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Abstract— In this paper, we are interested in wireless schedul-
ing algorithms for the downlink of a single cell that can mini-
mize the queue-overflow probability. Assuming that a sample-
path large-deviation principle holds for the backlog process,
we first study structural properties of the minimum-cost-path-
to-overflow for a class of scheduling algorithms collectively
referred to as the “a-algorithms.” For a given a > 1, the
a-algorithm picks the user for service at each time that has
the largest product of the transmission rate multiplied by the
backlog raised to the powera. We show that when the overflow
metric is appropriately modified, the minimum-cost-to-overflow
under the a-algorithm can be achieved by a simple linear path,
and it can be written as the solution of a vector-optimization
problem. Using this structural property, we then show that
when « approaches infinity, the «-algorithm asymptotically
achieves the largest value of the minimum-cost-to-overflow
under all scheduling algorithms.

I. INTRODUCTION

bounded with high probability. One approach to quantify
the requirements of these delay-sensitive applicatiorns is
enforce constraints on the probability of queue overflow. In
other words, we need to guarantee that the probability of
each user’s queue exceeding a given threshold is no greater
than a target value.

In this paper, we are interested in scheduling algorithms
that are optimal subject to the above type of delay cond#rain
We focus on the downlink of a single cell in a cellular
network. The base-station serves multiple users. Due to
interference, the base-station can only serve one user at a
time. We assume that perfect channel information is availab
at the base-station. The ultimate question that we attempt t
answer is the following: Is there delay-optimalalgorithm
in the sense that, at any given offered load, the algorithm
can achieve the smallest probability of queue-overfloweNot

Link scheduling is an important functionality in wirelessthat if we impose a quality-of-service (QoS) constraint on
networks due to both the shared nature of the wireleg@ach user in the form of an upper bound on the queue-
medium and the variations of the wireless channel oveverflow probability, then the above optimality conditiorlw
time. In the past, it has been demonstrated that, by cayefutlso imply that the algorithm can support the largest set of
choosing the scheduling decision based on the channel st@ftered loads subject to the QoS constraint.
and/or the demand of the users, the system performance card he above question has well-known to be a difficult one.
be substantially improved (see the references in [1]). Modthe closest answer in the literature is provided in [3], veher
studies of scheduling algorithms have focused on optirgizintheé author studied the problem in a large-deviation setting
the long-term average throughput of the users. Similanly, iand showed that the so-called “exponential-rule” is delay-
the class of stability problems, the goal is to find schedulinoptimal in the case with two-users. In a related result, it
algorithms that can stabilize the network at given offeretvas shown that for the case when the service rate is fixed,
loads, which also ensures that the long-term average servige largest-weighted-delay-first (LWDF) algorithm is delay
rate is no less than the arrival rate of each user. An imppbrta@ptimal in a large-deviation setting [4], [5]. To the best
result along this direction is the development of the soof our knowledge, the general case for wireless networks

called “throughput-optimal” algorithms [2]. An algorithia

with an arbitrary number of users is still open. Note that

called throughput-optimalif, at any offered load that any to study the queue-overflow probability, it is natural to use
other algorithm can stabilize the system, this algorithm cathe large-deviation theory because the overflow probgbilit

stabilize the system as well. Therefore, a throughputroguti

of interest is often very small [6], [7]. The queue-overflow

scheduling algorithm is optimal if we only impose stabilityprobability can then be mapped to the decay-rate of the tail-
constraints, i.e., it can stabilize the system over theelstrg distribution of the queue, and the delay-optimal schegulin

set of offered loads.

algorithm will correspond to the one that maximizes this

While stability (and ensuring that the long-term servicélelay-rate. Large-deviation theory has been successipHy
rate is no smaller than the arrival rate) is an important-firsplied to wireline networks (see, e.g., [8]-[13]) and to Wess

order metric of success, for many delay-sensitive apdioat
it is far from sufficient. Note that a stability objective enes

scheduling algorithms that only use the channel state to
make the scheduling decisions [14]-[16]. However, when

that the packet delay does not increase to infinity. For rea®pplied to wireless scheduling algorithms that use also the
time applications such as voice and video, we often need @sieue-length to make scheduling decisions, this approach
ensure a stronger condition that the packet delay can be upggcounters a significant amount of technical difficulty. &lot
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than many scheduling algorithms of interest are of thigiatt
flavor, i.e., they choose the user to serve based on both the
channel state and the queue backlog. For example, the max-
weight algorithm that is known to be throughput-optimal][17



serves at each time the user with the largest product of the  Il. THE SYSTEM MODEL AND ASSUMPTIONS

gueue length and the service rate. Intuitively, this clalss o Wi ider the d link of a sinal Il in which a b

gueue-length-based scheduling algorithms will have a lowe t'e consl Z\r/, € ow\r;vm orasing el Ct? én W tIC a %Se'
gueue-overflow probability compared to the queue-unawa%a 10N SEIVEsSV users. Ve assume a siotled system, and we
sume that the state of the channel at each time sidiis

algorithms because they make an effort to suppress lon .
gueues. Indeed, the work in [18] has analytically shown th om one of M ppsable states. Lef(t) denote the state of
the channel at time = 1,2,..., and letp; = P[C(t) =

superiority of queue-length-based scheduling algoritbwes
P yorq g g9 ij, j=1,2,...,M. Let p = [p1,...,pm]. We assume that

gueue-unaware algorithms for a symmetric case with O b ot tati etlenot
OFF channels. However, the technical difficulty associatetﬁze ase-station can Serve one user at a ImeFfe enote
the service rate for userwhen it is picked for service at

with the queue-length-based scheduling algorithms isttieat
statem.

statistics of the service-rate process for each user isawkn L .

(because now the service-rate process is tightly couplé wi W€ @ssume that data for usearrives as fluid at a constant
the backlog process, the channel variations, and the Brrivgte A I'_et >‘.: [Ar, ..., An]. Let X;(t) denote the backlog
process). In order to apply the large-deviation theory t8 USeri at timet, and letX(t) = [Xy(f),..., Xn(1)]. In

queue-length-based scheduling algorithms, one has to (igheral, the decision of picking which user to serve is a
sample-path large-deviation, and formulate the problema agunction of the global backlogi (¢) and the channel state

multi-dimensional calculus-of-variations (CoV) problefor C(t). LetU(t) denote the index of the user picked for service

finding the “minimum-cost path to overflow.” The decay-rate?t imet. The evolution of the backlog for each uses then
of the queue-overflow probability then corresponds to th8Ven by

cost of this path, which is referred to as the “minimum cost to M
overflow.” Unfortunately, for many scheduling algorithnmis o Xi(t+1) = [X;(t) + N\ — Z Lic(y=m U(t):i}FMJ“ 1)
interest, this multi-dimensional calculus-of-variatsoprob- m=1

lem is very difficult to solve. In the literature, only some
restricted cases have been solved: Either restricted grobl Wzvr}er?v
structures are assumed (e.g., symmetric users and ON-OFF Lic(ty=m,u(t)=} = 1 since only one user can be
channels [18]), or the size of the system is very small (onlgw(_:‘:r{/é:dl at a time

two users) [19]. Due to the above difficulty, the question '

of finding the optimal wireless scheduling algorithms under .One particular CI"?‘SS of scheduling aIgc3nthm§ tha"t we
delay constraints becomes very challenging. will study are collectively referred to as thex-algorithms”,

In this paper, we provide a number of results alonq:/herea is a parameter that takes values from the set of

this direction. Assuming that a sample-path large-deofiti atural numbers. Givea, the behaviour of the algorithm is

principle holds, we study the structural property of thea,;5 :O"Of\’\f;' Wﬁen trlle_é?atcklog ofﬂ:he :Jsertsrffit)hand thet

minimum-cost-path-to-overflow for a class of queue-lemgthS ate of the C annel | (t) = m, the algorrtim chooses 1o
erve the userfor which the producX *(¢) F}, is the largest.

based scheduling algorithms. In particular, we show th th | that achi the | N
when the form of the overflow threshold is appropriatel ere are several users that achieve the arg@%() m
vbogether, one of them is chosen arbitrarily. It is well-kmow

modified, at least one of the minimum-cost-path-to-overflo WSt this cl ¢ alqorith th hput-ootimal. th
is linear. This result allows us to convert the calculust ot MIs C1ass of algonthms are throughput-optimal, they

of-variations problem (of sample-path large-deviation)at Cf7r1 stabilize the system at the largest set of offer-loads
vector-optimization problem. Using this structure praper [17]. , - .

we then show the main result of the paper that, as one of theCon5|d_er the system whe_n Itis operat_ed ata given Oﬁered
parameters approaches infinity, these class of queuehlengltOaOI and is sta_ble under agven sched_u_llng algorithm. hn thi
based scheduling algorithms will asymptotically achidve t paper, we are interested in the probability fchat the maximum
largest minimum-cost-to-overflow among all scheduling alPacklog among the users exceeds a certain threshplc.,
gorithms. As an immediate corollary of this result, we can P X.(0)> B 2
show that with the ON-OFF channel model, the max-weight [mzax i(0) 2 Bl @

scheduling algorithm is optimal. _ Note that the probability in (2) is equivalent to a delay-
The rest of paper is organized as follows. We first;qaiion probability when the arrival rates, are constant,

present the system model and the class of queue-lengfls o ,se the two types of events are related by (see [18), [20]

based scheduling algorithms (referred to @glgorithms)

in Section Il. In Section Ill, we provide an upper bound on P[Delay at linki > d;] = P[X;(0) > \id;].

the minimum-cost-to-overflow for any scheduling algorithm

We then study the structural properties of the minimum-costn this paper, we will be interested in scheduling algorishm

path-to-overflow fora-algorithms in Section IV. Then in that minimize (2), at a given offereal.

Section V, we prove the main result that, as the parameterThe problem of calculating the exact probability

a approaches infinity, this class of scheduling algorithm®[max; X;(0) > B] is often mathematically intractable. In

asymptotically achieve the largest possible value of thehis paper, we are interested in using large-deviation-tech

minimum-cost-to-overflow. Then we conclude. nigues to compute estimates of this probability. Specifical

[]* denotes the projection tf0,+occ). Note that



we are interested in those cases when the following limit For anygg > 0 and YN, ¢; = 1, define H(¢|p) =
exists. ZJ 1 D5 log . The sequence of empirical measure pro-

cessess? (t ) |s known to satisfy a sample-path large de-
viation principle [7, p176] with large-deviation rate-fttion

. IT(5(-)) given as follows:

(We will discuss how to computdy(A) using sample-

path large-deviation and the corresponding assumptions in / H
Section II-A). Note that if Equation (3) holds, it implies

that, when B is large, the overflow probability can be ) .
approximated as if §(t) is absolute continuous and component-W|se non-

decreasing oif—T', 0], §(—T) =0, andz ( )=t+T
P[max X;(0) > B] ~ exp(—BIy(X)). for all ¢; where ¢(t) = 4 5(t) (Note thatgb( ) is well
' defined almost everywhere 9n T, 0] sinces(t) is absolute
Thus, the scheduling algorithm that minimizes the overflowontinuous orf—7’, 0]). Otherwise,
probability corresponds to the one that maximizes the decay
rate Io(X). I7(5()) = +oo.

1 -
Blim B log P[max X;(0) > B] = —Ip(N). 3

(@) |p)dt,

Such a large-deviation principle means that, for any set

I' of trajectories on[—T,0] that is a continuity set [7,

We next describe the sample-path large-deviation settings] according to theessential supremum norif¥, p176,
used to computdy(X). We follow the convention in [18], p352], the probability that the sequence of empirical mesasu
[21]. Use B > 0 also as a scaling factor. For a large enougiprocesses® (t) falls into I' must satisfy
T, define the scaled empirical measure process on the time

A. Sample-Path Large Deviation

. 1
interval [-T',0] as Jim = logP[37() € ] = — (H)lfFIT(E’( ). (5)
— 00 s(-)e
B(T+t)
sB(t) = 1 Z Lo In this paper, we assume that a sample-path large-deviation
I B = em= principle also holds for the sequence of backlog processes

#B(t). Specifically, we adopt the following assumptions:

A) As B — oo, the sequence of mapping®”® has
a limiting mapping f that also maps any absolute
continuous empirical measure proc@gs to a backlog
processesi(t).

B) The mapping f is unique and is continuous with

for t = % —T, k=0,..,BT, and by linear interpolation
otherwise. Note that, in the above definition, we have scaled
both the time and the magnitude. The quanﬁif;(t) can be
interpreted as the sum of the (scaled) time[+#1,¢] that

the system is at statg. Further, it is easy to check that
SM sB(t) = t+ T for all t € [-T,0]. Let §8(t) =

=173 "/ ] respect to appropriately-chosen topologies of the space
[s7(t),...spr(t)]. Analogously, define the scaled backlog of empirical measure processes and the space of the
process as, backlog processes.
xB(t) _ iX(B(T +1) C) The sequence of mappin§€ areexponentially equiv-
’ B~ alentto f [7, p130].
fort =% —T,k=0,..,BT, and by linear interpolation If these assumptions hold, then for any sequence of backlog
otherW|se Let B(t) [ B(t),...,x%(t)]. Note that the Processes that start from®(—7) = 0, we can invoke
backlog processt”(t) is related t0 the empirical measurethe contraction principle [7, p131] and obtain a sample-
prOCGSSSJB( ) by path large-deviation principle for the sequence of backlog
processes” (t) with large-deviation rate-function given by:
wB(i+ ) : 0o
Ai LED = e {/ H((b(t)'mdt}
= {zf;(t) + 5 @) o -
o L where ¢(t) = 43t), and the infimum is taken over
B Z(sB(t) _ sB(t— l))l L all empirical measure process@é) that map (under the
J J B/ HUBT+)=i}m mapping f) to the same backlog proces¥-) given that

Z(—=T) = 0. (We refer the readers to [21] for cases when
Thus, given a particular initial conditioi® (—7'), Equation these assumptions hold.)
(4) defines a mappinf® from the empirical measure process Define an overflow metric as a function(z) such that
§5(t) to the backlog process®(t). Further, although we h(0) = 0, h(BZ) = Bh(Z), and h(Z) is component-wise
have assumed®(t) to be piecewise linear to begin with, increasing. An overflow metric of the ford(z) = max; x;,
the definition of the mapping? can be naturally extended will be consistent with the queue-overflow threshold defined
to all absolute continuous functios® (¢). earlier. However, later we will also use other overflow



metrics. The event of queue overflow is then represented byWe define
h(zB(0)) > 1. As B — oo, we have,

w(&) £ min max(z;)
.z ¢
1
— lim — log P[h(Z5(0)) > 1] +
B=oo I o subject to i — Z i for all
= inf{IX(%(-))| over all trajectoriest(-) that mtm
go from Z(—7") = 0 for someT > 0 ‘ N
to h(Z(0)) = 1}. (6) fi >0, i, = by for all m, (10)
i=1
The trajectory that attains the infimum in (6) is often called@nd let
the most likely path to overflowThe value of the infimum (¢|ﬁ)
itself is often called theninimum cost to overflovNote that Topt = 1(5 (¢)
w

Io(\ ) in (3) corresponds to (6) whel(Z) = max; ;.
In the rest of the paper, our goal is to find schedulmd’he following theorem states thaj,; is an upper bound on

algorithms that can achieve the largest value/gf) (i.e., Io(X) for any scheduling algorithf
the largest value of the minimum-cost-to-overflow) at agive Theorem 1:For any  scheduling  algorithm A,
offered loadA. F (¥4, max) < Iop.

Proof: First, note that by definitiony¥, C W 4. This fact
- leads to the conclusion thaf (¥ 4, max) < F(¥%, max)
II. AN UPPER BOUND ONIo(A) since the constraint set in the optimization problem on the

) ] . right hand side is smaller. Thus, it suffices to show the
We first provide an upper bound dp(A) over all schedul- following

ing algorithms. Then, in Section V, we will show that the
«-algorithm asymptpncally ach_leves thl_s upper bound as F(W4, max) < Ly = inf 2 (¢|ﬁ)
a — oo, and hence is asymptotically optimal. ¢ w(¢)

o Consider any trajector;(q?(t),f(tl, T) in the feasible
A. Definitions region of F(¥*%, max). Recall that¢(t) is a constant by
definition of U*. Denote¢(t) = ¢. By (9), #(—T) = 0.

Given a scheduling algorith (e.g., an &-algorithm’), Further, by the queue-evolution equation (4) we have the

and an overflow metri&(-), let U 4 be the set of all possible
trajectories under scheduling algorithr Precisely, each following inequality, z;(0) > T'[A; — Z pt, Fi1T, where
element of¥ 4 is a triplet (¢(-), Z(-),T) such thatl’ > 0,

-,

- NG : by u! we denote the average fractlon of time[+AT', 0] that
— d . m )
o(t) = G s(t) where s(-) is an instance of the empirical the useri is served and the channel statenis Finally, by

measure process(—7) =0, andz(t), te€ [-T,0], is the S
corresponding backlog process governed by the scheduli!@ we know thatmax; z;(0) = 1. We thus have

algorithm A . For ease of exposition, we us&(¥ 4, h) to M .
denote the calculus-of-variations problem in (6), i.e., 1 = maxz;(0) > T'max([A; — > i FLT) = Ti(9)
m=1

- T < 20D,

F(Ua,h) 2 inf / H((t)|p)dt W(9)
&(t),T
LE(), ) €Uy, 7) Note thatT H (5|ﬁ’) is precisely the cost of the trajectory.

subjectto  (&()
(© Since this inequality holds for all trajectoriesrt,, we have

(.
h(&

) = 8)
( T) (9) f(\l/j:lvmax) S Iopt-
. [ |
In particular, we uséF (¥ 4, max) to denote the case when
h(Z) = max; z;. Let ¥% C U4 be defined as follows IV. STRUCTURAL PROPERTIES OF THE
MINIMUM -COST-PATH-TO-OVERFLOW
- d - S FOR« -ALGORITHMS
VS € ¥ 4 such that— =0;,
A {(¢( »E0).T) 4 dt¢( ) } We next turn our attention to thev-algorithms. Our

S ) ) ) ~ultimate goal is to show in Section V that thealgorithms
i.e., it contains all trajectories that correspond to adne asymptotically achieve the minimum-cost-to-overflow dqua

empirical measure procesgt). We can similarly define to 7, , In this section, we first derive some structural
F(¥%,h) where the constraints sdt4 in (7) is replaced
by ¥%. *This upper bound is equivalent to the one in [3].



properties of the minimum-cost-path-to-overflow under rate function ofZ(t) as:
algorithms. Note that the calculus-of-variations problam =
(6) and (9) with the overflow metrit(Z) = max; x; is often I(Z, 1) = inf H(¢|p)
very difficult to solve. In general, the minimum-cost-path- ¢

overflow may not be of a simple linear form. The trick that . i+

we use here is to modify the overflow metric to one that subject to =i~ Z Mo Pl for all i
is tailored to the scheduling algorithm. In particular, tbe

. . N
a-algorithm, we use the overflow metric

pi, > 0and » "yl = ¢y, for all m
i=1

N a«lkl
h(Z) = Vo (%) = (E a:l?"+1> _ o, =0 if zdF) < mI?kaFm,
=1

Note thati(Z, 7) denotes how likely the trajectory(-) can
Note thatV,,(Z) is well-known to be the Lyapunov function move in the dlrectlomx( ) = i immediately after, given
for proving that thex-algorithm is throughput-optimal. Thus ;) — #. Using Lemma 2 we thus have

we will refer toV,, (%) as the Lyapunov overflow metric, and
0

refer to h(Z) = max; x; as the max-queue overflow metric. ) .
The connection betweeW, () andmax; z; will be clear in F(¥,-algo Vo) = inf /Tl(x(t),x(t))dt
Section V. . S
With the overflow metrid/, (%), the calculus-of-variations subject to (QS('Z’ 7(),T) € ¥
problem for finding the minimum-cost-to-overflow is repre- Va(Z(0)) =1
sented by]'—(‘l’a-algo Va). Z(-T)=0.
A. A Lower bound on the minimum-cost-to-overflow Further, lettingV'(t) = V,((¢)), we can define the local

_ . rate-function ofV (¢) as
We first provide a lower bound oﬁF(\Ifa_a|go, Va). We

start with a property of the limiting mappingthat maps the ly (v, w) = inf 1(Z, )

empirical measure proces$t) to the backlog process(t). oy

Note that according to the definition @) and 5(t), they subjectto Vo (%) =v

are both Lipschitz-continuous, and hence are differefgiab 0 NE
almost everywhere. For any timesuch that bothz(¢) and {%Va(x)} y=w

3(t) are differentiable, the following propertles can be shown:
Th
There must exisg!, (t) > 0 such thatz pi (1) = dm(t) en.

0
and &;(t) = [\ — Zum() wls 1)y Where we have used F(¥s-algo Vo) = inf /_TZ”(V(t)’V(t))dt

the notation subjectto V(-T7)=0,V(0)=1. (11)
[u]d = { u if o> 0 oruz=0 Note that the right-hand-side is a one-dimension calculus-
0 otherwise. of-variations problem that is much easier to solve. Ber
algorithms, ify; and !, satisfy the constraints df(7, %),
Recall thatp,,, (t) = 4s,,(t) can be viewed as the fraction hgn Y a b oz, 9)
of time the system is in state in an interval[Bt, B(t+dt)]
immediately aftet. ¢, (¢) can then be viewed as the fraction 0 NG
of time that user; is served and the system is in state o7 (@) Y
within such an interval. In addition, the following lemma R — v
can be shown. ;
= (N — O

% ; a % N a+1
i (t) = 0 if 22 (OF;, < maxaf (1)F}. (Z x?H)

Proof: This can be shown by noting that if

T2 (H)F:, < maxg a2 (t)FF, then for all sufficiently large

B, (xiB(s))“F; < max(z2(s))*F¥ holds for an interval — G max O FL | (12)
€ [Bt, B(t + dt)] immediately aftert. Hence, usei will m=1 !

not be picked for transmission over this entire interval. We )

can thus show that? (t) = 0. m Hence, the local rate-function df(¢) can be rewritten as

We now use the Lyapunov function approach in [22] to -
derive a lower bound oﬂF(\IJa_a|go, V. ). First, define a local by (v,w) = ;nf H(9lp)



= +
M g — : a+1
. b(9) = min (Z v; )

[e3 7
— E (bmmiaxxi F
oo

N TE N and
subject to (Z x?”) lz &N
i=1

=1

1

N o subject to =[\i— Z it 1t for all g
sa)
! N

P >0, gk, = ¢y for all m.
=1

It is easy to show thaty (v,w) is independent of the
value of v, i.e., ly(v,w) = ly(1,w) for all v # 0. Let
I(w) £ ly(1,w). Then the solution to the calculus-of-
variations problem on the right-hand-side of (11) is given

(b) The optimizerz* for a((E) and the optimizer;* for
b(¢) are both unique and they satisff = ~¢* for
some~ > 0. Further, if the optimize®™* # 0, thenz*

by [6, p520] and i are the only vectors that satisfy the following
N
L 1 conditions: there exist!, > 0 such that}" 1, = ¢,
Ji £ min—I(w) =
w>0 W .
- yr =[N — Z wlt] T, @} = y; for somey > 0,
= ﬂmln —H(¢|p)
¢, Z,w>0 N
N M Z( $ett =1, and
subject to lz TFN — Z ¢m Max T Fm =w =t
i=1 m=1

ph, = 0if (x})*FL < m’?x(xZ)“Fffl.

(ZN: a:"“) o 1 (13) Lemma 4 can be proved by showing th@(tgﬁ?) is the
dual problem of the optimization problem(¢) with an

appropriate change of variables. The variahiés of b((E)
are the Lagrange multipliers. Due to lack of space, we omit
the proof here and the details are provided in our technical
report [23].

We now show that, if the empirical measure procggs
is linear, then the queue trajectafyt) must also be linear,

We thus obtain the following result.

Lemma 3:The minimum cost to overflow
]:(‘I’a-alg@ ») must be no smaller thad .

B. Attainability of the Lower-bound; and it must solveé)(¢) in Lemma 4. For ease of exposition,
we start the time front = 0 (instead oft = —T).
In this subsection, we show that the lower boudd Lemma 5:Let Z(0) = 0 ands(¢t) = t¢ fort > 0. Then the

is attainable with a simple linear trajectoft) = (¢ + corresponding queue trajectofft) under thea-algorithm
)(b, t > —T. Note that the solution of (13) will produce must satisfy the following:

a ¢* (it is easy to verify that such @ always exists). (a) The queue trajectory is linear, i.e., for eagh;(t) =
If this ¢* can in fact map to a trajectory that starts from %,t for somex; > 0.

—

Z(—T) = 0 and overflows at = 0, then the minimum-cost-
to-overflow 7 (V¥ algo Ve ») must be no larger than the cos

of this trajectoryJ,; = TH((;S* D). Further, if Jo, = Jp, then

N
¢ (b) There must exisg;, > 0 such thaty" u;, = ¢,,, and
i=1

we can conclude thaf (¥ _ajgq Va) = J1. We next show o = 0 if 27 (8)F, < maxaf(t)Fy, for all t.
that this is indeed the case.
Towards this end, we first show that for each linear [N other words, the queue trajectaryt) is consistent
empirical measure proces&) = (t+71)¢, > —T, there with the scheduling rule. .
exists a unique trajectory(¢) starting from#(—7) = 0. We  (€) X is the unique minimizer ob(¢).
will need the following IeTma. Proof: Let Q(g) = {X | X = g‘ i Fi
Lemma 4: (a) Given ¢, the optimal values of the fol- m=
lowing two problems are the same. Z e = Gy il >0 Note that Q(¢) would have

been the capacity region (for stability) if the channel estat

N
7 i distribution Was¢
a(¢) = max TeN — m max i F
@) >0 ; mz:; ¢ @ Recall that (from (12))

N
- T
subject to Z:rf‘“ <1, d‘git) _ {GVQ(JC@))] d ()




N ot [N The right hand side is equal tg¢*), which is also equal to
( (t)> [Z i (L) b(¢*). Hence,

- - 1
M = * *
V(0)=V,(ITx)=1Tb =—w" =1
- E (bm mlaxx?(t)F ( ) ( ) (¢ ) w*w
m=1 In other words, the linear empirical measure proc&ss =

If X e Q(Qg)' we will have d‘ggt) < 0 wheneverV(t) = (t + T)(E* t > -T, indeed drives the queue from

V. (Z(t)) > 0. Hence, starting fron#’(0) = 0, we must have Z(— 2m) =0to overflow at = 0. Hencej-“( a-algo Vo) <

V(t) = 0 and Z(t) = 0 for all ¢ > 0. Therefore, part (a) TH(¢*|p) = = H(¢*|p) = Ji. Then, using Lemma 3,
holds withx; = 0 for all <. Part (b) then trivially holds. Part f(‘I’a-aIgOv Va) > Ji, the result then follows. [ |
(c) follows from Lemma 4 since the minimizer &f¢) for Hence, we conclude that the minimum-cost-to-overflow
this case igj* = 0. . . f(‘lfa-alg@ V.) is attainable by a simple linear trajectory
Qn trje other hanglv,(g\ ¢ Q(¢), then for allZ(t) # 0, by whose cost is given by, = inf - H(d|p)
settingz;(t) = i — , we have ¢ ()
[ = )=+ V. ASYMPTOTICAL OPTIMALITY OF a-ALGORITHMS
v (1) N M . In this section, we return_to the o_riginal ovgrflow met_ric
= SEON =Y bm max i (t)Fy, h(Z) = max; z; and we will establish that, in the limit
i=1 m=1 as a — oo, the a-algorithm asymptotically achieves the

Section 1ll. We will use some of the results and notations
from Section IV. In particular, to emphasize the dependence
of b(¢) on «, we rewriteb, (¢) = b(¢) here:

N s largest minimum-cost-to-overflow equal th,; given in
o

We thus have™®) < a(¢) and V() < ta(¢). This shows .
that ta($) upper bounds the maximum growth f(t). On  ba(¢) £ min Vi (7)
the other hand, leti, be the average fraction of time in 2

[O t] that useri is picked and the channel stateris Then

Mo subject to =[\i— Z il FLT forall i
Z ul, = ¢, for all m, andx;(t) > ]\ — > ul FL]T.
m=1
H ) )
ence, i >0, Z i = g for all m. (14)
V(t) = Va(#(t) > th(9). i=1
However, by Lemma 4¢(¢) = b(¢). We thus have In Section IV, we have shown tha (¥, gigo Vo) =
V(t) = Va(#(t)) = ta(q?) _ tb(q?) inf - I:(f(‘g) Earlier, in Section Ill, we showed thdt,; is

an upper bound on the minimum-cost-to-overflow for all
, there is only one possible trajectob§(t) given that ~scheduling algorithms. We now show the following.
§() = t¢. Further, we haveV/,( ()) = b(9). ie., (> Theorem 7:

optlmlzesb(¢) Since the optimizer ot)(gb) denoted byx, lim F(¥, _qjqqmax) > I
o-algo = Ltopt-

is unique, we thus havé(t) = tx. This shows parts (a) and Ca—oo.

(c). Part (b) follows from part (b) of Lemma 4. | Proof: First, it is easy to show tha& (¥ ,_ggo max) >
Proposition 6: The  minimum cost to overflow F(¥,-algo Va)- This is true because if a trajectory over-

F(v, algo V,) is equal toJ;. flows according to the max-queue overflow metric, i.e.,

max; x;(t) = 1, then it must have already overflowed ac-

Proof: Let ¢*, w*, and #* denote the solution to;. ! S
o w v o cordlng to the Lyapunov overflow metric sinaeax; z;(t) =

If we uses(t) = (t+T)¢*, t > —T as the underlying

empirical measure process, and let the queue process sflarU i Pr ) 2 |1t| n 6, we then hav

from Z(—T) = 0 whereT = 1/w*, then there is a linear sing opos 0 € then have

trajectory according to Lemma 5, i.e.,

J Y ’ S ]'—(‘I’a—algo’ max) > inf ——== (¢|I3)

Z(t) = (t+ T)X, ¢ ba(9)

wherex’ is the minimizer ofb(4*). Further, by the structure We will now show thatlim, ... inf ; ’Z(fg) = Iy &

* >

of Ji, w* 2 0, and thus inf - H(f"? which then completes the proof.

N I e
W = max Zx?)‘i _ Z b max 2O F Observe thaba(¢) in (14) andw(<z>') |n'(10) b(')th'have .
>0 |“ i the same constraint set. The following inequality is easily
established.

N
subject toy 28 = 1.

L N+ max(z;) > Va(7) > max(z;) for all # > 0.



Hence,
NTH1(8) > ba(F) > (). W
Note that this implies thab, (¢) > 0 < w(¢) > 0. Let

1 > (2]
Q = {¢ such thatw(¢) > 0}. It is sufficient to show
lim inf (¢|ﬁ) (¢|ﬁ) [3]
A% GeQ ba(d) ¢e@ )
Now, for all ¢ in Q, the following holds [4]
H(J| H (| 1 H(J|
@L@ > ((b@ > — ,((b@ . 5]
w(9) ba(¢) — N&*T ()
Taking infimum across the inequalities over the ggtwe  [g]
get
(¢|ﬁ) (¢|ﬁ) 1 (W) [7]
¢e@ 6(9) ¢e@ bald) = N seQ w(9) (8]

Letting a — oo, N&+1 — 1. The result of the Lemma then
follows. [ ]
Combining Theorem 1 and Theorem 7, we conclude tha{
the a-algorithm asymptotically achieves the largest p055|ble
value of the minimum-cost-to-overflow. [t

A. Systems with ON-OFF Channels

Consider the scenario whef&, can take either the value
0 or a positive constant’. This scenario corresponds to ayi2]
wireless system with ON-OFF channels and the ON-rates for
all users are the same. In this case, for any 0, (1

[11]

OLFl

m > m*

7
mgxa:kF & Fm =

m};ax xkF [14]
Hence, then-algorithms (for anyx > 1) are equivalent to
the max-weight algorithm (i.eq = 1). Using the result in
this paper, we immediately reach the following corollary.
Corollary 8: For the above ON-OFF channel model,[16]
the max-weight scheduling algorithm achieves the largest

minimum-cost-to-overflow/,,;. [17]

[15]

VI.

In this paper, we study wireless scheduling algorithmglg]
that can minimize the queue-overflow probability. Assuming
that a sample-path large-deviation principle holds for th&¢°l
backlog process, we first establish a structural property
of the minimum-cost-path-to-overflow for the class @f [20]
algorithms. Specifically, when the overflow metric is ap-
propriately modified, we show that the minimum—cost—toI21
overflow under thev-algorithm can be achieved by a simple
linear path, and it can be written as the solution of a vectofé?]
optimization problem. Using this structural property, we
then show that when approaches infinity, the--algorithm
asymptotically achieves the largest value of the minimuni23l
cost-to-overflow under all scheduling algorithms.

For future work, we plan to study conditions under which
the sample-path large-deviation principle holds. We alaa p
to extend the results to more general network and channel
models.

CONCLUSION

3] W. Whit,
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