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Abstract

Event monitoring is a common application in wireless sensor networks. For
event monitoring, a number of sensor nodes are deployed to monitor certain
phenomenon. When an event is detected, the sensor nodes report it to a base
station (BS), where a network operator can take appropriate action based
on the event report. In this paper, we are interested in scenarios where the
event must be reported within a time bound to the BS possibly over multiple
hops. However, such event reports can be hampered by compromised nodes
in the middle that drop, modify, or delay the event report.

To defend against such an attack, we propose Sem, a Secure Event
Monitoring protocol against arbitrary malicious attacks by Byzantine ad-
versary nodes. Sem provides the following provable security guarantees. As
long as the compromised nodes want to stay undetected, a legitimate sensor
node can report an event to the BS within a bounded time. If the com-
promised nodes prevent the event from being reported to the BS within the
bounded time, the BS can identify a pair of nodes that is guaranteed to con-
tain at least one compromised node. To the best of our knowledge, no prior
work in the literature can provide such guarantees.

Sem is designed to use the minimum level of asymmetric cryptography
during normal operation when there is no attack, and use cryptographic
primitives more liberally when an attack is detected. This design has the
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advantage that the overall Sem protocol is lightweight in terms of the com-
putational resources and the network traffic required by the cryptographic
operations. We also show an operational example of Sem using TOSSIM
simulations.

Keywords: Security, Event Monitoring, Byzantine Adversary, Sensor
Networks

1. Introduction

Over the past years, wireless sensor networks (WSNs) have received a
great amount attention as a promising technology for a variety of applica-
tions. One of the application scenarios for WSNs is in the domain of event
monitoring systems [1, 2]. In event monitoring, the WSN is deployed over a
region where some phenomenon is to be monitored. For example, a number
of sensor nodes could be deployed over a battlefield to detect enemy intru-
sion. When the sensor nodes detect the event being monitored, the event
is reported to a base station (BS), which can then be used by a network
operator to take appropriate actions.

Significant work in WSNs to date has focused on making data gathering
(equivalently, event monitoring) energy-efficient. In this work, we are con-
cerned with timely and secure reporting of event information, even in the
presence of adversarial nodes. The adversarial nodes can include some that
have been compromised and therefore possess the cryptographic keys.

We give two examples of application scenarios where accurate and timely
collection of sensor data in a multi-hop setting is important. First con-
sider the smart power grid where myriad sensors will be deployed through
the transmission and distribution infrastructure. State estimation is per-
formed based on the inputs from the sensors to determine if corrective action
is needed, such as, reducing the load on a sub-station. Incorrect state es-
timation can cause devastating consequences such as blackout of a region
[3]. Such incorrect state estimation can be caused by delaying or dropping
meter readings from a modest fraction of sensors. A wireless surveillance
system using infrared (IR) beam sensors is another example, since many of
the commercially-available wireless IR beam sensor nodes are plugged into
existing electrical outlets [4]. In this case, missing an event report can lead
to failure in taking immediate actions when a burglar attempts a forcible
entry. Note that in both of these cases, there is no energy constraint on the
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network, but there is a high security requirement. Also, in both these cases,
physically protecting the nodes is difficult and therefore one has to acknowl-
edge the possibility of nodes, which were originally a part of the network,
being compromised.

Although relaxing the energy constraints gives us more freedom to design
sophisticated control protocols, it remains a difficult task to secure the event
reporting process when the monitoring network is under attack. First, the
sensor nodes are inherently vulnerable to attacks because they are usually
deployed in non-protected environments. The adversary can often easily ac-
cess the sensor nodes, and may even compromise them by reprogramming
them. This is particularly of concern since efficient reprogramming proto-
cols have been developed [5] and in practice, they rarely use cryptographic
security. Once some sensor nodes in a monitoring sensor network are com-
promised, they may prevent other legitimate sensor nodes from reporting
information in a timely manner. Second, the sensor nodes are often based
on inexpensive platforms with low computational and communication capa-
bilities. Hence, there are sill significant limitations in terms of the amount of
expensive cryptographic mechanisms that can be used. For example, in the
Micaz platform, TinyECC public-key cryptography [6] takes about 2 seconds
to generate a single signature and about 2.4 seconds to verify a signature!
As a result, we cannot liberally use such cryptographic mechanisms due to
the excessive computation and communication overhead, for fear of delaying
the event-report process.

For this reason, we propose Sem, a secure event monitoring protocol that
can work even when there exist compromised nodes in the network. We are
targeting a multi-hop network scenario where all sensor nodes except the
BS node can be compromised. The compromised nodes can launch arbitrary
attacks in a Byzantine manner, such as dropping, modifying, and delaying the
event report. They may also arbitrarily collude among themselves. Even in
such a hostile environment, Sem can provide the following provable security
guarantees:

• As long as the compromised nodes want to avoid being detected, a
legitimate sensor node can report an event to the BS within a bounded
time.

• If the compromised nodes launch an attack that causes the event report
not to arrive at the BS within the bounded time, the BS can identify
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a pair of nodes that is guaranteed to contain at least one compromised
node.

We believe that in many practical scenarios, the adversary has the incentive
to keep the compromised nodes from being detected, because otherwise, the
network operator will be able to remove or reprogram the detected compro-
mised node one by one, eventually defeating the attack. Hence, the above
security guarantees are meaningful and useful to attain.

Our design of Sem is parsimonious in its usage of resources - both in
the usage of expensive computations for cryptographic operations, and in
generating additional network traffic. Specifically, Sem makes a distinction
between a normal operation mode and a diagnosis mode (when some attack
has been detected and culprit nodes are sought to be identified). In the
normal operation mode, Sem only uses a minimal (and indispensable) level
of asymmetric cryptography. In detail, the BS signs on a special packet
to collect the event reports, and the normal sensor nodes verify only the
signature from the BS. This is practically important because we expect that
for most networks, the vast majority of the time will be the normal mode of
operation, free of security attacks.

The remainder of this paper is organized as follows. Section 2 gives
an overview of the previous works for event monitoring. In Section 3, we
formally state our objective, assumptions, and notations. In Section 4, we
discuss what approach we have to take to achieve our objective and provide
a straw-man protocol. In Sections 5 and 6, we present Sem in detail, and
show the advantage of Sem over the staw-man protocol. Section 7 discusses
the relevant miscellaneous issues. We provide experiment results for Sem in
Section 8, and give concluding remarks in Section 9.

2. Related Works

Event monitoring applications of WSNs have been studied for a vari-
ety of scenarios, including military surveillance and forest-fire detection. A
common research issue of event monitoring is energy efficiency and lifetime
maximization of sensor networks. Several schemes are proposed to address
the optimization of sensing coverage (e.g., [1, 7, 8]), the goal of which is
to monitor the system of interest using the minimal amount of energy re-
sources. Another direction to improve energy efficiency is to balance the
energy consumption over the sensor nodes (e.g., [7, 9]), since unbalanced en-
ergy dissipation causes some nodes to die faster than others, thus reducing
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the network lifetime. However, most of existing protocols are designed with-
out security in mind. Hence, the compromised nodes in the middle of the
route from the reporting sensor node to the BS can easily break the protocols
by dropping/modifying/delaying the event report.

Recently, event monitoring in the presence of compromised nodes began
to receive attention [10]. The authors in [10] assume the Man-in-the-middle
attackers that can drop, delay, or manipulate the event report from a legiti-
mate sensor node. Their approach to defend against the compromised nodes
is to make the sensor nodes flood the event report over the entire network.
This method will work when there exists at least one “legitimate route”
from each reporting node to the BS that does not contain any compromised
nodes. However, if the adversary simply compromises all the neighboring sen-
sor nodes of the BS, and thus isolating the BS, this method cannot provide
any guarantees.

Detecting malicious actions by intermediate nodes has been studied in
the area of path-quality monitoring [11, 12, 13, 14]. In path-quality monitor-
ing, the goal is to reliably raise an alarm when the packet-loss rate and the
packet-delay exceed certain thresholds. There are two common approaches.
One is to make a destination node return the number of the packets that it
receives from a source node. The other is to make the source node perform
the active probing (e.g., ping or traceroute) on the routing path. However,
just detecting misbehaviors, without identifying the malicious nodes, is in-
sufficient. Consider the case when adversary nodes encircle the BS. All paths
are measured to be of low quality. However, there is still no way to carry out
communications between a sensor node and the BS. This scenario motivates
us to introduce a new secure guarantee of identifying malicious nodes. By
pin-pointing the malicious node, the BS can then make the network operator
take it away from the network or replace it.

Localizing the malicious node is a more difficult problem than just de-
tecting the malicious activity. Much of the early work tackled this problem
through the mechanism of overhearing [15, 16]. However, the solutions in
this category do not require an evidence when a node reports a misbehav-
ior, and thus cannot handle false misbehavior reporting and collusion among
Byzantine adversaries. Subsequent work - ODSBR [17] and PAAI [18] -
can handle colluding Byzantine adversaries by using acknowledgment-based
approaches that require use of onion-manner signing from nodes between
the source and the destination. Since the onion-manner signed acknowledg-
ment mechanism takes a high overhead (too much time, bandwidth, and
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packet length), ODSBR and PAAI use this to identify a faulty link only
after the packet-drop rate becomes higher than a threshold. However, any
single event report can be a critical one (imagine the enemy invasion de-
tection in a battle field). Thus, losing the event reports until the threshold
test fails is not acceptable from the event-monitoring viewpoint. One could
resolve this difficulty by a simple modification to ODSBR and PAAI in such
a way that the onion-manner signed acknowledgment is required for every
data packet from every node on a traffic route (see the straw-man protocol
in Section 4). However, such a modification makes the scheme infeasible for
resource-constrained wireless networks because we go back to the issue of
high computation and communication overhead.

To the best of our knowledge, no existing solution can work in hostile
environments where the compromised nodes may block all the routing paths
coming into the BS, thereby leaving no chance for a legitimate node to report
an event in time. In our work, we focus on resolving this issue and provid-
ing provable security guarantees with consideration of communication and
computation overhead.

3. Problem Statement

We consider a multi-hop wireless sensor network that consists of a base
station (BS) node and a number of sensor nodes. A sensor node is in charge of
sensing a delay-sensitive event like a power line shutoff. A network operator
monitors the sensor network through the BS that attempts to collect the
events (if any) from the sensor nodes. It is important that if an event occurs
at a sensor node, the BS gets informed of it as soon as possible in order for
the network operator to take action in time.

Since some sensor nodes are more than one hop away from the BS, the
events sensed at such nodes are reported to the BS through a multi-hop
routing path as shown in Figure 1. However, if a node in the middle of
the routing path is compromised, the compromised node may drop/modify
the event report, or delay it for a very long time. This problem cannot be
resolved even if a legitimate node sends the event by flooding over the entire
network, because the BS may be completely encircled by compromised nodes.
For example, in Figure 1, if nodes a and f are compromised, no other sensor
nodes can successfully report an event to the BS even by flooding. Isolating
BS is often easy to achieve because the neighboring nodes of BS are not that
many.
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Figure 1: Multi-hop routing paths to collect events.

Objective: The objective of this paper is to overcome the aforementioned
difficulty in monitoring delay-sensitive events. We want to devise a protocol
that provides the following provable security guarantees. (1) As long as the
compromised nodes want to stay undetected, a legitimate node can report an
event to the BS within P time units; (2) If the compromised nodes launch an
attack that causes the event report from a legitimate node not to reach the
BS within P time units, the BS can identify a pair of nodes that is guaranteed
to contain at least one compromised node.

Note that with the above security guarantees, we can defeat an attack
even in the situation where the BS is completely encircled by compromised
nodes. This is because the network operator will be able to remove or repro-
gram the detected compromised node one by one, eventually securing a safe
route to the BS for collecting event reports.

Note also that we do not guarantee that all sensor nodes will report a
detected event to the BS within P time units: once a node is compromised,
the event occurred at the compromised node may not be reported. Intuitively,
if the reporting node is itself compromised, there is no way to get informed of
the event that occurs at the node. However, if an event is sensed by multiple
sensor nodes, say n sensors, and at least one of them is legitimate, we can still
guarantee that the event is reported to the BS within P time units by our
protocol. To make our protocol useless, the adversary needs to compromise
all n sensor nodes. In many practical scenarios, the value of n may be large
(e.g., all sensor nodes around an invasion route by the enemy movement).
In contrast, without our protocol, the adversary only needs to compromise
the neighboring nodes of the BS to nullify the monitoring system. Thus, the
security benefit from our protocol is significant.
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Assumptions: (1) We consider a stationary network: the locations of
all nodes are fixed. (2) Only the BS can be trusted, i.e., any sensor node
can be compromised and then behave maliciously. The compromised nodes
may arbitrarily collude among themselves. (3) Byzantine adversary model is
considered, i.e., the compromised nodes can take arbitrary malicious actions.
For example, the compromised node may drop, modify, or delay the event
reports. Further, they may launch a jamming attack to prevent some nodes
in the network from communicating. However, for ease of presentation, we
assume for the time being that there is no jamming attack. We will relax
this assumption in Section 7. (4) All links are bi-directional. (5) We assume
that transient packet losses (e.g., due to temporary bad channel quality) can
be recovered by a lower-layer automatic repeat request (ARQ) mechanism.
Thus, we assume that nodes do not fail unless they are compromised. We
will also relax these assumptions in Section 7. (6) The time to transmit a
packet across one hop, including retransmissions by ARQ, is bounded above
by B time units. (7) A node shares a secret key with each of its neighboring
nodes. We assume that when a node sends any packet to its neighboring
node, it sends a secret-key-encrypted message together. By this, any node
can authenticate neighboring sender’s identification (ID)1. (8) The public
key of a node is assumed to be known to every other node. How to manage
the public key infrastructure is out of the scope of this paper. (9) Events
monitored by the network occur infrequently.

Notations and Definitions: (1) [X1, . . . , Xn] returns the concatenation
of the input strings X1, . . . , Xn. (2) We use N(a) to denote ‘node a’ in short.
(3) Sa(X) returns a signed message for the input stringX made byN(a). The
signed message is defined as Sa(X) = [X,H(X), SIGa(H(X))], where H(X) is
a hash of the input string X, and SIGa(x) is a signature created on the string
x by N(a) using its private key. (4) ID(a) denotes the identification (ID) of
N(a). (5) SET (a1, . . . , an) denotes the set of nodes N(a1), . . ., N(an). (6) A
suspicious set is a set of nodes that includes at least one compromised node
in it.

1In the proposed protocol presented in Section 5, a node is required to receive a packet
from a designated sender. Thus, authenticating the sender’s ID is important, because
otherwise an arbitrary neighboring node of the receiver can maliciously claims to be the
designated sender. We note that since a node is sharing a secret key only with its neigh-
boring nodes, the overhead to maintain the secret key is much lower than in the case where
a node shares a secret key with all other nodes in the network.

8



4. Straw-Man Protocol

In this section, we first discuss what are the basic methodologies needed
for detecting a malicious activity, and why just detecting a malicious activ-
ity is not good enough for identifying the malicious node. Then, based on
such a discussion, we provide a straw-man solution to achieve our objective.
However, this straw-man solution incurs a high computation and communi-
cation overhead. This problem will motivate our proposed protocol in the
next section.

4.1. What do we need?

First, as we have seen in Section 3, if we simply let the sensor nodes
send a report to the BS only when they detect an event, the compromised
node in the middle of a route may drop this event report, or hold it for a
long time. Thus, the BS may not know within a bounded time if the event
has occurred. To detect this type of attacks, we therefore need periodic
reporting, i.e., a sensor node is required to periodically report something to
the BS, whether or not it detects an event. In this way, if the BS does not get
a new report from a certain node within a time bound, the BS can recognize
that an attack is in effect. Second, in order to detect modification to the
event reports, we will also need to use some signature scheme, e.g., through
public-key cryptography.

However, we caution that the use of periodic reporting and public-key
cryptography alone will not provide a satisfactory solution to our problem.
First, letting every sensor node send a signed report periodically, regardless
of whether it has an event to report, leads to significant computation and
communication overhead. Second, even with such a large overhead, these
mechanisms alone do not guarantee that the BS can always identify who the
malicious node is after detecting a malicious activity. This is because the
BS has to rely on other nodes’ opinions to locate the culprit, but the BS
cannot trust anybody except itself. Further, the malicious may start acting
normally as soon as the BS detects a malicious activity. Thus, the BS may
not be able to find enough evidence to convict the malicious node.

Therefore, what we need for achieving our objective is a protocol that
uses the aforementioned methodologies to detect a malicious behavior and
collects incriminating evidence for the malicious behavior at the same time.
We note that we can make such a protocol by adopting the onion-manner
acknowledgment (ACK) mechanism with staggered timeout, which is used in
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Figure 2: Line network model to collect event reports.

ODSBR [17]. We refer to this protocol as straw-man protocol, and introduce
it below as our baseline protocol.

4.2. Detail of the straw-man protocol

4.2.1. A route to collect event reports

The straw-man protocol organizes sensor nodes in multiple line networks
that originate from the BS. For example, in Figure 1, the BS, N(a), N(b),
and N(c) form a line network, while N(d), N(e), N(f), and the BS form
another line network. In the straw-man protocol, the BS collects events from
each line network separately. Thus, without loss of generality, we consider
one line network model of K hops as shown in Figure 2. In this model, we
denote by N(0) the BS, and by N(i) the sensor node at a i-hop distance from
the BS. Define I = {0, 1, . . . , K}. We refer to the direction from N(0) to
N(K) as the forward direction, and the opposite as the backward direction.

4.2.2. Malicious activity detection

The pseudo-code of the straw-man protocol is given in Algorithm 1. In
straw-man protocol, N(0) (i.e., BS) sends out a probe token (PT) in the
forward direction through the line network (line 2). The PT is defined as

PT = S0([ID(0), R,Q]), (1)

where R denotes the routing information of the line network model in Figure
2, and Q is an integer variable, called round sequence. Every time N(0)
sends out the PT, it increases the value of Q by 1 to prevent the old PT
from being re-used in replay attacks [19]. When N(K) receives the PT, it
generates an ACK packet (line 16). On receiving the ACK, N(i) for any
i ∈ I\{0, K} forwards the ACK in the backward direction (line 24). If N(i)
has an event to report, it can embed the report into the ACK. Hence, if N(0)
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Algorithm 1 Straw-man protocol at N(i)

1: if N(i) = N(0) then
2: transmit a PT to N(1) every P/2 (or less) time units
3: start a timer ta(0)
4: if receiving an ACK before the timer ta(0) expires then
5: if the ACK contains event reports then
6: deal with the event reports
7: end if
8: if the ACK is from N(i) 6= N(K) then
9: investigate malicious nodes (refer to Section 4.2.5)

10: end if
11: else
12: go to line 9
13: end if
14: else if N(i) = N(K) then
15: if receiving a PT then
16: generate an ACK and send it to N(K − 1)
17: end if
18: else
19: if receiving a PT then
20: forward the PT to N(i+ 1)
21: start a timer ta(i)
22: end if
23: if receiving an ACK before the timer ta(i) expires then
24: sign on the ACK and forward it to N(i− 1)
25: else
26: generate an ACK and send it to N(i− 1)
27: end if
28: end if
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receives the ACK from N(K), then no packet drop has occurred, and N(0)
can be informed of any embedded event. On the other hand, N(0) detects
a malicious activity when it does not receives the ACK from N(K) (until a
threshold time). It is easy to see that if each round is completed within P/2
time units, N(i) for any i ∈ I\{0} can report a sensed event to N(0) within
P time units.

4.2.3. Timeout setup to identify a malicious node

To identify a malicious node that drops/delays either the PT or the ACK,
N(i) for any i ∈ I\{K} starts an ACK timer ta(i) immediately after trans-
mitting the PT, whose timeout value is set to Ba(i) (line 21). If the ACK has
not been received from N(i + 1) before ta(i) goes off, N(i) gives up waiting
and generates its own ACK packet (line 26). Ideally, only when N(i+ 1) is a
compromised node that drops either the PT or the ACK, or delays it beyond
a certain limit, N(0) receives the ACK generated by N(i). To ensure this
property, if N(i+ 1) is legitimate, N(i + 1) should always be able to send
the ACK to N(i) before ta(i) expires. Due to this reason, the nodes calculate
the maximum time required for the PT to traverse from themselves to N(K)
and for the ACK to return to the current position along the reverse route.
Then, N(i) for any i ∈ I\{K} sets the timeout Ba(i) to this maximum value,
which is equal to

Ba(i) = (K − i− 1)B + (K − i)B. (2)

Note that Ba(i) is larger than Ba(i+ 1) by 2B. As Figure 3 illustrates, this
allows N(i + 1) to send N(i) the ACK before ta(i) expires. This ACK can
be either the one that N(i + 1) has received from N(i + 2), or the one that
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N(i+ 1) generates on its own. More formally, we can state this property as
the following lemma.

Lemma 1. For any i ∈ I\{K}, if both N(i) and N(i + 1) are legitimate,
N(i) has no reason to generate its own ACK.

Proof. Remember that nodes start the ACK timer right after transmitting
the PT. Since N(i+1) holds the PT for B time units at most, ta(i+1) starts
within B time units after ta(i) started. This implies that ta(i + 1) goes off
at least B time units earlier than ta(i) does, since Ba(i) = Ba(i + 1) + 2B.
Thus, N(i+ 1) can alway send an ACK to N(i), whether it is what N(i+ 1)
generates on its own when ta(i+1) expires, or it is what N(i+1) has received
from N(i + 2) before ta(i + 1) expires. Hence, N(i) should not be the node
that generates its own ACK.

4.2.4. Event report in backward direction

To prevent the compromised nodes from modifying the ACK (thereby
falsely accusing legitimate nodes), or tampering with an event report in the
ACK, the nodes are required to sign on the ACK. In detail, the ACK gener-
ated by N(i) is defined as

ACK = Si([ID(i), Q,E]), (3)

where E denotes the event report. If nodes do not have anything to report,
they leave E as E = NULL. When N(i) forwards the ACK from N(i + 1)
to N(i− 1) (i.e., it does not generate its own ACK), the ACK sent by N(i),
denoted by ACK(i), is defined as

ACK(i) = Si([ACK(i+ 1), ID(i), E]). (4)

Note that the ACK is signed by the nodes in an onion manner, i.e., the
ACK sent by a node encapsulates the ACK (if any) sent by higher-indexed
nodes. Thus, a compromised node cannot modify or forge the ACK from any
higher-indexed node, unless they collude with each other.

4.2.5. Investigation of malicious nodes

On receiving the ACK, the BS can investigate the malicious nodes (line
9), providing the following guarantee.
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Proposition 1. If N(0) gets the ACK generated by N(i) for i 6= K, SET (i, i+
1) is a suspicious set.

Proof. Assume that SET (i, i+ 1) is not a suspicious set. Then, N(i) and
N(i + 1) are both legitimate. Since no compromised node can forge the
signature of a legitimate node, the ACK that N(0) has received is indeed
generated by N(i). This implies that N(i) has received the PT, and thus
forwarded the PT to N(i+1). Hence, by Lemma 1, N(i) cannot be the node
that generate its own ACK. This is a contradiction.

Note that a suspicious set contains at least one compromised node, which
is either the one that dropped or delayed the PT or ACK, or one of its
colluding partners. In addition to what Proposition 1 guarantees, N(0) can
also identify the node that modified the content of the ACK (if any), by
sequentially verifying the signatures on the ACK from the outer shell. That
is, if there exists N(j) such that the the signature of N(j) is valid, but the
signature of N(j + 1) is invalid, SET (j, j + 1) is a suspicious set [17, 18].

4.2.6. Issue in the straw-man protocol

We can see that the straw-man protocol achieves our objective: it can
collect the event reports from sensor nodes within P time units if there is
no attack; Otherwise, it can identify a suspicious set that contains at least
one compromised node. However, the straw-man protocol always requires
the sensor nodes to send a signed packet as in (4), i.e., the straw-man pro-
tocol needs to use an expensive ACK mechanism signed in an onion manner
every P/2 time units, whether or not an event occurs. This is important for
providing the guarantee of identifying a suspicious set whenever an event is
not received on time. Since the occurrence of events is unpredictable and
the PT generation by the BS has to be periodically done, the sensor nodes
are required to sign on the ACK in an onion manner even though they may
not have anything to report and even when there is no attack going on (the
normal case). Clearly, this is expensive since the onion-manner signing tech-
nique causes a heavy computation overhead for relaying the ACK. Further, it
results in a large payload size for the ACK that often needs to be fragmented
into multiple packets.

5. Proposed protocol: SEM

The issue with the straw-man protocol is that it requires an expensive
onion-manner signed ACK mechanism even in normal operations. Ideally, we
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would like to design a protocol that has low overhead in normal scenarios, i.e.,
when there is no attack, and only invokes the heavier-overhead mechanism
when an attack is suspected. For this purpose, we now propose our new
protocol, called Sem (Secure Event Monitoring).

5.1. Overview

At a high level, Sem preserves a similar structure to the straw-man pro-
tocol: the BS node periodically sends out the PT through the line network of
Figure 2, and gets an ACK that identifies the malicious link (if any) based on
the staggered timeout mechanism. However, in order to reduce the overhead,
Sem first detects if something bad happens, i.e., if there exists a compro-
mised node that hinders the event collection operation. If the event collection
operation looks fine, then Sem cancels the ACK timers at the sensor nodes.
Thus, Sem uses the expensive onion-manner signed ACK mechanism only
when some malicious activity that disturbs the BS’s event collection process
is detected. By this design, Sem can provide the same security guarantee
as the straw-man protocol, while eliminating the heavy communication and
computation overhead to send the ACK under normal legitimate scenarios.

Towards this end, Sem forms the line network to collect the event reports
in such a way that both the start and the end of the line are the BS (Section
5.2.1). This means that the sensor nodes are physically organized in a circle
that passes through the BS. The timeout value at each node is extended in
order to cancel the ACK timer when nothing is bad, ensuring to identify
the malicious node otherwise (Section 5.2.3). Further, the event report is
embedded in the PT, not the ACK, since the ACK is only required when
an attack is detected (Sections 5.2.2 and 5.2.4). The detailed description of
Sem is provided in the following.

5.2. Detail of SEM

5.2.1. A circular route to collect event reports

Sem organizes the nodes into a circular network that passes through
the BS as shown in Figure 4(a). We refer to the circular route as event
gathering circle (EGC). If the BS finds a situation that it cannot include all
the sensor nodes in the network into one single EGC, e.g., due to scalability
considerations, the BS can form multiple EGCs, and collect events from each
EGC independently. As long as each sensor node belongs to at least one
EGC, the BS can collect the event reports from the entire network. Thus,
without loss of generality, we consider the case that there is only one EGC in
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Figure 4: Event gathering circle (EGC).

the network that is modeled as a circular route of K hops as in Figure 4(b).
Note that in this model, N(i) denotes the sensor node at a i-hop distance
from the BS in the forward direction, thus implying that both N(0) and
N(K) represent the BS2. We can think of the network in Figure 4(b) as the
network in Figure 2 where N(0) = N(K).

5.2.2. Detection of malicious activity

Algorithm 2 gives the pseudo-code of Sem. The basic framework of Sem
for sending PT and ACK is almost the same as the straw-man protocol.
Namely, N(0) sends out the PT in the forward direction of the EGC in the
period of P/2 time units or less (line 8). When N(K) receives the PT, N(K)
generates a signed ACK packet (line 12) and forward it in the backward
direction, in order to identify malicious nodes. Nodes set up the timeout
of the ACK timer similarly to (2) (line 26). If N(i) for any i ∈ I\{0, K}
receives an ACK from N(i + 1) within the timeout, N(i) signs on the ACK
and forwards it to N(i−1) (line 29); Otherwise, N(i) generates its own ACK
(line 31).

However, in Sem, if a sensor node N(i) has an event to report, it embeds

2A sensor node can appear in an EGC more than once, although it is not recommended
due to its inefficiency. Thus, a preferred network topology would be the one where we can
form EGCs in such a way that a sensor node belongs to a unique EGC only once. However,
in some topology (e.g., a tree), one may be forced to use the same node more than once an
EGC. If a compromised node acts as for example, N(i) and N(j) (i 6= j) in the same EGC,
then N(i) and N(j) can be considered as equivalent to collaborating malicious nodes.
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Algorithm 2 SEM at N(i)

1: Notation: X@Q denotes that an object X is for round Q
2: if N(i) = N(0) or N(i) = N(K) then
3: if receiving a PT@Q from N(K − 1) then
4: if the PT@Q contains event reports then
5: deal with the event reports
6: end if
7: if ta(0)@Q < Tth then
8: tansmit a PT@(Q+ 1) to N(1) when ta(0)@Q = Tth
9: start ta(0)@(Q+ 1)

10: else
11: wait for Tm time units
12: generate an ACK@Q and send it to N(K − 1)
13: end if
14: end if
15: if receiving an ACK@Q before ta(0)@Q expires then
16: if the ACK@Q is from N(i) 6= N(K) then
17: investigate malicious nodes (refer to Section 4.2.5)
18: end if
19: else
20: go to line 17
21: end if
22: else
23: if receiving a PT@Q then
24: cancel ta(i)@(Q− 1)
25: forward the PT@Q to N(i+ 1)
26: start ta(i)@Q
27: end if
28: if receiving an ACK@Q before ta(i)@Q expires then
29: sign on the ACK@Q and forward it to N(i− 1)
30: else
31: generate an ACK@Q and send it to N(i− 1)
32: end if
33: end if
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the event report into the PT instead of the ACK as

PT(i) = Si([PT(i− 1), ID(i), E]), (5)

where PT(i) denotes the PT sent by N(i). Here, N(i) embeds the event
reports into the PT only when it has an event to report.3 Since the event
report is carried by the PT, the compromised node may want to drop or
delay the PT to prevent an event from being reported in time to N(K),
which is also the BS. However, note that since N(0) = N(K), the BS node
N(K) can measure the circulation time tc that is defined as the elapsed time
of the ACK timer ta(0) when N(K) receives the PT (recall that ta(0) starts
immediately after N(0) sends the PT out). If all the sensor nodes in the
EGC are legitimate, the circulation time tc should be less than or equal to
(K − 1)B; Otherwise, it is certain that there exists at least one compromised
node in the EGC. However, even in such a case, as long as the value of tc is
no larger than some threshold time, say Tth, which is less than P/2, the BS
may skip identifying the compromised node because the BS can still collect
the event within P time units after the event occurred (which is our design
objective). Therefore, as long as tc ≤ Tth(< P/2), the BS does not generate
an ACK and it cancels the ACK timers at the sensor nodes, through which
the BS prevents the nodes from doing the expensive ACK processing. This
implies that only when tc > Tth, N(0) receives the ACK from the sensor
nodes, by which N(0) can identify the malicious node (line 17).

5.2.3. Timeout setup to identify a malicious node and the potential difficulties

In order to give enough time for the BS to cancel the ACK timers at the
sensor nodes when tc ≤ Tth, we extend the timeout set-up in (2) by a time
margin Tm. Let B′a(i) be the new timeout of the ACK timer ta(i) (line 26).
Then, we can express B′a(i) as

B′a(i) = Ba(i) + Tm. (6)

In addition, when N(K) is required to send an ACK in the backward direc-
tion, we let N(K) start to send the ACK Tm time units after N(K) receives

3This procedure introduces the vulnerability that a compromised node may simply
remove the event report, since the BS has no way to know whether there exists an event
report before receiving it. We explain how Sem deals with this threat at Section 5.2.4.
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Figure 5: An example to show that a compromised node may hold the PT for more than
B time units without being identified.

the PT (line 11). Compared to the straw-man protocol, this in effect in-
creases the timeout at every node in Figure 3 by the same length Tm. Thus,
it is easy to see that even after such a change, Lemma 1 still holds, and thus
Proposition 1 also still holds. Thus, we have the following.

Corollary 1. Sem satisfies the same property as the straw-man protocol that
if N(0) gets the ACK generated by N(i) for i 6= K, SET (i, i + 1) is a
suspicious set.

In order to cancel the ACK timers at the sensor nodes, N(0) simply starts
a new round. In detail, if tc ≤ Tth, the BS node (as N(K)) does not send an
ACK. Instead, the BS (as N(0)) sends out the PT of the new round when
the value of the ACK timer ta(0) in the current round reaches Tth (line 8).
This new round’s PT acknowledges the old round’s PT, and thus the sensor
nodes can safely cancel their old ACK timer when receiving the new round’s
PT (line 24). This leads the first potential difficulty. Difficulty 1: here, we
should ensure that the value of Tm is long enough so that the new round’s
PT can arrive at the sensor nodes before their old ACK timer expires.

If tc > Tth, the BS node N(0) stops circulating the PT, i.e. N(0) does
not try to cancel the ACK timers at the sensor nodes (lines 10-13). Thus,
N(0) will receive the ACK signed by the sensor nodes in the onion manner.
However, a second potential difficulty arises. Difficulty 2: a wrong choice
for the value of Tth may lead to a situation that the BS cannot identify a
suspicious set even after receiving the ACK. To see this, consider the following
example (see Figure 5), where we set the threshold Tth as Tth = (K − 1)B +
B, i.e., the BS will investigate the EGC using the ACK mechanism if the
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circulation time tc is larger by a margin B over the legitimate maximum
bound, (K − 1)B time units. Suppose that N(K − 2) is a compromised
node, and it holds the PT for 2.1B time units, while other nodes consume B
time units to send the PT. Then, N(K) will find tc > Tth, and thus generate
an ACK after Tm time units, without initiating a new round. However, to
deliver the ACK, nodes may need less than B time units, depending on its
current computation load and the channel condition. Suppose that every
node takes just 0.1B time units to send the ACK. In this situation, it is easy
to check that N(K− 2) can forward N(K− 3) the ACK generated by N(K)
before the ACK timer of N(K−3) expires. Figure 5 illustrates this situation.
Therefore, the BS cannot find anything wrong with the compromised node
N(K−2), since it will get the ACK signed by all nodes in the EGC including
N(K). Namely, although N(K − 2) holds the PT more than B time units,
and the BS detects that tc > Tth, N(K − 2) can avoid being identified.

Therefore, we now have to answer the following two questions:

• What should be the appropriate value for the threshold Tth such that
if tc > Tth, the BS can always identify a suspicious set?

• What should be the appropriate value for the time margin Tm by which
the BS can cancel the ACK timers at the sensor nodes before they go
off?

Note that if we can successfully answer these two questions, Sem can achieve
our objective, and only use the expensive onion-manner signed ACK mech-
anism when we need to identify the compromised nodes.

In Proposition 2, we will answer the first question, i.e., to determine what
is the smallest value of Tth that we can set such that the BS is always able to
identify a suspicious set when tc > Tth. Note that as Tth increases, the time
required for collecting event reports from a node to the BS goes up linearly
(the exact relation is given in Corollary 2) and thus it is beneficial to use
small Tth.

Proposition 2. If we set the threshold Tth = Ba(0), where Ba(0) = (2K −
1)B (obtained by setting i = 0 in (2)), the BS can always identify a suspicious
set when tc > Tth.

Proof. Suppose that N(0) receives the PT after tc > Tth as depicted in
Figure 6. Then, the time left in the ACK timer of N(0) is B′a(0) − tc =
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Figure 6: An example where N(0) receives the PT after tc > Tth because N(i) delayed
the PT. Because N(K) generates its own ACK only after N(0) timer expires, the ACK
that arrives at N(0) does not contain the ACK from N(K).

Ba(0) +Tm− tc < Ba(0) +Tm−Tth = Tm. Namely, the time left in the ACK
timer of N(0) is less than Tm. However, as mentioned below (6), N(K) starts
to send its own ACK only Tm time units after it receives the PT. Therefore,
N(0) will not receive the ACK generated by N(K). Instead, when N(0)’s
timer expires, N(0) will receive an the ACK that is generated by N(j) for
j 6= K. In that case, by Proposition 1, SET (j, j + 1) is a suspicious set.

The goal of Proposition 3 is to answer the second of the two questions
raised above. Proposition 3 gives us a lower bound to setting the time margin
Tm. A larger value of Tm will mean, in the case of an attack, a longer time for
a node to generate an ACK in the backward direction. This would mean a
longer time for the BS to get the ACK and therefore to identify the suspicious
set. Consequently, we would like to set Tm to be as small as possible.

Proposition 3. If we set the time margin Tm as Tm ≥ 2Tth, then no le-
gitimate sensor node will generate its own ACK when tc ≤ Tth for every
round.

Proof. We prove this by focusing on a typical round Q. It is sufficient to
show that the earliest time at which the ACK timer of any node expires is
after the latest time at which the ACK timer is canceled at that node. Recall
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that the ACK timer at a node is canceled by the PT reaching the node in
the next round.

Consider the situation in Figure 7, where the BS starts its ACK timer
of the Q-th round at p1, and it gets back the PT of the Q-th round within
Tth time units. Then, the BS wants to cancel all nodes’ ACK timers that
were set up in the Q-th round. Thus, the BS starts sending the PT of the
(Q + 1)-th round at p2 = p1 + Tth. The last node to receive the PT of the
(Q + 1)-th round will be N(K − 1). Let p3 = p1 + B + 2Tth. Then, p3 is
the latest time at which the PT of the (Q+ 1)-th round reaches back to the
BS, because tc ≤ Tth for both the Q-th and the (Q+ 1)-th rounds. Here, the
extra term B in p3 is due to the fact that the BS can take up to B time units
to transmit the PT of the (Q+ 1)-th round. Therefore, the node N(K − 1)
will receive the PT of the (Q+ 1)-th round (and will consequently cancel its
ACK timer of the Q-th round) before p3.

Now, consider the time when the ACK timers of the nodes are scheduled
to expire. Recall that we are analyzing the earliest possible time when the
ACK timers can expire. The earliest time that the ACK timers of any nodes
start is p1. The shortest timeout value is at N(K − 1), B + Tm by (2) and
(6). Hence, p4 = p1 +B + Tm is the earliest time that any timer can expire.
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This means that the ACK timers for all the nodes will expire at p4 or later.
Now, since Tm ≥ 2Tth, we have p3 ≤ p4.

Note that in the proof of Proposition 3, if the BS cannot get the PT of
the (Q+1)-th round before p3, some legitimate sensor node may generate its
own ACK for the PT of the Q-th round. However, in this case, the ACK can
be discarded by the nodes who have already received the PT of the (Q+1)-th
round, because they know that they have to send the ACK for the PT of the
(Q + 1)-th round. Further, in this case, since the BS is expecting to receive
an ACK, the statement of Proposition 3 sill holds.

Corollary 2. If tc ≤ Tth in every round, which means that the compromised
nodes (if any) stay undetected, a legitimate node can report an event within
P time units, where P = 2(B + Tth).

Proof. By Proposition 2, the BS can finish each round within B + Tth time
units when no attack is detected (here, the term B comes from the time
that the BS takes to send the PT). Thus, each legitimate node in the EGC
can report an event within 2(B + Tth) time units, i.e., P = 2(B + Tth). The
factor of 2 comes in because in the worst case, the event report may be
generated by a node right after the PT has crossed that node.

5.2.4. Event report in forward direction

Suppose that a normal node, say N(i), sends an event report by piggy-
backing it as in (5). A compromised node between N(i) and N(K) may
modify the event report, or strip N(i)’s signature and event report from the
PT leaving only the PT originated by N(0). These attacks cause the BS to
get a corrupted event report, or to remain unaware of the event report. To
prevent these attacks, when the BS receives event reports, it puts the list L
into the PT of a new round, which contains the IDs of nodes who sent the
event reports with an authentic signature in the previous round. Thus, N(i)
who sent an event report in the previous round should see its ID on the list L
in the new round. Otherwise, it implies that somebody after N(i) modified
or removed the event report from N(i).

If N(i) does not see its ID on L, it drops the PT and generates an ACK
with a piggyback error (PE) message. When the BS receives a PE message,
the BS may request the nodes on the EGC to send, in onion-signing manner,
the hash value and the signature that N(i) created for the event report, to
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prove that they have seen the event report from N(i). Based on the collected
information from this request, the BS can find at least one suspicious set that
contains the highest-indexed node among those who provide the valid hash
and signature from N(i), and its next-hop node. We omit the proof since
it can be shown in a similar way as Proposition 1. Note that with this
approach, we have eliminated the need for all the nodes to sign the event
report in an onion manner: only the nodes that have an event to report need
to sign their report. Generally, the number of nodes that fall in this category
is smaller than the total number of nodes. Hence, this design eliminates
unnecessary computational and packet overhead associated with signing in
an onion manner.

On the other hand, in order to identify the compromised nodes that
modify any contents in the PT, the sensor nodes verify the signature of N(0)
in the PT. If a node N(i) finds N(0)’s signature invalid, it sends an event
report as E = signature error (SE) in the PT. Then, when the BS gets back
the PT, we can guarantee the following.

Proposition 4. If the BS receives an event report E = SE from N(i) for
any i ∈ I\{0}, SET (i− 1, i) is a suspicious set.

Proof. Assume SET (i− 1, i) is not a suspicious set. Then, both N(i− 1)
and N(i) are legitimate. Since N(i− 1) did not generate the event report
E = SE, it must have received authentic signature of N(0) in the PT. Thus,
the signatures in the PT that N(i) has received should also be authentic,
which means that N(i) cannot be the node that generates the event report
as E = SE. This is a contradiction.

6. Analysis: Advantage of SEM over the straw-man protocol

To see the advantage of Sem, we now calculate how much overhead Sem
can reduce from the straw-man protocol, in terms of the number of packet
transmissions required.

The main difference in the overhead comes from the fact that in normal
operations, Sem does not need the ACK signed in the onion manner. For this
reason, we first calculate the payload size of the ACK and thus the number
of packets that we need for accommodating the payload.

Consider the case when an attack is detected. When a node sends an
ACK, it needs to generate its own signature. The size of the signature is 22
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bytes when we use TinyECC [6], which is a popular public key cryptography
package for sensor platforms. Since the ACK also includes the sender ID,
which is usually 2 bytes, each node needs at least 24 bytes to send an ACK.
This means that when the ACK is conveyed from N(K) to N(0) through the
EGC, the payload size increases by 24 bytes at each node. However, most
of the commercial sensor nodes use IEEE 802.15.4 radios, where the payload
size of a packet must be less than 114 bytes. Therefore, a single packet can
accommodate the ACK signed by up to four different nodes; If 4m nodes sign
on an ACK, where m is an integer, the ACK payload should be fragmented
to m packets at a sender and reassembled at a receiver. Thus, it is easy to see
that if K is a multiple of 4, the total number of packet transmissions for N(0)
to receive the ACK from N(K) via the EGC can be expressed as K(K+4)/8,
i.e., O(K2). Recall that in the straw-man protocol, the BS has to receive
the ACK, whether or not there exists a malicious activity. Thus, each round
needs O(K2) packet transmissions for the ACK. However, Sem does not
require the BS to receive the ACK in normal operations. Hence, considering
the ACK only, Sem can reduce O(K2) packet transmission overhead from
the straw-man protocol in the normal mode, which corresponds to significant
savings.

On the other hand, in both the straw-man protocol and Sem, the PT
can be sent in a single packet so that for each round, we need O(K) packet
transmissions for the PT circulation. Thus, when there exists no event to
report in the normal mode, Sem needs only O(K) packet transmissions in
total in each round, while the straw-man protocol needs O(K2)+O(K) packet
transmissions. In Sem, if some node needs to report an event, it signs on
the PT as in (5). If there is only one node that needs to report an event, he
signs on the PT but the others do not. In this case, Sem still needs O(K)
packet transmissions in the forward direction. In the unlikely case that all
nodes on the EGC have an event to report, Sem can lead to O(K2) packet
transmissions in the forward direction as the straw-man protocol does in the
backward direction. However, note that Sem requires only the node who
sensed an event to send a report, and it is unusual that all nodes on the
EGC send an event report in the same round. Therefore, the total number
of packet transmissions in each round is usually much smaller with Sem than
with the straw-man protocol, unless an attacked is detected.

Table 1 summarizes the packet transmission overhead in various cases.
We can see that overhead incurred by Sem is similar to (or possibly higher
than) that of the straw-man protocol in the round when an attack is detected.
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Table 1: Packet transmission overhead (F : forward direction; B: backward direction; K:
the number of nodes on the event collection route)

case
Sem straw-man protocol

F B F B

no attack detected

no node to

report an

event

O(K) 0

O(K) O(K2)
all nodes to

report an

event

O(K2) 0

an attack detected

one node to

report an

event

O(K) O(K2)

all nodes to

report an

event

O(K2) O(K2)

However, this cost is likely small compared to the overall system operation
cost because the number of rounds when an attack is detected should be
much smaller than the total number of rounds. Specifically, whenever an
attack is detected, our protocol can identify the compromised node, which
can then be removed, returning the system back to the normal mode.

In this analysis we have focused on packet transmission overhead and
the gains due to Sem over the straw-man protocol. Note that there is also
a corresponding gain in terms of computational overhead. In the forward
direction, each node needs to verify only the signature of N(0) on the PT in
both the straw-man protocol and Sem (see in Section 5.2.4 that Sem does
not require a normal node to verify the signature on the event report). In
Sem, only the node to report an event signs on the PT. When sending an
ACK in the backward direction, both protocols require a normal node to sign
on the ACK. Verifying the signatures on the ACK is done by the BS. Again,
Sem does not need this ACK when there is no attack. Here, recall that
each signing and verification action with asymmetric cryptography is quite
expensive - 2 seconds and 2.4 seconds with TinyECC in Micaz [6]. In Sem,
most of the computation overhead is only incurred when there is an attack
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or when there is an event to report. Hence, the computational overhead is
also significantly reduced.

7. Miscellaneous Issues

Wormhole Attacks: If two colluding compromised nodesN(i) andN(j)
for any i, j ∈ I\{0}, j > i+ 1, can talk to each other directly, N(i) can send
the PT to N(j). If this is the case, the BS cannot get an event report from
a node, say N(k), between N(i) and N(j). To prevent this, the BS may
randomly select a node each round, and make it send a null event report by
notifying the command in the PT. When N(k) is selected to do so, N(i) has
to send the PT to N(i+ 1), but then N(i + 1) can find the round sequence
Q, which is increased by more than 1 from the one that it has seen. This
can be an indication that N(i) is a compromised node. If N(i) still directly
forwards the PT to N(j) in this case, N(j+1) will find that the PT does not
contain the null event report from N(k), which can also be an indication that
N(j) is compromised. By making any node who first finds such an indication
generate an error event report, we can provide the same security guarantee
as in Proposition 4.

Jamming Attacks: Note that a jamming attack may cause a node to
stop circulating the PT or the ACK. If N(i + 1) is a victim of the jamming
attack, i.e., it cannot successfully receive a PT or an ACK because a jamming
signal keeps coming in, N(i) will generate its own ACK. In this case, the BS
thinks that SET (i, i+1) is a suspicious set, which is wrong. Therefore, when
we also consider the possibility of a jamming attack, we replace SET (i, i+1)
in the Proposition 1 with the set of the nodes within the jamming distance
from the nodes N(i) and N(i+ 1). Then, it is easy to see that the statement
of the proposition is still valid.

Persistent Failures: By choosing a sufficiently large number of retrans-
missions in the ARQ mechanism, the packet loss probability due to transient
node failures or link failures can be very small. However, it may not be
zero in practice. Thus, we can still lose the PT or the ACK due to such
transient failures, although chances are rare. This implies that in practice,
SET (i, i+ 1) identified by Proposition 1 may not include any compromised
node. However, in such a case, SET (i, i+1) can be regarded as a set of nodes
that requires attention to repair. Thus, it is still useful to identify such a set
from the network management point of view.
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Formation of the EGCs: There would be many ways to form EGCs.
The following is a simple example.
(Step 1) Let S denote the set of nodes in a network. The BS node creates a
topology map of S, for example, using a link state routing protocol. Initially,
all nodes are not marked.
(Step 2) Suppose that X is the farthest node from the BS among the un-
marked nodes in S. Using Dynamic Source Routing (DSR) protocol, the BS
node requests a route to X. The response from X may include the round-trip
path between X and the BS. This round-trip path forms an EGC4. Mark the
nodes in the EGC.
(Step 3) Repeat Step 2 until all nodes in S are marked.

As is commonly assumed in the literature, we assume that there is no
compromised node at the beginning, and thus the formation of EGCs can be
done with no attack at the beginning. In the Step 2, a node is allowed to
mark more than once, which means that the node belongs to multiple EGCs.

8. Experiments

We have implemented Sem using TOSSIM [20], a popular sensor network
simulator based on TinyOS [21]. For our experiments, we form three EGCs:
EGC1 is comprised of 6 nodes (K = 6), EGC2 8 nodes (K = 8), and EGC3 10
nodes (K = 10), as shown in Figure 8. Note that Sem’s security guarantees,
e.g., Propositions 2 and 3 and Corollary 2, are not dependent on the locations
of nodes, but only on the values of K and B. Thus, the locations chosen in
Figure 8 are only intended to show an example of how many retransmissions
we need to recover a link failure for a given deployment.

The link gain between any two nodes is determined by a Java tool in-
cluded in TinyOS v2.1, called LinkLayerModel [22], which models path loss
and log-normal shadowing. We use a path loss exponent of factor 2.5, and
the standard deviation of log-normal shadowing is 3dB. By this model, the
average receiving power at one-hop distance is sufficiently high for correct
reception. For digital signature, we assume to use TinyECC [6] that takes
about 2 seconds to generate a signature and about 2.4 seconds to verify a sig-
nature. This TinyECC operation time mimics Micaz platform. Including the

4This round trip path can contain the same node more than once in it, and so does the
EGC. If a compromised node is included in the same EGC more than once as N(i) and
N(j) for example, N(i) and N(j) should be considerred to be in collabortation.
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Figure 8: Node locations in three EGCs for experiments: including the BS (i.e., N(0)),
EGC1, EGC2, and EGC3 consist of 6, 8, and 10 nodes, respectively.

signature overhead and retransmission time (if necessary), the nodes hold the
PT or the ACK less than 10 seconds, i.e., B = 10 seconds. Since Propositions
2 and 3 determine Tth = Ba(0) and Tm = 2Tth, we choose (Tth, Tm) in the
unit of seconds as (110, 220) for EGC1, (150, 300) for EGC2, and (190, 380)
for EGC3. Thus, for example, in the EGC3, we regard tc < 190 seconds as a
legitimate case.

Figure 9 shows the false-alarm rate as we vary the number of retransmis-
sions. Here, the false-alarm rate is defined as the inverse of the number of
successive rounds until we lose the PT due to natural causes, for example,
due to a bad communication channel. Since in our experiments, we limit the
number of rounds that we execute the simulation for to 100, if we do not lose
the PT within 100 rounds, we report the false-alarm rate to be zero. The
result in Figure 9 shows that when we do not use the ARQ mechanism (i.e.,
no retransmission), the PT can be easily lost due to link failures. Hence, the
false-alarm rate is high. In addition, the false-alarm rate is a little higher
when we run three EGCs simultaneously than when there exists only one of
the three EGCs. As we can expect, this is because the interference increases
if the three EGCs work at the same time. However, when we allow the nodes
to retransmit the PT up to three times on transmission failures, nearly all
false-alarms are eliminated. Therefore, we conclude that at most three re-
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Figure 9: False-alarm rate according to the number of retransmissions for the ARQ mech-
anism.

transmissions would be a reasonable choice for the ARQ mechanism in our
configuration.

In Figure 10, we show the detection rate as a function of the amount
of the delay introduced by a single compromised node. For the experiment,
we select different positions for the compromised node: N(2) and N(4) for
EGC1, N(2), N(4), and N(6) for EGC2, and N(2), N(5), and N(8) for
EGC3. As we mentioned earlier, the compromised nodes may hold the PT
longer than B = 10 seconds without being detected, since the BS will not
complain unless the circulation time tc is larger than the threshold Tth. Fig-
ures 10(a)-(c) show such a situation. For example, if a compromised node in
EGC3 holds the PT for 110 seconds, the BS still receives the PT back within
Tth, and thus the compromised node never gets detected. However, when the
delay added by the compromised node is between 110 and 170 seconds, the
circulation time tc may or may not be larger than the threshold Tth, depend-
ing on how long the other nodes hold the PT. We can see from Figure 10(c)
that if the amount of the malicious delay is over 170 seconds, it is always
detected. Here, remember that once the malicious activity is detected, the
BS will not cancel the ACK timers at the sensor nodes, thus gathering an
ACK from the nodes. Although we do not show in this figure, once detected,
the compromised node is always identified in a form of a suspicious set, as we
proved. Further, the amount of malicious delay that the compromised node
can introduce without being detected is always the amount of time that is
left over in Tth after the nodes actually spent their own time to transmit the
PT. Thus, if we reduce the value of B, and thus reduce the value of Tth, then
the compromised node must also decrease malicious delay to avoid being de-
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(b) EGC2 (K = 8) with
B = 10 seconds.
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(c) EGC3 (K = 10) with
B = 10 seconds.
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(d) EGC1 (K = 6) with
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(e) EGC2 (K = 8) with
B = 1 second.
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Figure 10: Detection rate according to the delay introduced by a single compromised node.

tected. We can see this effect from Figures 10(d)-(e), which is obtained from
almost the same configuration as Figures 10(a)-(c), except that the value
of B is changed from 10 seconds to 1 second.5 We can also see from the
figures that the position of a single compromised node does not affect the
detection rate as is to be expected since the detection is only dependent on
the cumulative time for circulating the PT in a EGC.

In Figure 11, we study the case when there exist multiple compromised
nodes in EGC2 that delay the PT. We are interested in finding out how the
positions of these compromised nodes will determine which one of them is
identified by SEM. Recall from Proposition 1 that if a node N(i) generates
an ACK, it will be included in the suspicious set. In Figure 11, the y-
axis normalized frequency represents the number of the ACKs generated by
N(i), divided by the total number of cases that BS finds tc > Tth. For
this experiment, we assume that N(2), N(4), and N(6) are malicious in

5It is possible to set B = 1 second if we assume the use of the Imote2 platform that
can perform a signature operation within a few tens of milliseconds [6].
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Figure 11: Normalized frequency of generating an ACK in EGC2 (K = 8) when there are
multiple compromised nodes that delays the PT. Here, we assume that N(2), N(4), and
N(6) are compromised nodes. For x seconds of given delay in legend, each compromised
node delays the PT for x/3 seconds.

EGC2, and each of the three nodes holds the PT for x/3 seconds in order to
cause x seconds of accumulated delay. We set these delays to be identical so
that we can focus on how the position of the compromised node affects the
probability of being identified, when several compromised nodes delay the
PT in collusion. Note that as shown in Figure 10(b), when the accumulated
delay x is equal to or larger than 130 seconds in EGC2, we will be able to
identify one of the compromised nodes. Further, in our simulation setting,
the malicious nodes are assumed to generate an ACK only if necessary, i.e.,
only when their ACK timer expires. That is, the malicious nodes wait for the
ACK from other nodes until their ACK timer expires. We do not allow them
to generate an ACK anytime before the expiration of a ACK timer, because
in that case they directly reveal that they are malicious (by being included
in a suspicious set). We can make a number of observations from Figure 11.
First, note that BS may receive the ACK that is generated by N(1), N(3),
or N(5). In all the cases, one of malicious nodes N(2), N(4), and N(6) is
included in a suspicious set. Second, we can see that although one among
the three malicious nodes is always located, the node being identified may
vary depending on the accumulated delay. The larger the accumulated delay
is, the more likely that the node closer to BS is identified. This is because
larger delay leaves less time in the ACK timer till expiration at each node,
and the node closer to BS needs to wait longer to receive the ACK generated
by N(K).
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9. Conclusion

In event monitoring, a number of sensor nodes are deployed over a region
where some phenomenon is to be monitored. When an event is detected, the
sensor nodes report it to a base station, where a network operator can take
appropriate action using the event report. However, such an event reporting
process can be easily attacked by compromised nodes in the middle that drop,
modify, or delay the report packet. No prior work has been able to provide
a security guarantee of timely and reliable collection of event reports at a
base station in the presence of Byzantine adversarial nodes that are capable
of colluding among themselves.

To resolve this issue, we have presented Sem, a secure event monitoring
protocol in the face of Byzantine adversaries. Sem provides a strong and
useful guarantee that, whenever the compromised nodes launch an attack
and causes the event report from a legitimate node not to reach the BS within
a bounded time, the BS can identify a pair of nodes that are guaranteed to
contain at least one compromised node. As a result, the system can defeat
the attack in the sense that the network operator can remove or reprogram
the detected compromised node one by one, eventually securing a safe route
to the BS for collecting an event report. To the best of our knowledge, we
are not aware of any other protocols in the literature that can provide similar
security guarantees. Hence, we believe that our gain in security is significant.

Sem is designed to reduce the overhead due to asymmetric cryptographic
operations in terms of computational overhead and additional network pack-
ets that are generated: it uses low overhead in normal scenarios when there is
no attack, and only invokes the heavier overhead when an attack is launched.

Our future work will focus on having Sem work under more dynamic
scenarios, e.g., where nodes may move or be incrementally introduced into
the network, and making Sem even more resource efficient.
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