
ECE 5314: Power System Operation & Control

Lecture 6: Unit Commitment

Vassilis Kekatos

R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control,

Wiley, 2014, Chapters 3-4.

R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, Electric Energy Systems: Analysis and

Operation, Chapter 5.

Lecture 6 V. Kekatos 1



Motivation

Economic dispatch assumes all units to be online and ready to produce, but:

• ramping and must-stay-on/off constraints

• start-up/shut-down costs (cooling vs. banking)

• crew constraints (units that cannot be started together)

• spinning (coal) and offline (hydro, gas) reserves

• fuel constraints (use it or loose it)

• must-run status (due to voltage regulation or other functions)

Such constraints are accommodated by unit commitment problems

• bad news: non-convex, hard to solve

• good news: solved in advance (day-ahead)

Lecture 6 V. Kekatos 2



Static unit commitment

• Extend ED to include on/off scheduling of units

• Binary variable: ui = 1 if unit i is scheduled to be on; 0 otherwise

• If unit i is scheduled to be on, it has to produce at least Pmin
i

min
{Pi,ui}i

N∑
i=1

uiCi(Pi)

s.to

N∑
i=1

Pi = D

uiP
min
i ≤ Pi ≤ uiPmax

i , ∀ i

ui ∈ {0, 1}, ∀ i

• For economic dispatch, all ui’s have already been decided

Lecture 6 V. Kekatos 3



An example

Two generators with quadratic costs Ci(Pi) = C0i + aiPi + bi
2
P 2
i

C0i [$/h] ai [$/MWh] bi [$/(MW)2h] Pmin
i [MW] Pmax

i [MW]

G1 100 20 0.05 0 400

G2 200 25 0.10 0 300

Unit commitment for different loads D

Case D [MW] P1 [MW] P2 [MW] λ [$/MWh] Cost [$/h]

(1,0) 40 40 0 22 940

(0,1) 40 0 40 29 1,280

(1,1) 40 40 0 22 1,140

(1,0) 250 250 0 33 6,663

(0,1) 250 0 250 50 9,575

(1,1) 250 200 50 30 6,675

(1,0) 300 300 0 35 8,350

(0,1) 300 0 300 55 12,200

(1,1) 300 233 67 32 8,217

Lecture 6 V. Kekatos 4



Avoiding bilinear products

• MILPs are the ‘easiest’ mixed-integer programs

• To remain within MILP class, need to avoid products of variables

• Generation capacity constraints

uiP
min
i ≤ Pi ≤ uiPmax

i vs. uiP
min
i ≤ uiPi ≤ uiPmax

i

• Generation cost uiCi(Pi) for Ci(Pi) = C0i + aiPi + bi
2
P 2
i

uiCo,i + aiPi +
bi
2
P 2
i vs. uiCo,i + aiuiPi +

bi
2
uiP

2
i

Lecture 6 V. Kekatos 5



Multi-period unit commitment

N generation units over T control periods (24 hours of a day)

min
{P t

i ,u
t
i,s

t
i}i,t

T∑
t=1

N∑
i=1

utiC
t
i (P

t
i ) + sti

s.to

N∑
i=1

P ti = Dt, ∀ t

utiP
min
i ≤ P ti ≤ utiPmax

i , ∀ i, t

uti ∈ {0, 1}, ∀ i, t ←− integral (binary) constraint

sti ≥ si(uti − ut−1
i ), ∀ i, t ←− startup cost si

sti ≥ 0, ∀ i, t ←− startup cost variable

Decisions are coupled across time through the startup cost

What if I replace uti ∈ {0, 1} with uti ∈ [0, 1] for all i, t?

Lecture 6 V. Kekatos 6



More unit commitment constraints

Additional constraints coupling decisions across time

• Ramp up constraint: P ti − P t−1
i ≤ Rup

i

• Ramp down constraint: P t−1
i − P ti ≤ Rdown

i

• Spinning reserves:
N∑
i=1

utiP
max
i ≥ D + Preserve

• Must-stay-on for Li periods:

uti − ut−1
i ≤ uτi , τ = t+ 1, . . . ,min{t+ Li − 1, T}

• Must-stay-off for `i periods:

ut−1
i − uti ≤ 1− uτi , τ = t+ 1, . . . ,min{t+ `i − 1, T}

Lecture 6 V. Kekatos 7



Mixed-Integer (Non-)Linear Programs

Optimization problems with continuous and integer/binary variables

Brute-force method should solve 2NT EDs!

Even MILPs are NP-hard in general! (sometimes MINLPs linearized to MILPs)

Common solution approaches:

1. Dynamic programming [Bell, 1950]

2. Branch and bound algorithms [Land & Doig, 1960]

3. Lagrangian relaxation [Muckstadt & Koenig, 1977; Bertsekas, 1983]

4. Bender’s decomposition [Bender, 1962]

Lecture 6 V. Kekatos 8



Branch and bound method

Smart way to enumerate possible solutions; widely used in discrete optimization

1. Find lower and upper bounds (`, u) on f∗

2. Problem with all binary constraints relaxed to box cons. added in queue

3. Solve the next problem in the queue to get (x̂, f̂)

4. If x̂ is binary and f̂ < u, UPDATE x̄← x̂ and u← f̂

5. If x̂ is non-binary, then

5.1 If ` < f̂ ≤ u, then
BRANCH: pick a variable with non-binary value x̂i and add two problems in

the queue, one with constraint xi = 0 and the other with xi = 1

5.2 If f̂ > u (including infeasibility with f̂ =∞), then

CUT this branch since the solution cannot be improved

6. If queue is empty, output minimizer x̄; else go to Step 3.

There exists variations where ` progressively increases
Lecture 6 V. Kekatos 9



Example on branch and bound method

min
{Pi,ui}2i=1

2∑
i=1

uiC0i + aiPi + bi
2
P 2
i

s.to P1 + P2 = 300

0 ≤ Pi ≤ uiPmax
i , i = 1, 2

ui ∈ {0, 1}, i = 1, 2

Problem P̂1 P̂2 û1 û2 f̂ ` u x̄

u1, u2 ∈ [0, 1] 236.1 63.9 0.59 0.21 8,019 8,019 +∞ –

u1 = 0, u2 ∈ [0, 1] 0 300 0 1 12,200 8,019 12,200 store

u1 = 1, u2 ∈ [0, 1] 237.8 62.2 1 0.21 8,059 8,059 12,200 branch

u1 = 1, u2 = 0 300 0 1 0 8,350 8,059 8,350 store

u1 = 1, u2 = 1 233 67 1 1 8,217 8,059 8,217 store

Lecture 6 V. Kekatos 10



Dynamic programming method

Multi-stage problems (continuous/discrete) with a recursive structure

• Stages: indexed by n = 1, . . . , N

• States: xn (discrete or continuous)

• Decision: un ∈ Un(xn) (actions, controls, opt. variables)

• Dynamic system: xn+1 = fn(xn, un) for n = 1, . . . , N

• Per-stage cost: cn(xn, un) for n = 1, . . . , N , and final cost cN+1(xN+1)

Lecture 6 V. Kekatos 11



Problems solved with dynamic programming

Given state recursion, per-state costs and constraints, minimize the total cost

J∗(x1) = min
{un}

N∑
n=1

cn(xn, un) + cN+1(xN+1)

s.to xn+1 = fn(xn, un), ∀n (dynamic system)

un ∈ Un(xn), ∀n (control options)

DP widely used in a variety of applications:

• optimal (stochastic) control

• financial applications

• Kalman filter and hidden Markov models (HMMs)

• graph theory and networking problems

• wireless communications (Viterbi algorithm)

Lecture 6 V. Kekatos 12



Optimality principle

Solving the tail problem after stage k for a state value xk is optimal regardless

how you reached xk

J∗k (xk) = min
{uk}Nk=1

N∑
n=k

cn(xn, un) + cN+1(xN+1)

s.to xn+1 = fn(xn, un), ∀n = k, . . . , N (dynamic system)

un ∈ Un(xn), ∀n = k, . . . , N (control options)

Lecture 6 V. Kekatos 13



Recursive solution

Find last action uN

J∗N (xN ) = min
uN

cN (xN , uN ) + cN+1(xN+1)

s.to xN+1 = fN (xN , uN )

uN ∈ UN (xN )

Find uN−1

J∗N−1(xN−1) = min
uN−1

cN−1(xN−1, uN−1) + J∗N (xN )

s.to xN = fN (xN−1, uN−1)

uN−1 ∈ UN−1(xN−1)

Lecture 6 V. Kekatos 14



Dynamic programming algorithm

1. Start with J∗N+1(xN+1) = cN+1(xN+1)

2. Go backwards: solve the previous stage for all possible values of state xk

J∗k (xk) = min
uk

ck(xk, uk) + J∗k+1(xk+1)

s.to xk+1 = fk(xk, uk)

uk ∈ Uk(xk)

or equivalently

J∗k (xk) = min
uk

ck(xk, uk) + J∗k+1(fk(xk, uk))

s.to uk ∈ Uk(xk)

until you reach the initial state x1

Lecture 6 V. Kekatos 15



Finite-state problems

Number of possible states per stage is discrete

• nodes correspond to state values; arcs correspond to actions

• ckij : transitioning cost from state i to j at stage k, i.e., ck(xk = i, ui→j)

• cNii : cost of terminating at state xi

• minimum-cost path yields optimal cost and actions

Lecture 6 V. Kekatos 16



Shortest path problem

In a graph with weighted edges and N nodes, find the shortest paths from any

node to a destination node d

• State: the node you are at time n {1, 2, 3, 4, 5}

• Decision cost: c moving from one node to another (edge weight)

• Cost Jk(i): minimum cost for moving from i to d within N − k steps

• Stages: N since within N steps you can reach d from any node

Lecture 6 V. Kekatos 17



Solving a simple UC problem with DP

Start-up costs si(0, 1); shut-down costs si(1, 0); and si(0, 0) = si(1, 1) = 0

min
{P t

i ,u
t
i}i,t

T∑
t=1

2∑
i=1

utiCi(P
t
i ) + si(x

t
i, u

t
i)

s.to

∑2
i=1 P

t
i = Dt, ∀ t

utiP
min
i ≤ P ti ≤ utiPmax

i , uti ∈ {0, 1}, ∀ i, t

 control options

xt+1
i = uti dynamic system!

• Stages: time periods t = 1, . . . , T

• States: three possible configurations {(0, 1), (1, 0), (1, 1)} per stage t

• Actions: (uti, P
t
i ) for i = 1, 2

• Termination cost: no cost for being online or offline at time T + 1

• J∗t (xti): minimal total cost from t to T if starting with configuration xi

Lecture 6 V. Kekatos 18



Summarizing

Consider N = 6 units to be dispatched over T = 24 hours for the next day

Exhaustive search: entails solving 2NT = 2.2 · 1043 ED problems!

Branch-and-bound method: avoids solving entire “sub-trees” of ED problems

• finds optimal solution, but not in deterministic time

• complexity depends on (`, u) and order of visiting UC cases in the queue

• tight initial (`, u) can reduce complexity significantly

Dynamic programming: exploits recursive structure to check fewer UC cases

• entails solving 2N × T = 1, 536 single-period UC problems

• each smaller UC involves 2N ED problems, or can be solved with B&B

• DP still suffers from combinatorial complexity in N

Lecture 6 V. Kekatos 19



Lagrangian relaxation

Consider the single-period UC problem

min
{(Pi,ui)∈Si}i

N∑
i=1

Ci(Pi, ui)

s.to

N∑
i=1

Pi = D

where Si = {(Pi, ui) : uiP
min
i ≤ Pi ≤ uiPmax

i , ui ∈ {0, 1}}

Lagrangian function: L({(Pi, ui)};λ) =
∑N
i=1 (Ci(Pi, ui)− λPi) + λD

• separable over generators

• for fixed λ, it can be minimized independently per generator i

min
(Pi,ui)∈Si

Ci(Pi, ui)− λPi

Lecture 6 V. Kekatos 20



Updating the dual variable

Dual function: g(λ) = min{(Pi,ui)∈Si}
∑N
i=1 (Ci(Pi, ui)− λPi) + λD

• find λ∗ by maximizing g(λ), which is always a concave function

• minimize Lagrangian function separately per generator i for λk

(Pi(λ
k), ui(λ

k)) = arg min
(Pi,ui)∈Si

Ci(Pi, ui)− λkPi ∀ i

two easy problems: one for ui = 0 and one for ui = 1

• power imbalance D −
∑N
i=1 Pi(λ

k) serves as sort of gradient of g(λk)

• update dual variable through dual ascent and iterate

λk+1 = λk + µ

(
D −

N∑
i=1

Pi(λ
k)

)
Lecture 6 V. Kekatos 21



Lagrangian relaxation for multi-period UC

min
{{(P t

i ,u
t
i)}t∈Si}i

N∑
i=1

T∑
t=1

Cti (P
t
i , u

t
i)

s.to

N∑
i=1

P ti = Dt ∀ t ←− λ = [λ1 · · · λT ]>

• minimize Lagrangian per unit i for λk and over the entire horizon

{P ti (λk), uti(λ
k)}Tt=1 = arg min

{(P t
i ,u

t
i)}t∈Si

T∑
t=1

Cti (P
t
i , u

t
i)− λktP ti ∀ i

this problem is solved via DP with only two states uti ∈ {0, 1} per stage!

• update dual variables through dual ascent and iterate

λk+1
t = λkt + µ

(
Dt −

N∑
i=1

P ti (λk)

)
∀ t

Lecture 6 V. Kekatos 22



Comments on Lagrangian relaxation

• subgradient iterations for dual problem converge for diminishing step size

• a.k.a. dual decomposition if primal is convex

• not optimal for UC due to non-convexity

• LR output may be infeasible (power balance not precisely satisfied)

• relative duality gap p∗−d∗
d∗ decreases with increasing N

• LR can be used to initialize a branch-and-bound scheme or it can be

heuristically adjusted to yield feasibility

D. Bertsekas, G. Laurel, N. Sandell, T. Posbergh, “Optimal Short-Term Scheduling of Large-Scale

Power Systems,” IEEE Trans. on Automatic Control, Vol. 28, No. 1, Jan. 1983, pp. 1–11.

Lecture 6 V. Kekatos 23


