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Abstract— In this paper, we are interested in wireless schedul-
ing algorithms for the downlink of a single cell that can mini-
mize the queue-overflow probability. Assuming that a sample-
path large-deviation principle holds for the backlog process,
we first study structural properties of the minimum-cost-path-
to-overflow for a class of scheduling algorithms collectively
referred to as the “α-algorithms.” For a given α ≥ 1, the
α-algorithm picks the user for service at each time that has
the largest product of the transmission rate multiplied by the
backlog raised to the powerα. We show that when the overflow
metric is appropriately modified, the minimum-cost-to-overflow
under the α-algorithm can be achieved by a simple linear path,
and it can be written as the solution of a vector-optimization
problem. Using this structural property, we then show that
when α approaches infinity, the α-algorithm asymptotically
achieves the largest value of the minimum-cost-to-overflow
under all scheduling algorithms.

I. I NTRODUCTION

Link scheduling is an important functionality in wireless
networks due to both the shared nature of the wireless
medium and the variations of the wireless channel over
time. In the past, it has been demonstrated that, by carefully
choosing the scheduling decision based on the channel state
and/or the demand of the users, the system performance can
be substantially improved (see the references in [1]). Most
studies of scheduling algorithms have focused on optimizing
the long-term average throughput of the users. Similarly, in
the class of stability problems, the goal is to find scheduling
algorithms that can stabilize the network at given offered
loads, which also ensures that the long-term average service
rate is no less than the arrival rate of each user. An important
result along this direction is the development of the so-
called “throughput-optimal” algorithms [2]. An algorithmis
called throughput-optimalif, at any offered load that any
other algorithm can stabilize the system, this algorithm can
stabilize the system as well. Therefore, a throughput-optimal
scheduling algorithm is optimal if we only impose stability
constraints, i.e., it can stabilize the system over the largest
set of offered loads.

While stability (and ensuring that the long-term service
rate is no smaller than the arrival rate) is an important first-
order metric of success, for many delay-sensitive applications
it is far from sufficient. Note that a stability objective ensures
that the packet delay does not increase to infinity. For real-
time applications such as voice and video, we often need to
ensure a stronger condition that the packet delay can be upper
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bounded with high probability. One approach to quantify
the requirements of these delay-sensitive applications isto
enforce constraints on the probability of queue overflow. In
other words, we need to guarantee that the probability of
each user’s queue exceeding a given threshold is no greater
than a target value.

In this paper, we are interested in scheduling algorithms
that are optimal subject to the above type of delay constraints.
We focus on the downlink of a single cell in a cellular
network. The base-station serves multiple users. Due to
interference, the base-station can only serve one user at a
time. We assume that perfect channel information is available
at the base-station. The ultimate question that we attempt to
answer is the following: Is there adelay-optimalalgorithm
in the sense that, at any given offered load, the algorithm
can achieve the smallest probability of queue-overflow. Note
that if we impose a quality-of-service (QoS) constraint on
each user in the form of an upper bound on the queue-
overflow probability, then the above optimality condition will
also imply that the algorithm can support the largest set of
offered loads subject to the QoS constraint.

The above question has well-known to be a difficult one.
The closest answer in the literature is provided in [3], where
the author studied the problem in a large-deviation setting,
and showed that the so-called “exponential-rule” is delay-
optimal in the case with two-users. In a related result, it
was shown that for the case when the service rate is fixed,
the largest-weighted-delay-first (LWDF) algorithm is delay-
optimal in a large-deviation setting [4], [5]. To the best
of our knowledge, the general case for wireless networks
with an arbitrary number of users is still open. Note that
to study the queue-overflow probability, it is natural to use
the large-deviation theory because the overflow probability
of interest is often very small [6], [7]. The queue-overflow
probability can then be mapped to the decay-rate of the tail-
distribution of the queue, and the delay-optimal scheduling
algorithm will correspond to the one that maximizes this
delay-rate. Large-deviation theory has been successfullyap-
plied to wireline networks (see, e.g., [8]–[13]) and to wireless
scheduling algorithms that only use the channel state to
make the scheduling decisions [14]–[16]. However, when
applied to wireless scheduling algorithms that use also the
queue-length to make scheduling decisions, this approach
encounters a significant amount of technical difficulty. Note
than many scheduling algorithms of interest are of this latter
flavor, i.e., they choose the user to serve based on both the
channel state and the queue backlog. For example, the max-
weight algorithm that is known to be throughput-optimal [17]



serves at each time the user with the largest product of the
queue length and the service rate. Intuitively, this class of
queue-length-based scheduling algorithms will have a lower
queue-overflow probability compared to the queue-unaware
algorithms because they make an effort to suppress longer
queues. Indeed, the work in [18] has analytically shown the
superiority of queue-length-based scheduling algorithmsover
queue-unaware algorithms for a symmetric case with ON-
OFF channels. However, the technical difficulty associated
with the queue-length-based scheduling algorithms is thatthe
statistics of the service-rate process for each user is unknown
(because now the service-rate process is tightly coupled with
the backlog process, the channel variations, and the arrival
process). In order to apply the large-deviation theory to
queue-length-based scheduling algorithms, one has to use
sample-path large-deviation, and formulate the problem asa
multi-dimensional calculus-of-variations (CoV) problemfor
finding the “minimum-cost path to overflow.” The decay-rate
of the queue-overflow probability then corresponds to the
cost of this path, which is referred to as the “minimum cost to
overflow.” Unfortunately, for many scheduling algorithms of
interest, this multi-dimensional calculus-of-variations prob-
lem is very difficult to solve. In the literature, only some
restricted cases have been solved: Either restricted problem
structures are assumed (e.g., symmetric users and ON-OFF
channels [18]), or the size of the system is very small (only
two users) [19]. Due to the above difficulty, the question
of finding the optimal wireless scheduling algorithms under
delay constraints becomes very challenging.

In this paper, we provide a number of results along
this direction. Assuming that a sample-path large-deviation
principle holds, we study the structural property of the
minimum-cost-path-to-overflow for a class of queue-length-
based scheduling algorithms. In particular, we show that
when the form of the overflow threshold is appropriately
modified, at least one of the minimum-cost-path-to-overflow
is linear. This result allows us to convert the calculus-
of-variations problem (of sample-path large-deviation) to a
vector-optimization problem. Using this structure property,
we then show the main result of the paper that, as one of the
parameters approaches infinity, these class of queue-length-
based scheduling algorithms will asymptotically achieve the
largest minimum-cost-to-overflow among all scheduling al-
gorithms. As an immediate corollary of this result, we can
show that with the ON-OFF channel model, the max-weight
scheduling algorithm is optimal.

The rest of paper is organized as follows. We first
present the system model and the class of queue-length-
based scheduling algorithms (referred to asα-algorithms)
in Section II. In Section III, we provide an upper bound on
the minimum-cost-to-overflow for any scheduling algorithm.
We then study the structural properties of the minimum-cost-
path-to-overflow forα-algorithms in Section IV. Then in
Section V, we prove the main result that, as the parameter
α approaches infinity, this class of scheduling algorithms
asymptotically achieve the largest possible value of the
minimum-cost-to-overflow. Then we conclude.

II. T HE SYSTEM MODEL AND ASSUMPTIONS

We consider the downlink of a single cell in which a base-
station servesN users. We assume a slotted system, and we
assume that the state of the channel at each time slot isi.i.d
from one ofM possible states. LetC(t) denote the state of
the channel at timet = 1, 2, . . . , and let pj = P[C(t) =
j], j = 1, 2, . . . ,M. Let ~p = [p1, ..., pM ]. We assume that
the base-station can serve one user at a time. LetF i

m denote
the service rate for useri when it is picked for service at
statem.

We assume that data for useri arrives as fluid at a constant
rateλi. Let ~λ = [λ1, . . . , λN ]. Let Xi(t) denote the backlog
of user i at time t, and let ~X(t) = [X1(t), . . . ,XN (t)]. In
general, the decision of picking which user to serve is a
function of the global backlog~X(t) and the channel state
C(t). Let U(t) denote the index of the user picked for service
at timet. The evolution of the backlog for each useri is then
given by

Xi(t + 1) = [Xi(t) + λi −

M
∑

m=1

1{C(t)=m,U(t)=i}F
i
m]+ (1)

where [·]+ denotes the projection to[0,+∞). Note that
M
∑

m=1

N
∑

i=1

1{C(t)=m,U(t)=i} = 1 since only one user can be

served at a time.
One particular class of scheduling algorithms that we

will study are collectively referred to as the “α-algorithms”,
where α is a parameter that takes values from the set of
natural numbers. Givenα, the behaviour of the algorithm is
as follows. When the backlog of the users is~X(t) and the
state of the channel isC(t) = m, the algorithm chooses to
serve the useri for which the productXα

i (t)F i
m is the largest.

If there are several users that achieve the largestXα
i (t)F i

m

together, one of them is chosen arbitrarily. It is well-known
that this class of algorithms are throughput-optimal, i.e.they
can stabilize the system at the largest set of offer-loads~λ
[17].

Consider the system when it is operated at a given offered
load and is stable under a given scheduling algorithm. In this
paper, we are interested in the probability that the maximum
backlog among the users exceeds a certain thresholdB, i.e.,

P[max
i

Xi(0) ≥ B]. (2)

Note that the probability in (2) is equivalent to a delay-
violation probability when the arrival ratesλi are constant,
because the two types of events are related by (see [18], [20])

P[Delay at link i ≥ di] = P[Xi(0) ≥ λidi].

In this paper, we will be interested in scheduling algorithms
that minimize (2), at a given offered~λ.

The problem of calculating the exact probability
P[maxi Xi(0) ≥ B] is often mathematically intractable. In
this paper, we are interested in using large-deviation tech-
niques to compute estimates of this probability. Specifically,



we are interested in those cases when the following limit
exists.

lim
B→∞

1

B
log P[max

i
Xi(0) ≥ B] = −I0(~λ). (3)

(We will discuss how to computeI0(~λ) using sample-
path large-deviation and the corresponding assumptions in
Section II-A). Note that if Equation (3) holds, it implies
that, when B is large, the overflow probability can be
approximated as

P[max
i

Xi(0) ≥ B] ≈ exp(−BI0(~λ)).

Thus, the scheduling algorithm that minimizes the overflow
probability corresponds to the one that maximizes the decay-
rateI0(~λ).

A. Sample-Path Large Deviation

We next describe the sample-path large-deviation setting
used to computeI0(~λ). We follow the convention in [18],
[21]. UseB > 0 also as a scaling factor. For a large enough
T , define the scaled empirical measure process on the time
interval [−T, 0] as

sB
j (t) =

1

B

B(T+t)
∑

l=0

1{C(l)=j},

for t = k
B

− T , k = 0, ..., BT , and by linear interpolation
otherwise. Note that, in the above definition, we have scaled
both the time and the magnitude. The quantitysB

j (t) can be
interpreted as the sum of the (scaled) time in[−T, t] that
the system is at statej. Further, it is easy to check that
∑M

j=1 sB
j (t) = t + T for all t ∈ [−T, 0]. Let ~sB(t) =

[sB
1 (t), ...sB

M (t)]. Analogously, define the scaled backlog
process as,

xB
i (t) =

1

B
Xi(B(T + t))

for t = k
B

− T , k = 0, ..., BT , and by linear interpolation
otherwise. Let~xB(t) = [xB

1 (t), ..., xB
N (t)]. Note that the

backlog process~xB(t) is related to the empirical measure
processsB

j (t) by

xB
i (t +

1

B
)

=

[

xB
i (t) +

λi

B
(4)

−
M
∑

m=1

(sB
j (t) − sB

j (t −
1

B
))1{U(B(T+t))=i}F

i
m

]+

.

Thus, given a particular initial condition~xB(−T ), Equation
(4) defines a mappingfB from the empirical measure process
~sB(t) to the backlog process~xB(t). Further, although we
have assumed~sB(t) to be piecewise linear to begin with,
the definition of the mappingfB can be naturally extended
to all absolute continuous functions~sB(t).

For any ~φ ≥ 0 and
∑M

j=1 φj = 1, define H(~φ|~p) =
∑M

j=1 φj log
φj

pj
. The sequence of empirical measure pro-

cesses~sB(t) is known to satisfy a sample-path large de-
viation principle [7, p176] with large-deviation rate-function
IT
s (~s(·)) given as follows:

IT
s (~s(·)) =

∫ 0

−T

H(~φ(t)|~p)dt,

if ~s(t) is absolute continuous and component-wise non-
decreasing on[−T, 0], ~s(−T ) = 0, and

∑M
j=1 sj(t) = t + T

for all t; where ~φ(t) = d
dt

~s(t) (Note that ~φ(t) is well
defined almost everywhere on[−T, 0] since~s(t) is absolute
continuous on[−T, 0]). Otherwise,

IT
s (~s(·)) = +∞.

Such a large-deviation principle means that, for any set
Γ of trajectories on[−T, 0] that is a continuity set [7,
p5] according to theessential supremum norm[7, p176,
p352], the probability that the sequence of empirical measure
processes~sB(t) falls into Γ must satisfy

lim
B→∞

1

B
log P[~sB(·) ∈ Γ] = − inf

~s(·)∈Γ
IT
s (~s(·)). (5)

In this paper, we assume that a sample-path large-deviation
principle also holds for the sequence of backlog processes
~xB(t). Specifically, we adopt the following assumptions:

A) As B → ∞, the sequence of mappingsfB has
a limiting mapping f that also maps any absolute
continuous empirical measure process~s(t) to a backlog
processes~x(t).

B) The mappingf is unique and is continuous with
respect to appropriately-chosen topologies of the space
of empirical measure processes and the space of the
backlog processes.

C) The sequence of mappingsf
B areexponentially equiv-

alent to f [7, p130].

If these assumptions hold, then for any sequence of backlog
processes that start from~xB(−T ) = 0, we can invoke
the contraction principle [7, p131] and obtain a sample-
path large-deviation principle for the sequence of backlog
processes~xB(t) with large-deviation rate-function given by:

IT
x (~x(·)) = inf

{~s(·):~x(·)=f(~s(·))}

{
∫ 0

−T

H(~φ(t)|~p)dt

}

where ~φ(t) = d
dt

~s(t), and the infimum is taken over
all empirical measure processes~s(·) that map (under the
mapping f ) to the same backlog process~x(·) given that
~x(−T ) = 0. (We refer the readers to [21] for cases when
these assumptions hold.)

Define an overflow metric as a functionh(~x) such that
h(~0) = 0, h(B~x) = Bh(~x), and h(~x) is component-wise
increasing. An overflow metric of the formh(~x) = maxi xi,
will be consistent with the queue-overflow threshold defined
earlier. However, later we will also use other overflow



metrics. The event of queue overflow is then represented by
h(~xB(0)) ≥ 1. As B → ∞, we have,

− lim
B→∞

1

B
log P[h(~xB(0)) ≥ 1]

= inf{IT
x (~x(·))| over all trajectories~x(·) that

go from ~x(−T ) = 0 for someT > 0

to h(~x(0)) = 1}. (6)

The trajectory that attains the infimum in (6) is often called
the most likely path to overflow. The value of the infimum
itself is often called theminimum cost to overflow. Note that
I0(~λ) in (3) corresponds to (6) whenh(~x) = maxi xi.

In the rest of the paper, our goal is to find scheduling
algorithms that can achieve the largest value ofI0(~λ) (i.e.,
the largest value of the minimum-cost-to-overflow) at a given
offered load~λ.

III. A N UPPER BOUND ONI0(~λ)

We first provide an upper bound onI0(~λ) over all schedul-
ing algorithms. Then, in Section V, we will show that the
α-algorithm asymptotically achieves this upper bound as
α → ∞, and hence is asymptotically optimal.

A. Definitions

Given a scheduling algorithmA (e.g., an “α-algorithm”),
and an overflow metrich(·), let ΨA be the set of all possible
trajectories under scheduling algorithmA. Precisely, each
element ofΨA is a triplet (~φ(·), ~x(·), T ) such thatT > 0,
~φ(t) = d

dt
~s(t) where ~s(·) is an instance of the empirical

measure process,~x(−T ) = 0, andx(t), t ∈ [−T, 0], is the
corresponding backlog process governed by the scheduling
algorithm A . For ease of exposition, we useF(ΨA, h) to
denote the calculus-of-variations problem in (6), i.e.,

F(ΨA, h) , inf
~φ(t),T

∫ 0

−T

H(~φ(t)|~p)dt

subject to (~φ(·), ~x(·), T ) ∈ ΨA (7)

h(~x(0)) = 1 (8)

~x(−T ) = 0. (9)

In particular, we useF(ΨA,max) to denote the case when
h(~x) = maxi xi. Let Ψ∗

A ⊆ ΨA be defined as follows

Ψ∗
A =

{

(~φ(·), ~x(·), T ) ∈ ΨA such that
d

dt
~φ(t) = ~0

}

,

i.e., it contains all trajectories that correspond to a linear
empirical measure process~s(t). We can similarly define
F(Ψ∗

A, h) where the constraints setΨA in (7) is replaced
by Ψ∗

A.

We define

ẃ(~φ) , min
~φ,~x

max
i

(xi)

subject to xi =

[

λi −

M
∑

m=1

µi
mF i

m

]+

for all i

µi
m ≥ 0,

N
∑

i=1

µi
m = φm for all m, (10)

and let

Iopt , inf
~φ

H(~φ|~p)

ẃ(~φ)
.

The following theorem states thatIopt is an upper bound on
I0(~λ) for any scheduling algorithm∗.

Theorem 1:For any scheduling algorithm A,
F(ΨA,max) ≤ Iopt.

Proof: First, note that by definition,Ψ∗
A ⊆ ΨA. This fact

leads to the conclusion thatF(ΨA,max) ≤ F(Ψ∗
A,max)

since the constraint set in the optimization problem on the
right hand side is smaller. Thus, it suffices to show the
following

F(Ψ∗
A,max) ≤ Iopt = inf

~φ

H(~φ|~p)

ẃ(~φ)
.

Consider any trajectory(~φ(t), ~x(t), T ) in the feasible
region of F(Ψ∗

A,max). Recall that~φ(t) is a constant by
definition of Ψ∗

A. Denote~φ(t) = ~φ. By (9), ~x(−T ) = 0.
Further, by the queue-evolution equation (4) we have the

following inequality, xi(0) ≥ T [λi −
M
∑

m=1
µi

mF i
m]+, where

by µi
m we denote the average fraction of time in[−T, 0] that

the useri is served and the channel state ism. Finally, by
(8) we know thatmaxi xi(0) = 1. We thus have

1 = max
i

xi(0) ≥ T max
i

([λi −
M
∑

m=1

µi
mF i

m]+) ≥ Tẃ(~φ)

⇒ TH(~φ|~p) ≤
H(~φ|~p)

ẃ(~φ)
.

Note thatTH(~φ|~p) is precisely the cost of the trajectory.
Since this inequality holds for all trajectories inΨ∗

A, we have

F(Ψ∗
A,max) ≤ Iopt.

IV. STRUCTURAL PROPERTIES OF THE

M INIMUM -COST-PATH-TO-OVERFLOW

FOR α -ALGORITHMS

We next turn our attention to theα-algorithms. Our
ultimate goal is to show in Section V that theα-algorithms
asymptotically achieve the minimum-cost-to-overflow equal
to Iopt. In this section, we first derive some structural

∗This upper bound is equivalent to the one in [3].



properties of the minimum-cost-path-to-overflow underα-
algorithms. Note that the calculus-of-variations problemin
(6) and (9) with the overflow metrich(~x) = maxi xi is often
very difficult to solve. In general, the minimum-cost-path-to-
overflow may not be of a simple linear form. The trick that
we use here is to modify the overflow metric to one that
is tailored to the scheduling algorithm. In particular, forthe
α-algorithm, we use the overflow metric

h(~x) = Vα(~x) ,
(

N
∑

i=1

xα+1
i

)

1
α+1

.

Note thatVα(~x) is well-known to be the Lyapunov function
for proving that theα-algorithm is throughput-optimal. Thus
we will refer toVα(~x) as the Lyapunov overflow metric, and
refer toh(~x) = maxi xi as the max-queue overflow metric.
The connection betweenVα(·) andmaxi xi will be clear in
Section V.

With the overflow metricVα(~x), the calculus-of-variations
problem for finding the minimum-cost-to-overflow is repre-
sented byF(Ψ

α-algo, Vα).

A. A Lower bound on the minimum-cost-to-overflow

We first provide a lower bound onF(Ψ
α-algo, Vα). We

start with a property of the limiting mappingf that maps the
empirical measure process~s(t) to the backlog process~x(t).
Note that according to the definition of~x(t) and~s(t), they
are both Lipschitz-continuous, and hence are differentiable
almost everywhere. For any timet such that both~x(t) and
~s(t) are differentiable, the following properties can be shown:

There must existµi
m(t) ≥ 0 such that

N
∑

i=1

µi
m(t) = φm(t)

and ẋi(t) = [λi −
N
∑

i=1

µi
m(t)F i

m]+
xi(t)

, where we have used

the notation

[u]+v =

{

u if v > 0 or u ≥ 0
0 otherwise.

Recall thatφm(t) = d
dt

sm(t) can be viewed as the fraction
of time the system is in statem in an interval[Bt,B(t+δt)]
immediately aftert. µi

m(t) can then be viewed as the fraction
of time that useri is served and the system is in statem
within such an interval. In addition, the following lemma
can be shown.

Lemma 2:

µi
m(t) = 0 if xα

i (t)F i
m < max

k
xα

k (t)F k
m.

Proof: This can be shown by noting that if
xα

i (t)F i
m < maxk xα

k (t)F k
m, then for all sufficiently large

B, (xB
i (s))αF i

m < maxk(xB
k (s))αF k

m holds for an interval
s ∈ [Bt,B(t + δt)] immediately aftert. Hence, useri will
not be picked for transmission over this entire interval. We
can thus show thatµi

m(t) = 0.
We now use the Lyapunov function approach in [22] to

derive a lower bound onF(Ψ
α-algo, Vα). First, define a local

rate function of~x(t) as:

l(~x, ~y) = inf
~φ

H(~φ|~p)

subject to yi = [λi −

M
∑

m=1

µi
mF i

m]+xi
for all i

µi
m ≥ 0 and

N
∑

i=1

µi
m = φm for all m

µi
m = 0 if xα

i F i
m < max

k
xα

k F k
m.

Note thatl(~x, ~y) denotes how likely the trajectory~x(·) can
move in the directiond

dt
~x(t) = ~y immediately aftert, given

~x(t) = ~x. Using Lemma 2 we thus have

F(Ψ
α-algo, Vα) ≥ inf

T

∫ 0

−T

l(~x(t), ~̇x(t))dt

subject to (~φ(·), ~x(·), T ) ∈ ΨA

Vα(~x(0)) = 1

~x(−T ) = 0.

Further, lettingV (t) = Vα(~x(t)), we can define the local
rate-function ofV (t) as

lV (v, w) = inf
~x,~y

l(~x, ~y)

subject to Vα(~x) = v
[

∂

∂~x
Vα(~x)

]T

.~y = w.

Then,

F(Ψ
α-algo, Vα) ≥ inf

T

∫ 0

−T

lv(V (t), V̇ (t))dt

subject to V (−T ) = 0, V (0) = 1. (11)

Note that the right-hand-side is a one-dimension calculus-
of-variations problem that is much easier to solve. Forα-
algorithms, if yi and µi

m satisfy the constraints ofl(~x, ~y),
then

[

∂

∂~x
Vα(~x)

]T

.~y

=

(

N
∑

i=1

xα+1
i

)− α
α+1

[

N
∑

i=1

xα
i (λi −

M
∑

m=1

µi
mF i

m)

]

=

(

N
∑

i=1

xα+1
i

)− α
α+1

[

N
∑

i=1

xα
i λi

−

M
∑

m=1

φm max
i

xα
i F i

m

]

. (12)

Hence, the local rate-function ofV (t) can be rewritten as

lV (v, w) = inf
~φ,~x

H(~φ|~p)



subject to

(

N
∑

i=1

xα+1
i

)− α
α+1

[

N
∑

i=1

xα
i λi

−

M
∑

m=1

φm max
i

xα
i F i

m

]

= w

(

N
∑

i=1

xα+1
i

)

1
α+1

= v.

It is easy to show thatlV (v, w) is independent of the
value of v, i.e., lV (v, w) = lV (1, w) for all v 6= 0. Let
l(w) , lV (1, w). Then the solution to the calculus-of-
variations problem on the right-hand-side of (11) is given
by [6, p520]

J1 , min
w≥0

1

w
l(w)

= min
~φ,~x,w≥0

1

w
H(~φ||~p)

subject to

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
i

xα
i F i

m

]

= w

(

N
∑

i=1

xα+1
i

)

1
α+1

= 1. (13)

We thus obtain the following result.
Lemma 3:The minimum cost to overflow

F(Ψ
α-algo, Vα) must be no smaller thanJ1.

B. Attainability of the Lower-boundJ1

In this subsection, we show that the lower boundJ1

is attainable with a simple linear trajectory~s(t) = (t +
T )~φ, t ≥ −T . Note that the solution of (13) will produce
a ~φ∗ (it is easy to verify that such a~φ∗ always exists).
If this ~φ∗ can in fact map to a trajectory that starts from
~x(−T ) = 0 and overflows att = 0, then the minimum-cost-
to-overflowF(Ψ

α-algo, Vα) must be no larger than the cost

of this trajectoryJ2 = TH(~φ∗|~p). Further, ifJ2 = J1, then
we can conclude thatF(Ψ

α-algo, Vα) = J1. We next show
that this is indeed the case.

Towards this end, we first show that for each linear
empirical measure process~s(t) = (t+T )~φ, t ≥ −T , there
exists a unique trajectory~x(t) starting from~x(−T ) = 0. We
will need the following lemma.

Lemma 4: (a) Given ~φ, the optimal values of the fol-
lowing two problems are the same.

a(~φ) = max
~x≥0

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
i

xα
i F i

m

]

subject to
N
∑

i=1

xα+1
i ≤ 1,

and

b(~φ) = min
~y≥0

(

N
∑

i=1

yα+1
i

)

1
α+1

subject to yi = [λi −

M
∑

m=1

F i
mµi

m]+ for all i

µi
m ≥ 0,

N
∑

i=1

µi
m = φm for all m.

(b) The optimizer~x∗ for a(~φ) and the optimizer~y∗ for
b(~φ) are both unique and they satisfy~x∗ = γ~y∗ for
someγ > 0. Further, if the optimizer~x∗ 6= 0, then~x∗

and~y∗ are the only vectors that satisfy the following

conditions: there existµi
m ≥ 0 such that

N
∑

i=1

µi
m = φm,

y∗
i = [λi −

M
∑

m=1
F i

mµi
m]+, x∗

i = γy∗
i for someγ > 0,

N
∑

i=1

(x∗
i )

α+1 = 1, and

µi
m = 0 if (x∗

i )
αF i

m < max
k

(x∗
k)αF k

m.

Lemma 4 can be proved by showing thatb(~φ) is the
dual problem of the optimization problema(~φ) with an
appropriate change of variables. The variablesµi

m of b(~φ)
are the Lagrange multipliers. Due to lack of space, we omit
the proof here and the details are provided in our technical
report [23].

We now show that, if the empirical measure process~s(t)
is linear, then the queue trajectory~x(t) must also be linear,
and it must solveb(~φ) in Lemma 4. For ease of exposition,
we start the time fromt = 0 (instead oft = −T ).

Lemma 5:Let ~x(0) = 0 and~s(t) = t~φ for t ≥ 0. Then the
corresponding queue trajectory~x(t) under theα-algorithm
must satisfy the following:

(a) The queue trajectory is linear, i.e., for eachi, xi(t) =
x̃it for somex̃i ≥ 0.

(b) There must existµi
m ≥ 0 such that

N
∑

i=1

µi
m = φm, and

µi
m = 0 if xα

i (t)F i
m < max

k
xα

k (t)F k
m for all t.

In other words, the queue trajectory~x(t) is consistent
with the scheduling rule.

(c) ~̃x is the unique minimizer ofb(~φ).

Proof: Let Ω(~φ) =

{

~λ | λi =
M
∑

m=1
µi

mF i
m,

N
∑

i=1

µi
m = φm, µi

m ≥ 0

}

. Note that Ω(~φ) would have

been the capacity region (for stability) if the channel state
distribution was~φ.

Recall that (from (12))

dV (t)

dt
=

[

∂Vα(~x(t))

∂~x

]T

.
d

dt
~x(t)



=

(

N
∑

i=1

xα+1
i (t)

)− α
α+1

[

N
∑

i=1

xα
i (t)λi

−

M
∑

m=1

φm max
i

xα
i (t)F i

m

]

.

If ~λ ∈ Ω(~φ), we will have dV (t)
dt

< 0 wheneverV (t) =
Vα(~x(t)) > 0. Hence, starting from~x(0) = 0, we must have
V (t) = 0 and ~x(t) = 0 for all t ≥ 0. Therefore, part (a)
holds withx̃i = 0 for all i. Part (b) then trivially holds. Part
(c) follows from Lemma 4 since the minimizer ofb(~φ) for
this case is~y∗ = 0.

On the other hand, if~λ /∈ Ω(~φ), then for all~x(t) 6= 0, by
settingx̃i(t) = xi(t)

[
N
P

i=1

x
α+1

i
(t)]

1
α+1

, we have

dV (t)

dt
=

N
∑

i=1

x̃α
i (t)λi −

M
∑

m=1

φm max
i

x̃α
i (t)F i

m

and

[

N
∑

i=1

x̃α+1
i (t)

]

1
α+1

= 1.

We thus havedV (t)
dt

≤ a(~φ) andV (t) ≤ ta(~φ). This shows
that ta(~φ) upper bounds the maximum growth ofV (t). On
the other hand, letµi

m be the average fraction of time in
[0, t] that useri is picked and the channel state ism. Then
N
∑

i=1

µi
m = φm for all m, and xi(t) ≥ t[λ −

M
∑

m=1
µi

mF i
m]+.

Hence,

V (t) = Vα(~x(t)) ≥ tb(~φ).

However, by Lemma 4,a(~φ) = b(~φ). We thus have

V (t) = Vα(~x(t)) = ta(~φ) = tb(~φ),

i.e., there is only one possible trajectoryV (t) given that
~s(t) = t~φ. Further, we haveVα(~x(t)

t
) = b(~φ). i.e., ~x(t)

t

optimizesb(~φ). Since the optimizer ofb(~φ), denoted by~̃x,
is unique, we thus have~x(t) = t~̃x. This shows parts (a) and
(c). Part (b) follows from part (b) of Lemma 4.

Proposition 6: The minimum cost to overflow
F(Ψ

α-algo, Vα) is equal toJ1.

Proof: Let ~φ∗, w∗, and ~x∗ denote the solution toJ1.
If we use~s(t) = (t + T )~φ∗, t ≥ −T as the underlying
empirical measure process, and let the queue process start
from ~x(−T ) = 0 whereT = 1/w∗, then there is a linear
trajectory according to Lemma 5, i.e.,

~x(t) = (t + T )~̃x′,

where~̃x′ is the minimizer ofb(~φ∗). Further, by the structure
of J1, w∗ ≥ 0, and thus

w∗ = max
~x≥0

[

N
∑

i=1

xα
i λi −

M
∑

m=1

φm max
i

xα
i F i

m

]

subject to
N
∑

i=1

xα+1
i = 1.

The right hand side is equal toa(~φ∗), which is also equal to
b(~φ∗). Hence,

V (0) = Vα(T~̃x′) = Tb(~φ∗) =
1

w∗
w∗ = 1.

In other words, the linear empirical measure process~s(t) =
(t + T )~φ∗, t ≥ −T , indeed drives the queue from
~x(− 1

w∗
) = 0 to overflow att = 0. Hence,F(Ψ

α-algo, Vα) ≤

TH(~φ∗|~p) = 1
w∗

H(~φ∗|~p) = J1. Then, using Lemma 3,
F(Ψ

α-algo, Vα) ≥ J1, the result then follows.
Hence, we conclude that the minimum-cost-to-overflow

F(Ψ
α-algo, Vα) is attainable by a simple linear trajectory

whose cost is given byJ1 = inf ~φ

H(~φ|~p)

b(~φ)
.

V. A SYMPTOTICAL OPTIMALITY OF α-ALGORITHMS

In this section, we return to the original overflow metric
h(~x) = maxi xi and we will establish that, in the limit
as α → ∞, the α-algorithm asymptotically achieves the
largest minimum-cost-to-overflow equal toIopt given in
Section III. We will use some of the results and notations
from Section IV. In particular, to emphasize the dependence
of b(~φ) on α, we rewritebα(~φ) = b(~φ) here:

bα(~φ) , min
~φ,~x

Vα(~x)

subject to xi = [λi −

M
∑

m=1

µi
mF i

m]+ for all i

µi
m ≥ 0,

N
∑

i=1

µi
m = φm for all m. (14)

In Section IV, we have shown thatF(Ψ
α-algo, Vα) =

inf ~φ

H(~φ|~p)

bα(~φ)
. Earlier, in Section III, we showed thatIopt is

an upper bound on the minimum-cost-to-overflow for all
scheduling algorithms. We now show the following.

Theorem 7:

lim
α→∞

F(Ψ
α-algo,max) ≥ Iopt.

Proof: First, it is easy to show thatF(Ψ
α-algo,max) ≥

F(Ψ
α-algo, Vα). This is true because if a trajectory over-

flows according to the max-queue overflow metric, i.e.,
maxi xi(t) = 1, then it must have already overflowed ac-
cording to the Lyapunov overflow metric sincemaxi xi(t) =
1 ⇒ Vα(~x(t)) ≥ 1.

Using Proposition 6, we then have

F(Ψ
α-algo,max) ≥ inf

~φ

H(~φ|~p)

bα(~φ)
.

We will now show that limα→∞ inf ~φ

H(~φ|~p)

bα(~φ)
= Iopt ,

inf ~φ

H(~φ|~p)

ẃ(~φ)
, which then completes the proof.

Observe thatbα(~φ) in (14) andẃ(~φ) in (10) both have
the same constraint set. The following inequality is easily
established.

N
1

α+1 max
i

(xi) ≥ Vα(~x) ≥ max
i

(xi) for all ~x ≥ 0.



Hence,

N
1

α+1 ẃ(~φ) ≥ bα(~φ) ≥ ẃ(~φ).

Note that this implies thatbα(~φ) > 0 ⇔ ẃ(~φ) > 0. Let
Q = {~φ such thatẃ(~φ) > 0}. It is sufficient to show

lim
α→∞

inf
~φ∈Q

H(~φ|~p)

bα(~φ)
= inf

~φ∈Q

H(~φ|~p)

ẃ(~φ)
.

Now, for all ~φ in Q, the following holds

H(~φ|~p)

ẃ(~φ)
≥

H(~φ|~p)

bα(~φ)
≥

1

N
1

α+1

H(~φ|~p)

ẃ(~φ)
.

Taking infimum across the inequalities over the setQ, we
get

inf
~φ∈Q

H(~φ|~p)

ẃ(~φ)
≥ inf

~φ∈Q

H(~φ|~p)

bα(~φ)
≥

1

N
1

α+1

inf
~φ∈Q

H(~φ|~p)

ẃ(~φ)
.

Letting α → ∞, N
1

α+1 → 1. The result of the Lemma then
follows.

Combining Theorem 1 and Theorem 7, we conclude that
the α-algorithm asymptotically achieves the largest possible
value of the minimum-cost-to-overflow.

A. Systems with ON-OFF Channels

Consider the scenario whereF i
m can take either the value

0 or a positive constantC. This scenario corresponds to a
wireless system with ON-OFF channels and the ON-rates for
all users are the same. In this case, for anyα > 0,

xα
i F i

m S max
k

xα
k F k

m ⇔ xiF
i
m S max

k
xkF k

m.

Hence, theα-algorithms (for anyα ≥ 1) are equivalent to
the max-weight algorithm (i.e.,α = 1). Using the result in
this paper, we immediately reach the following corollary.

Corollary 8: For the above ON-OFF channel model,
the max-weight scheduling algorithm achieves the largest
minimum-cost-to-overflowIopt.

VI. CONCLUSION

In this paper, we study wireless scheduling algorithms
that can minimize the queue-overflow probability. Assuming
that a sample-path large-deviation principle holds for the
backlog process, we first establish a structural property
of the minimum-cost-path-to-overflow for the class ofα-
algorithms. Specifically, when the overflow metric is ap-
propriately modified, we show that the minimum-cost-to-
overflow under theα-algorithm can be achieved by a simple
linear path, and it can be written as the solution of a vector-
optimization problem. Using this structural property, we
then show that whenα approaches infinity, theα-algorithm
asymptotically achieves the largest value of the minimum-
cost-to-overflow under all scheduling algorithms.

For future work, we plan to study conditions under which
the sample-path large-deviation principle holds. We also plan
to extend the results to more general network and channel
models.
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