ECE 5314: Power System Operation & Control

Lecture 7: Power Flow Problem

Vassilis Kekatos

R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, Electric Energy Systems: Analysis and
Operation, Chapter 3.

R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control,
Wiley, 2014, Chapter 6.

Lecture 7 V. Kekatos 1



Power transmission network as an electric circuit

e N nodes (generator/load buses) and L edges (lines, transformers)
e AC voltages and currents as phasors (at nominal frequency)
V=Ve'=V,+;V;

e From scalar to multivariate Ohm's law: V=27 — v =1Zi
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Transmission lines

equivalent T model

o Line series impedance: zmn = Fmn + jTmn (Tmn > 0)

1

o Line series admittance: ymn = - — = gmn — jbmn

e Line series conductance: gmn = 7 225—

2
mn+zmn

e Line series susceptance: by, = 22— >0

2 2
Timn T Tmn

Total charging susceptance: b,,, > 0
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Line currents

Im,n = yn’Ln(Vn’L - Vn) + J

bC
52V

I Kirchoff's current law:
. bC
Im Vm Ly = (En?fm Ymn +J Tgn) Vm — Zn#m ym"V"
—) Collect currents and voltages {Zn, Vi }5i—; into i, v € CN*!

l Transformers and phase shifters are ignored in our analysis
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Multivariate Ohm's law
Currents are linearly related to voltages: i = Yv

Bus admittance matrix: fundamental in power systems operations

. be
Zk;ﬁmymk+]%k M =17

Yin =4 —Ymn , 3 line (m,n)
0 , otherwise
e symmetric (Yimn = Yam); non-Hermitian (Yon # Yoin)

e sparse: efficient computations and storage

e invertible if b,,, # 0 for at least one line; otherwise Y1 = 0

Bus impedance matrix: Z :=Y™! (v = Zi)

® non-sparse

o not the matrix of line impedances, i.e., Zmn # Zmn = ——

Ymn
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Complex power

e Power S, = 89, — 8¢, generated/consumed at bus m

{Sm =P+ jQm = VI _1, andi=Yv

e Eliminate currents to get the multivariate power model
s = diag(v)i" = diag(v)Y"v"

N complex equations in 2N complex unknowns
e Bus admittance matrix in rectangular coordinates Y = G + jB

e Similar expressions for power flow on line (m,n): Smn = VimZim,

Lecture 7 V. Kekatos

I’m



Power flow equations

Voltages in polar coordinates (0nn = 01 — 01)

N
P’nL = V’rn Z ‘/n (Gmn COSs enLn + an Sin 977L7L)

n=1

N
Qm =Vm Z Vi (G 8N Oy, — B €08 )

n=1

dependence on phase differences only; reference bus O =0

Voltages in rectangular coordinates (quadratic equations!)

Vinr 3

n

(Vi
N
Vm,i (Vn,ern - Vn,zan) - Vm,r Z (Vn,zG'mn + Vn,ern)

N

,'ern - Vn,'Lan) + Vm,i Z (Vn,'LGmn + Vn,’r‘an)

-

P
Qm

3
[an
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Power flow problem

N
m=1

There are 2N equations and 4N variables {( P, Qm, Vim,0m)}

Problem statement: Fixing the values of 2N variables, find the values of the

rest 2V unknowns that satisfy the nonlinear power flow (PF) equations

Given values typically come from
e First Ng load buses (PQ buses) (P, @Qm)
e Next N, generator buses (PV buses) (Pp,, Vin)

o Reference bus (Vn,0n = 0)

Number of buses N =1+ N, + Ny
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Solving the power flow equations

P =Vin Y Vo (Gumn 08 Omn + Bin 8in0mp), m=1,...,Ng+ Ny =N — 1
n

Qm = VmZVn (Grmn $INOmp — Bmn €080mn), m=1,...,Ng

Set of nonlinear equations in {(Vi,, 8,)}5_, solved recursively

Once voltages {(Vy,0,)}2_; are found, any other quantity (injections,

flows, currents, losses) can be calculated

Flat start or flat voltage profile

voltages usually initialized at V,, = 1 and 6,, =0 for all n

PF solution is not unique!
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‘Nose’ curve

Vk [pu]

voltage magnitude at receiving end
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Q: How is the famous nose curve derived?
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Gauss-Seidel method

N N
Sm=Vm Y Yo Vi = Sp=Vn> YiuVu =
n=1

— n=1
S * m—1 N
(W) = YounVn + Yoo Vi + Z YmnVn =
n=1 n=m+1
1 S,m * m—1 N
Vm Y,mm (W) - 7;1 YmnVn - n:;-'—l YmnV’n

Gauss-Seidel iterations:

1. Initialize vo at flat profile or at most recent grid state
2. Repeat until convergence ||[viy1 — vel|2 <€
et L [(&%) _mz_:ly Vil _ f: Y, vf} vm
T Yo |\, o S N
where S, is either fixed or calculated from PF equations via v
3. Normalize V5™ to match given magnitude for PV buses
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Impedance matrix method

Power flow problem involves two equations that can be combined:

s = diag(v)i* & i=[diag(v*)]™'s" 1

= v = Z[diag(v")] s
i=Yv & v=1Zi
Jacobi-type iterations:
1. Initialize vo at flat profile or at most recent grid state
2. Repeat until convergence ||[viy1 — vel|2 <€

1_x*

Vi1 = Z[diag(v;)] s,

where entries of s; are either known or calculated from PF equations via v

Inversion of Y; (close to) singularity of Y handled by eliminating the slack bus
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Newton's method

Newton-Raphson method aims at solving nonlinear equations: f(x) =0

At iteration t + 1, function f(x) is linearized at x’
f(x) ~ f(x) = f(x") + IJ(x")(x — x")

where J(x") is the Jacobian matrix of f

Variable x'*1 is updated such that f(x'*') = 0
xt = x' - [I(x)] (%)
e Newton's method in two steps (convergence to be studied later)

—J(x")8" = f(x") system of linear equations

S S + 8t
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Power flow via Newton's method
Equations involved in power flow problem:
APy =Py = Vi Y Vi (Grnk €08 O + B sin i) =0, m=1,..., Na + Ny
k
AQm = Qm — Vim ZVk (G sinOmr — Bk c0sOpmi) =0, m=1,...,Ng
k

or more compactly

Variables involved in power flow problem

0 T
X = :[9192~~~0N71‘/1V2~“VN(1]
A
For Jacobian in NR, need to find: —2&8Fm — _0(Pm—Pn) _ 0Py

90y, 96, T 06
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Finding derivatives OF,,/06,,
Repeating for convenience: P, = Vi Y, Vi (Gmk €08 Omk + Bk Sin Omy)

1. For n # m, we get

0P,
00

= Vi Vi (Grn 8N 01y — B €08 0 )

2. Notice similarity to summands in Q,,

Qm =Vm Z Vi (G 8i0 Opre — Binge €08 0mie) — Brnm Vi,
k#m

3. For n =m, we get

0P

J—— 3 _ — — _ 2
aom = Vm Z Vk (Gmk sin ka Bmk COS ka) Qm Bmmvm

k#m
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Finding derivatives 0Q),,/0V,

Repeating for convenience: Q= Vin Y-, Vi (Gmk 8inOmp — Bik €08 i)

1. For n # m, we get

0Qm .
= Vm mn mn — Dmn emn
v, Vi (Gmn siné B cos ) =
0Qm . _ OPn
VnTVn = Vi Vo (Grmn 8i0 0mn — Bin €08 Omn) = 20,

2. For n =m, we get

an 2
OVm @

Multiplying 8Qm /0V; by V,, gives Jacobian matrix more symmetry
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Finding derivatives 0Q,,,/d6,,
Repeating for convenience: Q= Vin Y-, Vi (Gmk SinOmp — Bok €08 i)

1. For n # m, we have

9Qm
90n

= =V Va(Grn €08 0mn + B sin0pmn)

2. Notice similarity to summands in Py,

k#m
3. For n =m, we get

0Qm . 2
m =Vn k#zm Vi (Gmk oS O + Bk sin ka) =Pn—GnmVi,
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Finding derivatives OP,,/0V,,

Repeating for convenience: P, = Vi Y, Vi (Gmk €08 Omk + Bk Sin Omy)

1. For n # m, we have

Vng% = VinVa(Gmn €08 Ompn + Bmn sin Oy ) =

_9C9m
96,

2. For n = m, we get

OVm =
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Blocks of Jacobian matrix

OP,, Vi Va (G Sin Ompn — Bmn €08 O0mn ),
H{n_1yx(n-1) ¢ Hmn = 0. = )
" _Qm - BmmVr?u
8P7n 7an7 n # m
NENfl)de Ny = Vi GY =
n Ppn+GumV2, n=m
9Qm Vi Vo (Gmn €08 Omn + Bmn sinOmn ),
M?de(Nfl) : Mpn = a% =
" Py = Grm Vi,
9Qm Hpn, n#m

LY «n, : Linn = Vi
axXNg oV, Qm — Bmm T?“ n—=m
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Newton's iterations

1. Initialize vo at flat profile or at a recent grid state
2. Fort =0,1,..., until convergence ||[viy1 — ve|l2 <€

2.1 Evaluate Jacobian matrix at current state

2.2 Find variable update by solving the linear system

H! Nt Aft Apt

Mt Lt Avt /vt Aqt

where division by v! (known at iteration t) is for symmetry

2.3 Update the state as

it 6! A6t

vitl vt Av?
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Fast decoupled power flow

Newton's iterations involve evaluating the Jacobian matrix and inverting it

Two approximations to save computations:
1. Keep the Jacobian constant by evaluating it at a specific point x
2. Problem decouples by setting M =N =0
3. After several approximations, matrices H and L simplify as
B'A6" = Ap' /v’
B'Av' = Aq'/v?

Matrices B’ and B” are defined as

’ -1 ’ -1 -1
B = —Tin, Brm = Tmn  (bmn & Ty, no shunt, no voltage trans.)
n#Em
T .
Byw = —Bmn, Bimm = —Bmm (bmn = % no phase shifters)

2 2
Tmn + Tmn
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Specifications as quadratic functions

e Collect nodal voltages in rectangular coordinates in v € CV:

. . T
vi=[vi,r+ v ... UN A+ JUN]

e Power injections and squared voltage magn. are quadratic functions of v:

where matrices in blue are Hermitian symmetric (Mp,, = M§ )

e Every bus contributes two quadratic constraints/specifications on v
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Finding M's matrices

Voltage magnitude (e, is the m-th canonical vector)

2 H T
Vi (V) =V Vm =V ene,v

Complex power injection

Sm = VmI;;L = (VTem)(e

Active power

P = SmtSm
2
Reactive power
Qm = M — VHMva

2j

Lecture 7

.
= My, =ene,

T, T T H T
mi )=V ene, Y'v:  =v7 Y e,e,v

where Mp, = (Y*eme; —|—eme,TnY)

N =

1 *
where Mg, = 5 (Y eme,, — eme,TnY)
J
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Power flow as a feasibility problem

e System state as solution of feasibility problem

find v
sto vIMyv = sk, k=1:2N note vIMyv = Tr(Mkva)]

e Introduce matrix variable V = vv

find (v, V)
sto Tr(MpV)=sx, k=1:2N

H
V=vv
e Eliminate variable v; non-convex problem due to rank constraint

find V
sto Tr(MiV)=s;, k=1:2N

V =0, rank(V) =1
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Semidefinite program relaxation

e Drop rank constraint to get semidefinite program (SDP)

find V
s.to Tr(MkV) = Sk, k= 17 ey 2N

V>0

which is a convex problem
e If the solution V, is rank-one, the relaxation is said to be exact
e If exact, find v, from V, = Vovf

o Relaxation is oftentimes exact under practical system conditions!
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From feasibility to minimization

o Feasibility problem can be converted to the convex minimization problem

min Tr(MV)
V-0
s.to Tr(MkV) = Sk, k= 1,...,2N
e Design matrix M so that rank-one solutions are favored
o selecting M = Y'Y minimizes ||i||2

e selecting M = B minimizes losses

e both yield the “high-voltage solution” of the power flow equations

R. Madani, J. Lavaei, and R. Baldick, “Convexification of power flow problem over arbitrary

networks,” in Proc. IEEE Conf. on Decision and Control, Dec. 2015, Osaka, Japan.
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DC power flow model

Power flow equations P, =V, Z Voo (G €08 O + Bian $i1 0y
n

Assumptions:

Al. Low r/x ratios in transmission lines (1/5-1/10 for 220-400kV)

Tmn

T Lz g < an o

A2. Small angle differences 6,,—0,, ~ 0; coS0mn >~ 1 and sin Oy =~ O,

A3. Voltage magnitudes close to unity (pu) Vi, ~ 1

DC power flow model: P, ~ Z B (Oa — O
[why called ‘DC’ 7] n#m

Coincides with 1st-order Taylor’s series of P, at vg,: under Al.
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B matrix

Power injections (and flows) relate linearly to phase differences

Pm: Z Pmn: Z bmn(gm_en)

n:n~m n:n~m

Multivariate power flow model: p = BO
DC bus admittance matrix: (different from matrix B in Y = G + jB)
Zn¢m bmn ,m=mn
Bn = —bimn , 3 line (m,n)
0 , otherwise
e Real; symmetric; sparse; and positive semidefinite [Q: Why?]
e Lossless lines: Bly =0y = pT1y =0

o Oftentimes further simplify by, = —%mn,— ~ 1

2 2
TinTTmn Tmn
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Example for the IEEE 14-bus system

[

B

loadcase(’casel4’); % load case file

makeBdc(c); % B in sparse form; use B
imagesc(B);

axis square;
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= full(B) if full form needed
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