ECE-647 TCP: Transmission Control Protocol in the Internet: Part I

Instructor: Xiaojun Lin

TCP/IP

application transport network data link physical

DO

network data link

> network data link

> > network data link physical

> > > pplication transport network data link

network layer: IP provides "best-effort" packet delivery between two end-systems

Packets could be lost, duplicated, trapped in loops

IP Header

0		4	8	16	19	ę	31	
Vers	ion	IHL	Type of Service		Total Length			
Identification			Flags	Fragment Offset				
Tir	Time To Live		Protocol	Header Checksum		hecksum		
Source IP Address								
	Destination IP Address							
	Options Padding							

Purdue University

TCP/IP

network layer: IP provides "best-effort" packet delivery between two end-systems

Packets could be lost, duplicated, trapped in loops

transport layer: relies on, and enhances, network layer services

TCP/IP

> The internet offers two basic services that operate on top of IP

UDP (User Datagram Protocol)

- unreliable ("best-effort"), unordered unicast or multicast delivery
- UDP header contains a "port" number that identifies which application process should receive the packet.

> TCP (Transmission Control Protocol)

- > connection oriented, reliable, in-order unicast delivery
- ➢ congestion control

TCP Features

- Connection oriented, duplex, reliable byte-stream service with flow-control/congestion-control.
- Connection oriented
 - Both end-points maintain the state of the connection (Open/Close/Sequence numbers)
 - However, intermediate routers do NOT maintain the state of the connection (do not reserve resources)

Reliability:

> Retransmit a packet when it is not acknowledged.

TCP Header

TCP Features

- Every byte of data sent over a TCP connection has a 32-bit sequence number, given by
 - ≻the segment sequence number plus
 - > its position in the segment.
- Sequence number of the first segment of a connection is agreed upon by a three way handshake

Three-way Handshake

Client A		Server B				
Closed		Listen				
SYN-SENT	<seq=100><ctl=syn> →</ctl=syn></seq=100>	SYN-RECEIVED				
Established	← <ack=101> <ctl=syn,ack></ctl=syn,ack></ack=101>	SYN-RECEIVED				
Established	$\langle SEQ=101 \rangle \langle CTL=ACK \rangle \rightarrow$	Established				
Established	<seq=101><ctl=ack> <data>→</data></ctl=ack></seq=101>	Established				
Established	← <ack=102></ack=102>	Established				
Established	<seq=102><ctl=ack></ctl=ack></seq=102>	Established				
Use cush	$ \qquad \langle \text{DATA} \rangle \rightarrow$					
E z Furaue University						

TCP Features

- For each packet sent, the receiver is expected to respond with an acknowledgement
- ➤ 32-bit ack is cumulative:
 - Ack of *n* indicates that all bytes up to *n*-1 have been received correctly, and *n* is the next expected byte number.
- If the acknowledge is not received with a period of time, the packet is assumed to be lost, and will be retransmitted

Purdue University

Window Size

- Window size determines the number of packets that can be sent before waiting for an ack
- Large window size leads to higher rate
- > However, the network may become congested.

