ECE 5314: Power System Operation \& Control

Lecture 7: Power Flow Problem

Vassilis Kekatos

R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, Electric Energy Systems: Analysis and Operation, Chapter 3.

R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control, Wiley, 2014, Chapter 6.

Power transmission network as an electric circuit

- N nodes (generator/load buses) and L edges (lines, transformers)
- AC voltages and currents as phasors (at nominal frequency) $\mathcal{V}=V e^{j \theta}=V_{r}+j V_{i}$
- From scalar to multivariate Ohm's law: $\mathcal{V}=Z \mathcal{I} \rightarrow \mathbf{v}=\mathbf{Z i}$

Transmission lines

- Line series impedance: $z_{m n}=r_{m n}+j x_{m n}\left(x_{m n}>0\right)$
- Line series admittance: $y_{m n}=\frac{1}{z_{m n}}=g_{m n}-j b_{m n}$
- Line series conductance: $g_{m n}=\frac{r_{m n}}{r_{m n}^{2}+x_{m n}^{2}}$
- Line series susceptance: $b_{m n}=\frac{x_{m n}}{r_{m n}^{2}+x_{m n}^{2}}>0$
- Total charging susceptance: $b_{m n}^{c}>0$

Line currents

$$
\begin{aligned}
& \mathcal{I}_{m n}=y_{m n}\left(\mathcal{V}_{m}-\mathcal{V}_{n}\right)+j \frac{b_{m n}^{c}}{2} \mathcal{V}_{m} \\
& \mathcal{I}_{m n}=\left(y_{m n}+j \frac{b_{m n}^{c}}{2}\right) \mathcal{V}_{m}-y_{m n} \mathcal{V}_{n}
\end{aligned}
$$

Kirchoff's current law:
$\mathcal{I}_{m}=\left(\sum_{n \neq m} y_{m n}+j \frac{b_{m n}^{c}}{2}\right) \mathcal{V}_{m}-\sum_{n \neq m} y_{m n} \mathcal{V}_{n}$

Collect currents and voltages $\left\{\mathcal{I}_{m}, \mathcal{V}_{m}\right\}_{m=1}^{N}$ into $\mathbf{i}, \mathbf{v} \in \mathbb{C}^{N \times 1}$

Transformers and phase shifters are ignored in our analysis

Multivariate Ohm's law

Currents are linearly related to voltages: $\mathbf{i}=\mathbf{Y v}$

Bus admittance matrix: fundamental in power systems operations

$$
Y_{m n}= \begin{cases}\sum_{k \neq m} y_{m k}+j \frac{b_{m k}^{c}}{2} & , m=n \\ -y_{m n} & , \exists \text { line }(m, n) \\ 0 & , \text { otherwise }\end{cases}
$$

- symmetric $\left(Y_{m n}=Y_{n m}\right) ;$ non-Hermitian $\left(Y_{m n} \neq Y_{n m}^{*}\right)$
- sparse: efficient computations and storage
- invertible if $b_{m n}^{c} \neq 0$ for at least one line; otherwise $\mathbf{Y 1}=\mathbf{0}$

Bus impedance matrix: $\mathbf{Z}:=\mathbf{Y}^{-1} \quad(\mathbf{v}=\mathbf{Z i})$

- non-sparse
- not the matrix of line impedances, i.e., $Z_{m n} \neq z_{m n}=\frac{1}{y_{m n}}$

Complex power

- Power $\mathcal{S}_{m}=\mathcal{S}_{m}^{g}-\mathcal{S}_{m}^{d}$ generated/consumed at bus m

$$
\left\{\mathcal{S}_{m}=P_{m}+j Q_{m}=\mathcal{V}_{m} \mathcal{I}_{m}^{*}\right\}_{m=1}^{N}, \text { and } \mathbf{i}=\mathbf{Y} \mathbf{v}
$$

- Eliminate currents to get the multivariate power model

$$
\mathbf{s}=\operatorname{diag}(\mathbf{v}) \mathbf{i}^{*}=\operatorname{diag}(\mathbf{v}) \mathbf{Y}^{*} \mathbf{v}^{*}
$$

N complex equations in $2 N$ complex unknowns

- Bus admittance matrix in rectangular coordinates $\mathbf{Y}=\mathbf{G}+j \mathbf{B}$
- Similar expressions for power flow on line $(m, n): \mathcal{S}_{m n}=\mathcal{V}_{m} \mathcal{I}_{m n}^{*}$

Power flow equations

Voltages in polar coordinates $\left(\theta_{m n}=\theta_{m}-\theta_{n}\right)$

$$
\begin{aligned}
& P_{m}=V_{m} \sum_{n=1}^{N} V_{n}\left(G_{m n} \cos \theta_{m n}+B_{m n} \sin \theta_{m n}\right) \\
& Q_{m}=V_{m} \sum_{n=1}^{N} V_{n}\left(G_{m n} \sin \theta_{m n}-B_{m n} \cos \theta_{m n}\right)
\end{aligned}
$$

dependence on phase differences only; reference bus $\theta_{N}=0$

Voltages in rectangular coordinates (quadratic equations!)

$$
\begin{aligned}
& P_{m}=V_{m, r} \sum_{n=1}^{N}\left(V_{n, r} G_{m n}-V_{n, i} B_{m n}\right)+V_{m, i} \sum_{n}\left(V_{n, i} G_{m n}+V_{n, r} B_{m n}\right) \\
& Q_{m}=V_{m, i} \sum_{n=1}^{N}\left(V_{n, r} G_{m n}-V_{n, i} B_{m n}\right)-V_{m, r} \sum_{n}\left(V_{n, i} G_{m n}+V_{n, r} B_{m n}\right)
\end{aligned}
$$

Power flow problem

There are $2 N$ equations and $4 N$ variables $\left\{\left(P_{m}, Q_{m}, V_{m}, \theta_{m}\right)\right\}_{m=1}^{N}$

Problem statement: Fixing the values of $2 N$ variables, find the values of the rest $2 N$ unknowns that satisfy the nonlinear power flow (PF) equations

Given values typically come from

- First N_{d} load buses (PQ buses) $\left(P_{m}, Q_{m}\right)$
- Next N_{g} generator buses (PV buses) $\left(P_{m}, V_{m}\right)$
- Reference bus $\left(V_{N}, \theta_{N}=0\right)$

Number of buses $N=1+N_{g}+N_{d}$

Solving the power flow equations

$P_{m}=V_{m} \sum_{n} V_{n}\left(G_{m n} \cos \theta_{m n}+B_{m n} \sin \theta_{m n}\right), m=1, \ldots, N_{d}+N_{g}=N-1$
$Q_{m}=V_{m} \sum_{n} V_{n}\left(G_{m n} \sin \theta_{m n}-B_{m n} \cos \theta_{m n}\right), m=1, \ldots, N_{d}$

- Set of nonlinear equations in $\left\{\left(V_{n}, \theta_{n}\right)\right\}_{n=1}^{N}$ solved recursively
- Once voltages $\left\{\left(V_{n}, \theta_{n}\right)\right\}_{n=1}^{N}$ are found, any other quantity (injections, flows, currents, losses) can be calculated
- Flat start or flat voltage profile voltages usually initialized at $V_{n}=1$ and $\theta_{n}=0$ for all n
- PF solution is not unique!

Q: How is the famous nose curve derived?

Gauss-Seidel method

$$
\begin{aligned}
& \mathcal{S}_{m}=\mathcal{V}_{m} \sum_{n=1}^{N} Y_{m n}^{*} \mathcal{V}_{n}^{*} \Rightarrow \mathcal{S}_{m}^{*}=\mathcal{V}_{m}^{*} \sum_{n=1}^{N} Y_{m n} \mathcal{V}_{n} \Rightarrow \\
& \left(\frac{\mathcal{S}_{m}}{\mathcal{V}_{m}}\right)^{*}=\sum_{n=1}^{m-1} Y_{m n} \mathcal{V}_{n}+Y_{m m} \mathcal{V}_{m}+\sum_{n=m+1}^{N} Y_{m n} \mathcal{V}_{n} \Rightarrow \\
& \mathcal{V}_{m}:=\frac{1}{Y_{m m}}\left[\left(\frac{\mathcal{S}_{m}}{\mathcal{V}_{m}}\right)^{*}-\sum_{n=1}^{m-1} Y_{m n} \mathcal{V}_{n}-\sum_{n=m+1}^{N} Y_{m n} \mathcal{V}_{n}\right]
\end{aligned}
$$

Gauss-Seidel iterations:

1. Initialize \mathbf{v}_{0} at flat profile or at most recent grid state
2. Repeat until convergence $\left\|\mathbf{v}_{t+1}-\mathbf{v}_{t}\right\|_{2} \leq \epsilon$

$$
\mathcal{V}_{m}^{t+1}:=\frac{1}{Y_{m m}}\left[\left(\frac{\mathcal{S}_{m}^{t}}{\mathcal{V}_{m}^{t}}\right)^{*}-\sum_{n=1}^{m-1} Y_{m n} \mathcal{V}_{n}^{t+1}-\sum_{n=m+1}^{N} Y_{m n} \mathcal{V}_{n}^{t}\right], \quad \forall m
$$

where S_{m}^{t} is either fixed or calculated from PF equations via \mathbf{v}_{t}
3. Normalize \mathcal{V}_{m}^{t+1} to match given magnitude for PV buses

Impedance matrix method

Power flow problem involves two equations that can be combined:

$$
\left.\begin{array}{ll}
\mathbf{s}=\operatorname{diag}(\mathbf{v}) \mathbf{i}^{*} & \Leftrightarrow \mathbf{i}=\left[\operatorname{diag}\left(\mathbf{v}^{*}\right)\right]^{-1} \mathbf{s}^{*} \\
\mathbf{i}=\mathbf{Y} \mathbf{v} & \Leftrightarrow \mathbf{v}=\mathbf{Z i}
\end{array}\right\} \Rightarrow \mathbf{v}=\mathbf{Z}\left[\operatorname{diag}\left(\mathbf{v}^{*}\right)\right]^{-1} \mathbf{s}^{*}
$$

Jacobi-type iterations:

1. Initialize \mathbf{v}_{0} at flat profile or at most recent grid state
2. Repeat until convergence $\left\|\mathbf{v}_{t+1}-\mathbf{v}_{t}\right\|_{2} \leq \epsilon$

$$
\mathbf{v}_{t+1}=\mathbf{Z}\left[\operatorname{diag}\left(\mathbf{v}_{t}^{*}\right)\right]^{-1} \mathbf{s}_{t}^{*}
$$

where entries of \mathbf{s}_{t} are either known or calculated from PF equations via \mathbf{v}_{t}
Inversion of \mathbf{Y}; (close to) singularity of \mathbf{Y} handled by eliminating the slack bus

Newton's method

- Newton-Raphson method aims at solving nonlinear equations: $\mathbf{f}(\mathbf{x})=\mathbf{0}$
- At iteration $t+1$, function $\mathbf{f}(\mathbf{x})$ is linearized at \mathbf{x}^{t}

$$
\mathbf{f}(\mathbf{x}) \approx \hat{\mathbf{f}}(\mathbf{x})=\mathbf{f}\left(\mathbf{x}^{t}\right)+\mathbf{J}\left(\mathbf{x}^{t}\right)\left(\mathbf{x}-\mathbf{x}^{t}\right)
$$

where $\mathbf{J}\left(\mathbf{x}^{t}\right)$ is the Jacobian matrix of \mathbf{f}

- Variable \mathbf{x}^{t+1} is updated such that $\hat{\mathbf{f}}\left(\mathbf{x}^{t+1}\right)=\mathbf{0}$

$$
\mathbf{x}^{t+1}:=\mathbf{x}^{t}-\left[\mathbf{J}\left(\mathbf{x}^{t}\right)\right]^{-1} \mathbf{f}\left(\mathbf{x}^{t}\right)
$$

- Newton's method in two steps (convergence to be studied later)

$$
\begin{aligned}
-\mathbf{J}\left(\mathbf{x}^{t}\right) \boldsymbol{\delta}^{t} & =\mathbf{f}\left(\mathbf{x}^{t}\right) \quad \text { system of linear equations } \\
\mathbf{x}^{t+1} & :=\mathbf{x}^{t}+\boldsymbol{\delta}^{t}
\end{aligned}
$$

Power flow via Newton's method

Equations involved in power flow problem:
$\Delta P_{m}:=\hat{P}_{m}-V_{m} \sum_{k} V_{k}\left(G_{m k} \cos \theta_{m k}+B_{m k} \sin \theta_{m k}\right)=0, m=1, \ldots, N_{d}+N_{g}$
$\Delta Q_{m}:=\hat{Q}_{m}-V_{m} \sum_{k} V_{k}\left(G_{m k} \sin \theta_{m k}-B_{m k} \cos \theta_{m k}\right)=0, m=1, \ldots, N_{d}$
or more compactly

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
\Delta \mathbf{p}(\mathbf{x}) \\
\Delta \mathbf{q}(\mathbf{x})
\end{array}\right]=\mathbf{0}
$$

Variables involved in power flow problem

$$
\mathbf{x}:=\left[\begin{array}{l}
\boldsymbol{\theta} \\
\mathbf{v}
\end{array}\right]=\left[\begin{array}{llllllll}
\theta_{1} & \theta_{2} & \cdots & \theta_{N-1} & V_{1} & V_{2} & \cdots & V_{N_{d}}
\end{array}\right]^{\top}
$$

For Jacobian in NR, need to find: $\quad-\frac{\partial \Delta P_{m}}{\partial \theta_{n}}=-\frac{\partial\left(\hat{P}_{m}-P_{m}\right)}{\partial \theta_{n}}=\frac{\partial P_{m}}{\partial \theta_{n}}$

Finding derivatives $\partial P_{m} / \partial \theta_{n}$

Repeating for convenience: $P_{m}=V_{m} \sum_{k} V_{k}\left(G_{m k} \cos \theta_{m k}+B_{m k} \sin \theta_{m k}\right)$

1. For $n \neq m$, we get

$$
\frac{\partial P_{m}}{\partial \theta_{n}}=V_{m} V_{n}\left(G_{m n} \sin \theta_{m n}-B_{m n} \cos \theta_{m n}\right)
$$

2. Notice similarity to summands in Q_{m}

$$
Q_{m}=V_{m} \sum_{k \neq m} V_{k}\left(G_{m k} \sin \theta_{m k}-B_{m k} \cos \theta_{m k}\right)-B_{m m} V_{m}^{2}
$$

3. For $n=m$, we get

$$
\frac{\partial P_{m}}{\partial \theta_{m}}=-V_{m} \sum_{k \neq m} V_{k}\left(G_{m k} \sin \theta_{m k}-B_{m k} \cos \theta_{m k}\right)=-Q_{m}-B_{m m} V_{m}^{2}
$$

Finding derivatives $\partial Q_{m} / \partial V_{n}$
Repeating for convenience: $Q_{m}=V_{m} \sum_{k} V_{k}\left(G_{m k} \sin \theta_{m k}-B_{m k} \cos \theta_{m k}\right)$

1. For $n \neq m$, we get

$$
\begin{gathered}
\frac{\partial Q_{m}}{\partial V_{n}}=V_{m}\left(G_{m n} \sin \theta_{m n}-B_{m n} \cos \theta_{m n}\right) \quad \Longrightarrow \\
V_{n} \frac{\partial Q_{m}}{\partial V_{n}}=V_{m} V_{n}\left(G_{m n} \sin \theta_{m n}-B_{m n} \cos \theta_{m n}\right)=\frac{\partial P_{m}}{\partial \theta_{n}}
\end{gathered}
$$

2. For $n=m$, we get

$$
V_{m} \frac{\partial Q_{m}}{\partial V_{m}}=Q_{m}-B_{m m} V_{m}^{2}
$$

Multiplying $\partial Q_{m} / \partial V_{n}$ by V_{n} gives Jacobian matrix more symmetry

Finding derivatives $\partial Q_{m} / \partial \theta_{n}$
Repeating for convenience: $Q_{m}=V_{m} \sum_{k} V_{k}\left(G_{m k} \sin \theta_{m k}-B_{m k} \cos \theta_{m k}\right)$

1. For $n \neq m$, we have

$$
\frac{\partial Q_{m}}{\partial \theta_{n}}=-V_{m} V_{n}\left(G_{m n} \cos \theta_{m n}+B_{m n} \sin \theta_{m n}\right)
$$

2. Notice similarity to summands in P_{m}

$$
P_{m}=V_{m} \sum_{k \neq m} V_{k}\left(G_{m k} \cos \theta_{m k}+B_{m k} \sin \theta_{m k}\right)+G_{m m} V_{m}^{2}
$$

3. For $n=m$, we get

$$
\frac{\partial Q_{m}}{\partial \theta_{m}}=V_{m} \sum_{k \neq m} V_{k}\left(G_{m k} \cos \theta_{m k}+B_{m k} \sin \theta_{m k}\right)=P_{m}-G_{m m} V_{m}^{2}
$$

Finding derivatives $\partial P_{m} / \partial V_{n}$

Repeating for convenience: $P_{m}=V_{m} \sum_{k} V_{k}\left(G_{m k} \cos \theta_{m k}+B_{m k} \sin \theta_{m k}\right)$

1. For $n \neq m$, we have

$$
V_{n} \frac{\partial P_{m}}{\partial V_{n}}=V_{m} V_{n}\left(G_{m n} \cos \theta_{m n}+B_{m n} \sin \theta_{m n}\right)=-\frac{\partial Q_{m}}{\partial \theta_{n}}
$$

2. For $n=m$, we get

$$
\begin{aligned}
V_{m} \frac{\partial P_{m}}{\partial V_{m}} & =V_{m} \sum_{k \neq m} V_{k}\left(G_{m k} \cos \theta_{m k}+B_{m k} \sin \theta_{m k}\right)+2 G_{m m} V_{m}^{2} \\
& =P_{m}+G_{m m} V_{m}^{2}
\end{aligned}
$$

Blocks of Jacobian matrix

$$
\begin{aligned}
& \mathbf{H}_{(N-1) \times(N-1)}^{t}: H_{m n}=\frac{\partial P_{m}}{\partial \theta_{n}}= \begin{cases}V_{m} V_{n}\left(G_{m n} \sin \theta_{m n}-B_{m n} \cos \theta_{m n}\right), & n \neq m \\
-Q_{m}-B_{m m} V_{m}^{2}, & n=m\end{cases} \\
& \mathbf{N}_{(N-1) \times N_{d}}^{t}: N_{m n}=V_{n} \frac{\partial P_{m}}{\partial V_{n}}= \begin{cases}-M_{m n}, & n \neq m \\
P_{m}+G_{m m} V_{m}^{2}, & n=m\end{cases} \\
& \mathbf{M}_{N_{d} \times(N-1)}^{t}: M_{m n}=\frac{\partial Q_{m}}{\partial \theta_{n}}= \begin{cases}-V_{m} V_{n}\left(G_{m n} \cos \theta_{m n}+B_{m n} \sin \theta_{m n}\right), & n \neq m \\
P_{m}-G_{m m} V_{m}^{2}, & n=m\end{cases} \\
& \mathbf{L}_{N_{d} \times N_{d}}^{t}: L_{m n}=V_{n} \frac{\partial Q_{m}}{\partial V_{n}}= \begin{cases}H_{m n}, & n \neq m \\
Q_{m}-B_{m m} V_{m}^{2}, & n=m\end{cases}
\end{aligned}
$$

Newton's iterations

1. Initialize \mathbf{v}_{0} at flat profile or at a recent grid state
2. For $t=0,1, \ldots$, until convergence $\left\|\mathbf{v}_{t+1}-\mathbf{v}_{t}\right\|_{2} \leq \epsilon$
2.1 Evaluate Jacobian matrix at current state
2.2 Find variable update by solving the linear system

$$
\left[\begin{array}{cc}
\mathbf{H}^{t} & \mathbf{N}^{t} \\
\mathbf{M}^{t} & \mathbf{L}^{t}
\end{array}\right]\left[\begin{array}{c}
\Delta \boldsymbol{\theta}^{t} \\
\Delta \mathbf{v}^{t} / \mathbf{v}^{t}
\end{array}\right]=\left[\begin{array}{c}
\Delta \mathbf{p}^{t} \\
\Delta \mathbf{q}^{t}
\end{array}\right]
$$

where division by \mathbf{v}^{t} (known at iteration t) is for symmetry
2.3 Update the state as

$$
\left[\begin{array}{c}
\boldsymbol{\theta}^{t+1} \\
\mathbf{v}^{t+1}
\end{array}\right]:=\left[\begin{array}{c}
\boldsymbol{\theta}^{t} \\
\mathbf{v}^{t}
\end{array}\right]+\left[\begin{array}{c}
\Delta \boldsymbol{\theta}^{t} \\
\Delta \mathbf{v}^{t}
\end{array}\right]
$$

Fast decoupled power flow

Newton's iterations involve evaluating the Jacobian matrix and inverting it
Two approximations to save computations:

1. Keep the Jacobian constant by evaluating it at a specific point \mathbf{x}
2. Problem decouples by setting $\mathbf{M}=\mathbf{N}=\mathbf{0}$
3. After several approximations, matrices \mathbf{H} and \mathbf{L} simplify as

$$
\begin{aligned}
\mathbf{B}^{\prime} \Delta \boldsymbol{\theta}^{t} & =\Delta \mathbf{p}^{t} / \mathbf{v}^{t} \\
\mathbf{B}^{\prime \prime} \Delta \mathbf{v}^{t} & =\Delta \mathbf{q}^{t} / \mathbf{v}^{t}
\end{aligned}
$$

Matrices \mathbf{B}^{\prime} and $\mathbf{B}^{\prime \prime}$ are defined as
$B_{m n}^{\prime}=-x_{m n}^{-1}, \quad B_{m m}^{\prime}=\sum_{n \neq m} x_{m n}^{-1} \quad\left(b_{m n} \approx x_{m n}^{-1}\right.$, no shunt, no voltage trans. $)$
$B_{m n}^{\prime \prime}=-B_{m n}, \quad B_{m m}^{\prime \prime}=-B_{m m} \quad\left(b_{m n}=\frac{x_{m n}}{r_{m n}^{2}+x_{m n}^{2}}\right.$, no phase shifters $)$

Specifications as quadratic functions

- Collect nodal voltages in rectangular coordinates in $\mathbf{v} \in \mathbb{C}^{N}$:

$$
\mathbf{v}:=\left[\begin{array}{lll}
v_{1, r}+j v_{1, i} & \ldots & v_{N, r}+j v_{N, i}
\end{array}\right]^{\top}
$$

- Power injections and squared voltage magn. are quadratic functions of \mathbf{v} :

$$
\begin{aligned}
P_{m}(\mathbf{v}) & =\mathbf{v}^{H} \mathbf{M}_{P_{m}} \mathbf{v} \\
Q_{m}(\mathbf{v}) & =\mathbf{v}^{H} \mathbf{M}_{Q_{m}} \mathbf{v} \\
V_{m}^{2}(\mathbf{v}) & =\mathbf{v}^{H} \mathbf{M}_{V_{m}} \mathbf{v}
\end{aligned}
$$

where matrices in blue are Hermitian symmetric $\left(\mathbf{M}_{P_{m}}=\mathbf{M}_{P_{m}}^{H}\right)$

- Every bus contributes two quadratic constraints/specifications on \mathbf{v}

Finding M's matrices

Voltage magnitude (\mathbf{e}_{m} is the m-th canonical vector)

$$
V_{m}^{2}(\mathbf{v})=\mathcal{V}_{m}^{*} \mathcal{V}_{m}=\mathbf{v}^{H} \mathbf{e}_{m} \mathbf{e}_{m}^{\top} \mathbf{v} \Rightarrow \mathbf{M}_{V_{m}}=\mathbf{e}_{m} \mathbf{e}_{m}^{\top}
$$

Complex power injection

$$
S_{m}=\mathcal{V}_{m} \mathcal{I}_{m}^{*}=\left(\mathbf{v}^{\top} \mathbf{e}_{m}\right)\left(\mathbf{e}_{m}^{\top} \mathbf{i}^{*}\right)=\mathbf{v}^{\top} \mathbf{e}_{m} \mathbf{e}_{m}^{\top} \mathbf{Y}^{*} \mathbf{v}^{*}=\mathbf{v}^{H} \mathbf{Y}^{*} \mathbf{e}_{m} \mathbf{e}_{m}^{\top} \mathbf{v}
$$

Active power

$$
P_{m}=\frac{S_{m}+S_{m}^{*}}{2}=\mathbf{v}^{H} \mathbf{M}_{P_{m}} \mathbf{v} \quad \text { where } \quad \mathbf{M}_{P_{m}}=\frac{1}{2}\left(\mathbf{Y}^{*} \mathbf{e}_{m} \mathbf{e}_{m}^{\top}+\mathbf{e}_{m} \mathbf{e}_{m}^{\top} \mathbf{Y}\right)
$$

Reactive power

$$
Q_{m}=\frac{S_{m}-S_{m}^{*}}{2 j}=\mathbf{v}^{H} \mathbf{M}_{Q_{m}} \mathbf{v} \quad \text { where } \quad \mathbf{M}_{Q_{m}}=\frac{1}{2 j}\left(\mathbf{Y}^{*} \mathbf{e}_{m} \mathbf{e}_{m}^{\top}-\mathbf{e}_{m} \mathbf{e}_{m}^{\top} \mathbf{Y}\right)
$$

Power flow as a feasibility problem

- System state as solution of feasibility problem
find \mathbf{v}
s.to $\mathbf{v}^{H} \mathbf{M}_{k} \mathbf{v}=s_{k}, \quad k=1: 2 N \quad\left[\right.$ note $\left.\mathbf{v}^{H} \mathbf{M}_{k} \mathbf{v}=\operatorname{Tr}\left(\mathbf{M}_{k} \mathbf{v} \mathbf{v}^{H}\right)\right]$
- Introduce matrix variable $\mathbf{V}=\mathbf{v v}^{H}$

$$
\begin{aligned}
& \text { find } \\
& \text { s.to } \quad \operatorname{Tr}\left(\mathbf{M}_{k} \mathbf{V}\right)=s_{k}, \quad k=1: 2 N \\
& \\
& \quad \mathbf{V}=\mathbf{v v}^{H}
\end{aligned}
$$

- Eliminate variable \mathbf{v}; non-convex problem due to rank constraint

$$
\begin{array}{ll}
\text { find } & \mathbf{V} \\
\text { s.to } & \operatorname{Tr}\left(\mathbf{M}_{k} \mathbf{V}\right)=s_{k}, \quad k=1: 2 N \\
& \mathbf{V} \succeq \mathbf{0}, \underset{\operatorname{rank}(\mathbf{V})=1}{ } \\
& \text { V. Kekatos }
\end{array}
$$

Semidefinite program relaxation

- Drop rank constraint to get semidefinite program (SDP)

$$
\begin{array}{ll}
\text { find } & \mathbf{V} \\
\text { s.to } & \operatorname{Tr}\left(\mathbf{M}_{k} \mathbf{V}\right)=s_{k}, \quad k=1, \ldots, 2 N \\
& \mathbf{V} \succeq \mathbf{0}
\end{array}
$$

which is a convex problem

- If the solution \mathbf{V}_{o} is rank-one, the relaxation is said to be exact
- If exact, find \mathbf{v}_{o} from $\mathbf{V}_{o}=\mathbf{v}_{o} \mathbf{v}_{o}^{H}$
- Relaxation is oftentimes exact under practical system conditions!

From feasibility to minimization

- Feasibility problem can be converted to the convex minimization problem

$$
\begin{array}{ll}
\min _{\mathbf{V} \succeq \mathbf{0}} & \operatorname{Tr}(\mathbf{M} \mathbf{V}) \\
\text { s.to } & \operatorname{Tr}\left(\mathbf{M}_{k} \mathbf{V}\right)=s_{k}, \quad k=1, \ldots, 2 N
\end{array}
$$

- Design matrix \mathbf{M} so that rank-one solutions are favored
- selecting $\mathbf{M}=\mathbf{Y}^{H} \mathbf{Y}$ minimizes $\|\mathbf{i}\|_{2}^{2}$
- selecting $\mathbf{M}=\mathbf{B}$ minimizes losses
- both yield the "high-voltage solution" of the power flow equations
R. Madani, J. Lavaei, and R. Baldick, "Convexification of power flow problem over arbitrary networks," in Proc. IEEE Conf. on Decision and Control, Dec. 2015, Osaka, Japan.

DC power flow model

Power flow equations

$$
P_{m}=V_{m} \sum_{n} V_{n}\left(G_{m n} \cos \theta_{m n}+B_{m n} \sin \theta_{m n}\right)
$$

Assumptions:

A1. Low r / x ratios in transmission lines ($1 / 5-1 / 10$ for $220-400 \mathrm{kV}$)

$$
r_{m n} \ll x_{m n} \rightarrow g_{m n} \ll b_{m n} \rightarrow \mathbf{G} \simeq \mathbf{0} \quad \text { and } \quad b_{m n}=\frac{x_{m n}}{r_{m n}^{2}+x_{m n}^{2}}
$$

A2. Small angle differences $\theta_{m}-\theta_{n} \simeq 0 ; \cos \theta_{m n} \simeq 1$ and $\sin \theta_{m n} \simeq \theta_{m n}$
A3. Voltage magnitudes close to unity (pu) $V_{m} \simeq 1$

DC power flow model:
[why called 'DC' ?]

$$
P_{m} \simeq \sum_{n \neq m} b_{m n}\left(\theta_{m}-\theta_{n}\right)
$$

Coincides with 1st-order Taylor's series of P_{m} at $\mathbf{v}_{\text {flat }}$ under A1.

Power injections (and flows) relate linearly to phase differences

$$
P_{m}=\sum_{n: n \sim m} P_{m n}=\sum_{n: n \sim m} b_{m n}\left(\theta_{m}-\theta_{n}\right)
$$

Multivariate power flow model: $\mathbf{p}=\mathbf{B} \boldsymbol{\theta}$
DC bus admittance matrix: (different from matrix \mathbf{B} in $\mathbf{Y}=\mathbf{G}+j \mathbf{B}$)

$$
B_{m n}= \begin{cases}\sum_{n \neq m} b_{m n} & , m=n \\ -b_{m n} & , \exists \text { line }(m, n) \\ 0 & , \text { otherwise }\end{cases}
$$

- Real; symmetric; sparse; and positive semidefinite [Q: Why?]
- Lossless lines: $\mathbf{B} \mathbf{1}_{N}=\mathbf{0}_{N} \Rightarrow \mathbf{p}^{T} \mathbf{1}_{N}=0$
- Oftentimes further simplify $b_{m n}=\frac{x_{m n}}{r_{m n}^{2}+x_{m n}^{2}} \simeq \frac{1}{x_{m n}}$

Example for the IEEE 14-bus system

c = loadcase('case14'); \% load case file
$B=\operatorname{makeBdc}(c) ; \% B$ in sparse form; use $B=$ full (B) if full form needed imagesc(B);
axis square;

