for all ~φ and~a,

|
1

f ′(Bδ)
lBδ(~φ,~a) − w(~φ,~a)| ≤ δ. (7)

Fix some B ≥ max{B2, B4} and divide the interval
[0, T ] to sub-intervals of lengthBη/B. Let [k0B

η/B, (k0 +

1)Bη/B] and [k1B
η/B, (k1 + 1)Bη/B] be the first and last

sub-intervals, respectively, that are completely contained in
[T0, T1]. By choosing a sufficiently largeB, we can ensure
that k0 < k1, and µB(k0B

η/B) ≤ 5δ and µB((k1 +
1)Bη/B) ≥ 1 − 2δ.

Consider any such sub-intervalk betweenk0 and k1.
Denote it by[kBη/B, (k + 1)Bη/B]. Let t0 = kBη/B and
t = Bη/B. According to Proposition 4, the change of the
Lyapunov function must satisfy:

V ( ~X(B(t0 + t))) − V ( ~X(Bt0))

≤ Bt

[

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(Bt0)
(ai + ε)

−

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(Bt0)
F i

j





where

ai =
1

t
[gB

i ((t0 + t)) − gB
i (t0)] for all usersi

φj =
1

t
[sB

j ((t0 + t)) − sB
j (t0)] for all statesj.

Consider the functionµB(V ) = 1
B f−1(V ). Its derivative is

given by dµB

dV = 1
Bf ′(BµB) . Further, we assume in part (d)

of Assumption 2 thatf(·) is convex and increasing. Hence,
f−1(·) is concave and increasing. Therefore, the drift of
µB(t) must satisfy

µB(t0 + t) − µB(t0)

≤
t

f ′(BµB(t0))

[

N
∑

i=1

∂V

∂Xi

∣

∣

∣

~X(Bt0)
(ai + ε)

−
S

∑

j=1

φj max
i=1,...,N

∂V

∂Xi

∣

∣

∣

~X(Bt0)
F i

j



 .

Note that the quantity in the bracket on the right hand side
is no greater thanlBµB(t0)(~φ,~a + ~ε). Further, by (7), the
quantity on the right hand side is no greater thant[w(~φ,~a+
~ε) + δ] sinceµB(t0) ≥ δ.

Using the above inequality and the definition ofθ0, the
refined cost for such a sub-interval satisfies

t[H(~φ||~p) + L(~a)] ≥ tθ0w(~φ,~a) ≥ tθ0[w(~φ,~a + ~ε) − δ]

≥ θ0[µ
B(t0 + t) − µB(t0) − 2tδ].

Note that this is true for all sub-intervalsk. Summing over
all subintervals betweenk0 andk1, we have

J̄B(T ) ≥ J[k0Bη/B,(k1+1)Bη/B](U
B[~sB, ~gB])

≥ θ0[µ
B((k1 + 1)Bη/B) − µB(k0B

η/B)]

−2θ0Tδ

≥ θ0(1 − 7δ) − 2θ0Tδ.

Hence,

J̄(T ) ≥ J̄B(T ) − δ ≥ θ0(1 − 7δ) − 2θ0Tδ − δ.

Hence, we have shown (6). The result of the Proposition then
follows.



V. L ARGE DEVIATIONS OPTIMALITY OF SCHEDULING

ALGORITHMS THAT M INIMIZE THE DRIFT OF A

LYAPUNOV FUNCTION

If Ṽ (·) = V (·) and f̃(·) = f(·), the upper boundIopt

and the lower boundθ0 differ only in their dependence on
w̃(~φ,~a) versusw(~φ,~a).

DefineΛ(~φ) as the rate-region of the system (i.e., the set of
all feasible offered-load vectors~λ) when the channel distribu-
tion is twisted to~φ. Takedist(~a, Λ(~φ)) , inf~y∈Λ(~φ) ||~a−~y||.

First, we note that there exists âδ > 0 such that the
infimum in the definition ofIopt andθ0 can be taken over the
set of ~φ and~a such thatdist(~a, Λ(~φ)) > δ̂. This is because
when~a is very close to the setΛ(~φ), the valuesw(~φ,~a) and
w̃(~φ,~a) are close to0 and hence it can be shown that they
will not influence the infimum.

We then have the following main result.
Proposition 9: Take Ṽ (·) = V (·) and f̃(·) = f(·). Under

Assumptions 1 and 2, ifw̃(~φ,~a) ≥ w(~φ,~a) for all ~φ
and ~a such thatdist(~a, Λ(~φ)) > δ̂, then Iopt = θ0, and
the scheduling algorithm that minimizes the drift of the
Lyapunov functionV ( ~X) must maximize the asymptotic
decay-rate of the probability that the Lyapunov function
value exceedsf(B). More precisely, under such a scheduling
algorithmπ, there must existT0 > 0 such that for allT ≥ T0,

lim inf
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)]

= lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)] = −Iopt.

Proof: For anyε > 0, there exists~φ0 and~a0 such that

H(~φ0||~p) + L(~a0)

w̃(~φ0,~a0)
≤ Iopt + ε.

Let T0 > 1

w̃(~φ0,~a0)
. Using similar techniques as the proof of

Proposition 1, we can show that for allT ≥ T0,

lim inf
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)] ≥ −(Iopt + ε).

By Proposition 5, we must then have

Iopt + ε ≥ − lim inf
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)]

≥ − lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)]

≥ θ0.

If w̃(~φ,~a) ≥ w(~φ,~a) for all ~φ and ~a such that
dist(~a, Λ(~φ)) > δ̂, then by the definition ofIopt andθ0, we
must haveIopt ≤ θ0. Sinceε can be chosen to be arbitrarily
small, We can then conclude thatIopt = θ0, and we can find
T0 such that for allT ≥ T0,

lim
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)] = −Iopt.

Remark: For each B, as T → ∞, the probability
P0[V ( ~X(BT )) ≥ f(B)] approachesPπ[V ( ~X(0)) ≥ f(B)].
Hence, we could infer from Proposition 9 that the scheduling

algorithmπ should also maximize the asymptotic decay-rate
of Pπ[V ( ~X(0)) ≥ f(B)]. This argument could be made
rigorous using the Freidlin-Wentzell construction [3], [6].

It could be non-trivial to check̃w(~φ,~a) ≥ w(~φ,~a) for all
~φ and~a. Next, we provide a sufficient condition that is easier
to check. For eachB > 0 and ~y = [yi, i = 1, . . . , N ] ≥ 0,
define

l̄B(~y) = max

N
∑

i=1

∂V

∂Xi
yi

subject to V ( ~X) = f(B).

Note that l̄B(~y) can be viewed as the fastest possible way
that, givenV ( ~X(t0)) = f(B), V ( ~X(t)) can growlocally in
a particular direction~y. Similarly, we can interpretV (B~y)
as the value ofV ( ~X(t)) when the growth direction of~X(t)
is consistentlyequal to~y.

Proposition 10: Suppose that for anyη > 0, ε > 0 and
M > 0, there exists aB0 such that for allB ≥ B0 and all
η < ||~y|| ≤ M , the following holds

1

f ′(B)
l̄B(~y) ≤

1

B
f−1(V (B~y)) + ε.

Then under Assumptions 1 and 2, the scheduling algorithm
that minimizes the drift of the Lyapunov functionV ( ~X) must
maximize the asymptotic decay-rate of the probability that
the Lyapunov function value exceedsf(B).

Proof: Take any~φ and ~a such thatdist(~a, Λ(~φ)) >
δ̂. Fix a small ε > 0. Let B0 be chosen according to the
assumption in the proposition withM = N max

i=1,...,N
ai, and

η = δ̂. For any[ui
j ] ≥ 0 such that

N
∑

i=1

ui
j = φj for all j, we

have
N

∑

i=1

∂V

∂Xi
ai −

S
∑

j=1

φj max
i=1,...,N

∂V

∂Xi
F i

j

≤

N
∑

i=1

∂V

∂Xi
ai −

S
∑

j=1

N
∑

i=1

ui
j

∂V

∂Xi
F i

j

=

N
∑

i=1

∂V

∂Xi
(ai −

S
∑

j=1

ui
jF

i
j ) ≤

N
∑

i=1

∂V

∂Xi
[ai −

S
∑

j=1

ui
jF

i
j ]

+.

Now, letyi = [ai−
S
∑

j=1

ui
jF

i
j ]+ for all i. yi can be interpreted

as the distance between~a and a vector in the setΛ(~φ). Since
dist(~a, Λ(~φ)) > δ̂, we must have||~y|| ≥ δ̂ = η. Then, by
the assumption of the proposition, we have, for allB ≥ B0,

lB(~φ,~a)

f ′(B)
≤

l̄B(~y)

f ′(B)
≤

f−1(V (B~y))

B
+ ε.

Since this is true for all[ui
j ], we must have

lB(~φ,~a)

f ′(B)
≤

f−1(l̃B(~φ,~a))

B
+ ε.

Taking limit asB → ∞, we obtainw(~φ,~a) ≤ w̃(~φ,~a) + ε.
Since this is true for allε > 0, we must havew(~φ,~a) ≤
w̃(~φ,~a). The result then follows from Proposition 9.



A. The Optimality of the Log-rule

Next, we will use the above result to show that the log-rule
is optimal in maximizing the asymptotic decay-rate of the
probability that the sum-queue exceeds a thresholdB. Take

the Lyapunov functionV ( ~X) =
N
∑

i=1

(Xi+1) log(Xi+1)−Xi,

and thatf(B) = (B + 1) log(B + 1) − B. The policy that
minimizes the drift of the Lyapunov function is the log-rule:
at each time, the base-station should choose the useri with
the largest value of

∂V

∂Xi
F i

j = log(Xi + 1)F i
j .

We first obtain the following proposition.
Proposition 11: The log-rule maximizes the asymptotic

decay-rate of the probability thatV ( ~X) ≥ f(B).
Due to lack of space, we only highlight the main ideas of

the proof here and defer the detailed proof to our technical
report [10]. For the result of the Proposition to hold, we
need to verify that Assumptions 1 and 2 are satisfied and
that the condition of Proposition 10 holds. The condition in
Proposition 10 can be shown to hold by showing that

lim sup
B→∞

l̄B(~y)

f ′(B)
≤

N
∑

i=1

yi, (8)

lim inf
B→∞

f−1(V (B~y))

B
≥

N
∑

i=1

yi, (9)

and further that, given any0 < η < M , the convergence in
(8) and (9) is uniform over all~y such thatη ≤ ||~y|| ≤ M . We
can then conclude that the log-rule maximizes the asymptotic
decay-rate of the probability thatV ( ~X) ≥ f(B).

We now show the following result.
Proposition 12: The log-rule maximizes the asymptotic

decay-rate of the probability that
∑N

i=1 Xi ≥ B.
Proof: Using similar techniques as in the proof of the

limit (9), we can show thatlimB→∞
1
B f−1(V (B~y)) =

∑N
i=1 yi and that, given any0 < η < M , the convergence

is uniform over all~y such thatη ≤ ||~y|| ≤ M . Hence, we
can show that the corresponding asymptotic decay-rate of
the probability thatV ( ~X) ≥ f(B) is given by

Iopt = inf
w̃(~φ,~a)>0

H(~φ||~p) + L(~a)

w̃(~φ,~a)
, (10)

where

w̃(~φ,~a) = min

N
∑

i=1

yi

subject to yi = [ai −

S
∑

j=1

F i
j ui

j]
+

N
∑

i=1

ui
j = φj for all channel statesj.

To show that the log-rule also maximizes the asymptotic

decay-rate of the probability that
N
∑

i=1

Xi ≥ B, we use the

property that
N
∑

i=1

Xi ≥ B impliesV ( ~X) ≥ (B+N) log(B+

N)−(B+N) logN −B (please refer to the technical report
[10] for details). Note that whenB → ∞, the ratio between
this quantity andf(B) converges to 1. Hence, for anyε > 0,

there exists aB1 such that for allB ≥ B1,
N
∑

i=1

Xi ≥ (1+ε)B

implies V ( ~X) ≥ f(B). We then have

lim sup
B→∞

1

B
logP0[

N
∑

i=1

Xi(BT ) ≥ (1 + ε)B]

≤ lim sup
B→∞

1

B
logP0[V ( ~X(BT )) ≥ f(B)] = −Iopt.

By a change of variable, we can infer that

lim sup 1
B logP0[

N
∑

i=1

Xi(BT ) ≥ B] ≤ −
Iopt

1+ε . Since this is

true for all ε, we havelim sup 1
B logP0[

N
∑

i=1

Xi(BT ) ≥ B] ≤

−Iopt.

Finally, using Ṽ ( ~X) =
∑

Xi and f̃(B) = B, we
can derive a lower bound on the overflow probability for
N
∑

i=1

Xi ≥ B over all scheduling policies, i.e., there exists

T0 > 0 such that for allT ≥ T0,

lim inf
B→∞

1

B
logP0[

N
∑

i=1

Xi(BT ) ≥ B] ≥ −Iopt,

whereIopt is also given by (10). The result then follows.
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