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Power transmission network as an electric circuit

• N nodes (generator/load buses) and L edges (lines, transformers)

• AC voltages and currents as phasors (at nominal frequency)

V = V ejθ = Vr + jVi

• From scalar to multivariate Ohm’s law: V = ZI → v = Zi
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Transmission lines

• Line series impedance: zmn = rmn + jxmn (xmn > 0)

• Line series admittance: ymn = 1
zmn

= gmn − jbmn

• Line series conductance: gmn = rmn
r2mn+x2mn

• Line series susceptance: bmn = xmn
r2mn+x2mn

> 0

• Total charging susceptance: bcmn > 0
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Line currents

Imn = ymn(Vm − Vn) + j
bcmn

2
Vm

Imn =
(
ymn + j

bcmn
2

)
Vm − ymnVn

Kirchoff’s current law:

Im =
(∑

n 6=m ymn + j
bcmn

2

)
Vm −

∑
n6=m ymnVn

Collect currents and voltages {Im,Vm}Nm=1 into i, v ∈ CN×1

Transformers and phase shifters are ignored in our analysis
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Multivariate Ohm’s law

Currents are linearly related to voltages: i = Yv

Bus admittance matrix: fundamental in power systems operations

Ymn =


∑
k 6=m ymk + j

bcmk
2

,m = n

−ymn , ∃ line (m,n)

0 , otherwise

• symmetric (Ymn = Ynm); non-Hermitian (Ymn 6= Y ∗nm)

• sparse: efficient computations and storage

• invertible if bcmn 6= 0 for at least one line; otherwise Y1 = 0

Bus impedance matrix: Z := Y−1 (v = Zi)

• non-sparse

• not the matrix of line impedances, i.e., Zmn 6= zmn = 1
ymn
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Complex power

• Power Sm = Sgm−Sdm generated/consumed at bus m

{Sm = Pm + jQm = VmI∗m}Nm=1, and i = Yv

• Eliminate currents to get the multivariate power model

s = diag(v)i∗ = diag(v)Y∗v∗

N complex equations in 2N complex unknowns

• Bus admittance matrix in rectangular coordinates Y = G + jB

• Similar expressions for power flow on line (m,n): Smn = VmI∗mn
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Power flow equations

Voltages in polar coordinates (θmn = θm − θn)

Pm = Vm

N∑
n=1

Vn (Gmn cos θmn +Bmn sin θmn)

Qm = Vm

N∑
n=1

Vn (Gmn sin θmn −Bmn cos θmn)

dependence on phase differences only; reference bus θN = 0

Voltages in rectangular coordinates (quadratic equations!)

Pm = Vm,r

N∑
n=1

(Vn,rGmn − Vn,iBmn) + Vm,i
∑
n

(Vn,iGmn + Vn,rBmn)

Qm = Vm,i

N∑
n=1

(Vn,rGmn − Vn,iBmn)− Vm,r
∑
n

(Vn,iGmn + Vn,rBmn)
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Power flow problem

There are 2N equations and 4N variables {(Pm, Qm, Vm, θm)}Nm=1

Problem statement: Fixing the values of 2N variables, find the values of the

rest 2N unknowns that satisfy the nonlinear power flow (PF) equations

Given values typically come from

• First Nd load buses (PQ buses) (Pm, Qm)

• Next Ng generator buses (PV buses) (Pm, Vm)

• Reference bus (VN , θN = 0)

Number of buses N = 1 +Ng +Nd
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Solving the power flow equations

Pm = Vm
∑
n

Vn (Gmn cos θmn +Bmn sin θmn) , m = 1, . . . , Nd +Ng = N − 1

Qm = Vm
∑
n

Vn (Gmn sin θmn −Bmn cos θmn) , m = 1, . . . , Nd

• Set of nonlinear equations in {(Vn, θn)}Nn=1 solved recursively

• Once voltages {(Vn, θn)}Nn=1 are found, any other quantity (injections,

flows, currents, losses) can be calculated

• Flat start or flat voltage profile

voltages usually initialized at Vn = 1 and θn = 0 for all n

• PF solution is not unique!
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‘Nose’ curve

Q: How is the famous nose curve derived?
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Gauss-Seidel method

Sm = Vm
N∑
n=1

Y ∗mnV∗n ⇒ S∗m = V∗m
N∑
n=1

YmnVn ⇒

(
Sm
Vm

)∗
=

m−1∑
n=1

YmnVn + YmmVm +

N∑
n=m+1

YmnVn ⇒

Vm :=
1

Ymm

[(
Sm
Vm

)∗
−
m−1∑
n=1

YmnVn −
N∑

n=m+1

YmnVn

]
Gauss-Seidel iterations:

1. Initialize v0 at flat profile or at most recent grid state

2. Repeat until convergence ‖vt+1 − vt‖2 ≤ ε

Vt+1
m :=

1

Ymm

(Stm
Vtm

)∗
−
m−1∑
n=1

YmnVt+1
n −

N∑
n=m+1

YmnVtn

 , ∀ m

where Stm is either fixed or calculated from PF equations via vt

3. Normalize Vt+1
m to match given magnitude for PV buses
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Impedance matrix method

Power flow problem involves two equations that can be combined:

s = diag(v)i∗ ⇔ i = [diag(v∗)]−1s∗

i = Yv ⇔ v = Zi

 ⇒ v = Z[diag(v∗)]−1s∗

Jacobi-type iterations:

1. Initialize v0 at flat profile or at most recent grid state

2. Repeat until convergence ‖vt+1 − vt‖2 ≤ ε

vt+1 = Z[diag(v∗t )]−1s∗t

where entries of st are either known or calculated from PF equations via vt

Inversion of Y; (close to) singularity of Y handled by eliminating the slack bus
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Newton’s method

• Newton-Raphson method aims at solving nonlinear equations: f(x) = 0

• At iteration t+ 1, function f(x) is linearized at xt

f(x) ≈ f̂(x) = f(xt) + J(xt)(x− xt)

where J(xt) is the Jacobian matrix of f

• Variable xt+1 is updated such that f̂(xt+1) = 0

xt+1 := xt − [J(xt)]−1f(xt)

• Newton’s method in two steps (convergence to be studied later)

−J(xt)δt = f(xt) system of linear equations

xt+1 := xt + δt
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Power flow via Newton’s method

Equations involved in power flow problem:

∆Pm := P̂m − Vm
∑
k

Vk (Gmk cos θmk +Bmk sin θmk) = 0, m = 1, . . . , Nd +Ng

∆Qm := Q̂m − Vm
∑
k

Vk (Gmk sin θmk −Bmk cos θmk) = 0, m = 1, . . . , Nd

or more compactly

f(x) =

 ∆p(x)

∆q(x)

 = 0

Variables involved in power flow problem

x :=

 θ

v

 = [θ1 θ2 · · · θN−1 V1 V2 · · · VNd ]>

For Jacobian in NR, need to find: − ∂∆Pm
∂θn

= − ∂(P̂m−Pm)
∂θn

= ∂Pm
∂θn
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Finding derivatives ∂Pm/∂θn

Repeating for convenience: Pm = Vm
∑
k Vk (Gmk cos θmk +Bmk sin θmk)

1. For n 6= m, we get

∂Pm
∂θn

= VmVn (Gmn sin θmn −Bmn cos θmn)

2. Notice similarity to summands in Qm

Qm = Vm
∑
k 6=m

Vk (Gmk sin θmk −Bmk cos θmk)−BmmV 2
m

3. For n = m, we get

∂Pm
∂θm

= −Vm
∑
k 6=m

Vk (Gmk sin θmk −Bmk cos θmk) = −Qm −BmmV 2
m
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Finding derivatives ∂Qm/∂Vn

Repeating for convenience: Qm = Vm
∑
k Vk (Gmk sin θmk −Bmk cos θmk)

1. For n 6= m, we get

∂Qm
∂Vn

= Vm (Gmn sin θmn −Bmn cos θmn) =⇒

Vn
∂Qm
∂Vn

= VmVn (Gmn sin θmn −Bmn cos θmn) =
∂Pm
∂θn

2. For n = m, we get

Vm
∂Qm
∂Vm

= Qm −BmmV 2
m

Multiplying ∂Qm/∂Vn by Vn gives Jacobian matrix more symmetry
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Finding derivatives ∂Qm/∂θn

Repeating for convenience: Qm = Vm
∑
k Vk (Gmk sin θmk −Bmk cos θmk)

1. For n 6= m, we have

∂Qm
∂θn

= −VmVn(Gmn cos θmn +Bmn sin θmn)

2. Notice similarity to summands in Pm

Pm = Vm
∑
k 6=m

Vk (Gmk cos θmk +Bmk sin θmk) +GmmV
2
m

3. For n = m, we get

∂Qm
∂θm

= Vm
∑
k 6=m

Vk (Gmk cos θmk +Bmk sin θmk) = Pm −GmmV 2
m
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Finding derivatives ∂Pm/∂Vn

Repeating for convenience: Pm = Vm
∑
k Vk (Gmk cos θmk +Bmk sin θmk)

1. For n 6= m, we have

Vn
∂Pm
∂Vn

= VmVn(Gmn cos θmn +Bmn sin θmn) = −∂Qm
∂θn

2. For n = m, we get

Vm
∂Pm
∂Vm

= Vm
∑
k 6=m

Vk (Gmk cos θmk +Bmk sin θmk) + 2GmmV
2
m

= Pm +GmmV
2
m
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Blocks of Jacobian matrix

Ht
(N−1)×(N−1) : Hmn =

∂Pm
∂θn

=

 VmVn(Gmn sin θmn −Bmn cos θmn), n 6= m

−Qm −BmmV 2
m, n = m

Nt
(N−1)×Nd

: Nmn = Vn
∂Pm
∂Vn

=

 −Mmn, n 6= m

Pm +GmmV
2
m, n = m

Mt
Nd×(N−1) : Mmn =

∂Qm
∂θn

=

 −VmVn(Gmn cos θmn +Bmn sin θmn), n 6= m

Pm −GmmV 2
m, n = m

LtNd×Nd
: Lmn = Vn

∂Qm
∂Vn

=

 Hmn, n 6= m

Qm −BmmV 2
m, n = m
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Newton’s iterations

1. Initialize v0 at flat profile or at a recent grid state

2. For t = 0, 1, . . ., until convergence ‖vt+1 − vt‖2 ≤ ε

2.1 Evaluate Jacobian matrix at current state

2.2 Find variable update by solving the linear system Ht Nt

Mt Lt

 ∆θt

∆vt/vt

 =

 ∆pt

∆qt


where division by vt (known at iteration t) is for symmetry

2.3 Update the state as θt+1

vt+1

 :=

 θt

vt

+

 ∆θt

∆vt


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Fast decoupled power flow

Newton’s iterations involve evaluating the Jacobian matrix and inverting it

Two approximations to save computations:

1. Keep the Jacobian constant by evaluating it at a specific point x

2. Problem decouples by setting M = N = 0

3. After several approximations, matrices H and L simplify as

B′∆θt = ∆pt/vt

B′′∆vt = ∆qt/vt

Matrices B′ and B′′ are defined as

B′mn = −x−1
mn, B′mm =

∑
n 6=m

x−1
mn (bmn ≈ x−1

mn, no shunt, no voltage trans.)

B′′mn = −Bmn, B′′mm = −Bmm (bmn =
xmn

r2
mn + x2

mn

, no phase shifters)
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Specifications as quadratic functions

• Collect nodal voltages in rectangular coordinates in v ∈ CN :

v := [v1,r + jv1,i . . . vN,r + jvN,i]
>

• Power injections and squared voltage magn. are quadratic functions of v:

Pm(v) = vHMPmv

Qm(v) = vHMQmv

V 2
m(v) = vHMVmv

where matrices in blue are Hermitian symmetric (MPm = MH
Pm

)

• Every bus contributes two quadratic constraints/specifications on v
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Finding M’s matrices

Voltage magnitude (em is the m-th canonical vector)

V 2
m(v) = V∗mVm = vHeme>mv ⇒ MVm = eme>m

Complex power injection

Sm = VmI∗m = (v>em)(e>mi∗) = v>eme>mY∗v∗ = vHY∗eme>mv

Active power

Pm =
Sm + S∗m

2
= vHMPmv where MPm =

1

2

(
Y∗eme>m + eme>mY

)
Reactive power

Qm =
Sm − S∗m

2j
= vHMQmv where MQm =

1

2j

(
Y∗eme>m − eme>mY

)
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Power flow as a feasibility problem

• System state as solution of feasibility problem

find v

s.to vHMkv = sk, k = 1 : 2N
[
note vHMkv = Tr(Mkvv

H)
]

• Introduce matrix variable V = vvH

find (v,V)

s.to Tr(MkV) = sk, k = 1 : 2N

V = vvH

• Eliminate variable v; non-convex problem due to rank constraint

find V

s.to Tr(MkV) = sk, k = 1 : 2N

V � 0, rank(V) = 1
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Semidefinite program relaxation

• Drop rank constraint to get semidefinite program (SDP)

find V

s.to Tr(MkV) = sk, k = 1, . . . , 2N

V � 0

which is a convex problem

• If the solution Vo is rank-one, the relaxation is said to be exact

• If exact, find vo from Vo = vov
H
o

• Relaxation is oftentimes exact under practical system conditions!
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From feasibility to minimization

• Feasibility problem can be converted to the convex minimization problem

min
V�0

Tr(MV)

s.to Tr(MkV) = sk, k = 1, . . . , 2N

• Design matrix M so that rank-one solutions are favored

• selecting M = YHY minimizes ‖i‖22
• selecting M = B minimizes losses

• both yield the “high-voltage solution” of the power flow equations

R. Madani, J. Lavaei, and R. Baldick, “Convexification of power flow problem over arbitrary

networks,” in Proc. IEEE Conf. on Decision and Control, Dec. 2015, Osaka, Japan.
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DC power flow model

Power flow equations Pm = Vm
∑
n

Vn (Gmn cos θmn +Bmn sin θmn)

Assumptions:

A1. Low r/x ratios in transmission lines (1/5-1/10 for 220-400kV)

rmn � xmn → gmn � bmn → G ' 0 and bmn =
xmn

r2
mn + x2

mn

A2. Small angle differences θm−θn ' 0; cos θmn ' 1 and sin θmn ' θmn

A3. Voltage magnitudes close to unity (pu) Vm ' 1

DC power flow model:

[why called ‘DC’?]

Pm '
∑
n 6=m

bmn(θm − θn)

Coincides with 1st-order Taylor’s series of Pm at vflat under A1.
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B matrix

Power injections (and flows) relate linearly to phase differences

Pm =
∑

n:n∼m

Pmn =
∑

n:n∼m

bmn(θm − θn)

Multivariate power flow model: p = Bθ

DC bus admittance matrix: (different from matrix B in Y = G + jB)

Bmn =


∑
n 6=m bmn ,m = n

−bmn , ∃ line (m,n)

0 , otherwise

• Real; symmetric; sparse; and positive semidefinite [Q: Why?]

• Lossless lines: B1N = 0N ⇒ pT1N = 0

• Oftentimes further simplify bmn = xmn
r2mn+x2mn

' 1
xmn
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Example for the IEEE 14-bus system

c = loadcase(’case14’); % load case file

B = makeBdc(c); % B in sparse form; use B = full(B) if full form needed

imagesc(B);

axis square;
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