ECE 5314: Power System Operation & Control

Lecture 6: Unit Commitment

Vassilis Kekatos

- R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control, Wiley, 2014, Chapters 3-4.
- R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, *Electric Energy Systems: Analysis and Operation*, Chapter 5.

Motivation

Economic dispatch assumes all units to be online and ready to produce, but:

- ramping and must-stay-on/off constraints
- start-up/shut-down costs (cooling vs. banking)
- crew constraints (units that cannot be started together)
- spinning (coal) and offline (hydro, gas) reserves
- fuel constraints (use it or loose it)
- must-run status (due to voltage regulation or other functions)

Such constraints are accommodated by unit commitment problems

- bad news: non-convex, hard to solve
- good news: solved in advance (day-ahead)

Static unit commitment

- Extend ED to include on/off scheduling of units
- Binary variable: $u_i = 1$ if unit i is scheduled to be on; 0 otherwise
- If unit i is scheduled to be on, it has to produce at least P_i^{\min}

$$\min_{\{P_i, u_i\}_i} \sum_{i=1}^N u_i C_i(P_i)$$
s.to
$$\sum_{i=1}^N P_i = D$$

$$u_i P_i^{\min} \leq P_i \leq u_i P_i^{\max}, \ \forall \ i$$

$$u_i \in \{0, 1\}, \ \forall \ i$$

ullet For economic dispatch, all u_i 's have already been decided

An example

Two generators with quadratic costs $C_i(P_i) = C_{0i} + a_i P_i + \frac{b_i}{2} P_i^2$

	C_{0i} [\$/h]	a_i [\$/MWh]	b_i [\$/(MW) 2 h]	P_i^{\min} [MW]	P_i^{\max} [MW]
G1	100	20	0.05	0	400
G2	200	25	0.10	0	300

Unit commitment for different loads D

Case	D [MW]	P_1 [MW]	P_2 [MW]	λ [\$/MWh]	Cost [\$/h]
(1,0)	40	40	0	22	940
(0,1)	40	0	40	29	1,280
(1,1)	40	40	0	22	1,140
(1,0)	250	250	0	33	6,663
(0,1)	250	0	250	50	9,575
(1,1)	250	200	50	30	6,675
(1,0)	300	300	0	35	8,350
(0,1)	300	0	300	55	12,200
(1,1)	300	233	67	32	8,217

Avoiding bilinear products

- MILPs are the 'easiest' mixed-integer programs
- To remain within MILP class, need to avoid products of variables

Generation capacity constraints

$$u_i P_i^{\min} \leq P_i \leq u_i P_i^{\max} \qquad \text{vs.} \qquad u_i P_i^{\min} \leq \underline{u_i} \underline{P_i} \leq u_i P_i^{\max}$$

• Generation cost $u_iC_i(P_i)$ for $C_i(P_i)=C_{0i}+a_iP_i+\frac{b_i}{2}P_i^2$

$$u_iC_{o,i} + a_iP_i + \frac{b_i}{2}P_i^2 \qquad \text{vs.} \qquad u_iC_{o,i} + a_iu_i\textcolor{red}{P_i} + \frac{b_i}{2}u_i\textcolor{red}{P_i^2}$$

Multi-period unit commitment

N generation units over T control periods (24 hours of a day)

$$\begin{aligned} & \underset{\{P_i^t, u_i^t, s_i^t\}_{i,t}}{\min} \sum_{t=1}^T \sum_{i=1}^N u_i^t C_i^t(P_i^t) + s_i^t \\ & \text{s.to } \sum_{i=1}^N P_i^t = D^t, \ \forall \ t \\ & u_i^t P_i^{\min} \leq P_i^t \leq u_i^t P_i^{\max}, \ \forall \ i,t \\ & u_i^t \in \{0,1\}, \ \forall \ i,t & \longleftarrow \text{ integral (binary) constraint } \\ & s_i^t \geq s_i (u_i^t - u_i^{t-1}), \ \forall \ i,t & \longleftarrow \text{ startup cost } s_i \\ & s_i^t \geq 0, \ \forall \ i,t & \longleftarrow \text{ startup cost variable} \end{aligned}$$

Decisions are coupled across time through the startup cost

What if I replace $u_i^t \in \{0,1\}$ with $u_i^t \in [0,1]$ for all i,t?

More unit commitment constraints

Additional constraints coupling decisions across time

- Ramp up constraint: $P_i^t P_i^{t-1} \leq R_i^{\mathrm{up}}$
- Ramp down constraint: $P_i^{t-1} P_i^t \le R_i^{\text{down}}$
- · Spinning reserves:

$$\sum_{i=1}^{N} u_i^t P_i^{\max} \ge D + P_{\mathsf{reserve}}$$

Must-stay-on for L_i periods:

$$u_i^t - u_i^{t-1} \le u_i^{\tau}, \ \tau = t + 1, \dots, \min\{t + L_i - 1, T\}$$

• Must-stay-off for ℓ_i periods:

$$u_i^{t-1} - u_i^t \le 1 - u_i^{\tau}, \ \tau = t + 1, \dots, \min\{t + \ell_i - 1, T\}$$

Mixed-Integer (Non-)Linear Programs

Optimization problems with continuous and integer/binary variables Brute-force method should solve 2^{NT} EDs!

Even MILPs are NP-hard in general! (sometimes MINLPs linearized to MILPs)

Common solution approaches:

- 1. Dynamic programming [Bell, 1950]
- 2. Branch and bound algorithms [Land & Doig, 1960]
- 3. Lagrangian relaxation [Muckstadt & Koenig, 1977; Bertsekas, 1983]
- 4. Bender's decomposition [Bender, 1962]

Branch and bound method

Smart way to enumerate possible solutions; widely used in discrete optimization

- 1. Find lower and upper bounds (ℓ, u) on f^*
- 2. Problem with all binary constraints relaxed to box cons. added in queue
- 3. Solve the next problem in the queue to get $(\hat{\mathbf{x}},\hat{f})$
- 4. If $\hat{\mathbf{x}}$ is binary and $\hat{f} < u$, UPDATE $\bar{\mathbf{x}} \leftarrow \hat{\mathbf{x}}$ and $u \leftarrow \hat{f}$
- 5. If $\hat{\mathbf{x}}$ is non-binary, then
 - 5.1 If $\ell < \hat{f} \le u$, then

BRANCH: pick a variable with non-binary value \hat{x}_i and add two problems in the queue, one with constraint $x_i=0$ and the other with $x_i=1$

- 5.2 If $\hat{f}>u$ (including infeasibility with $\hat{f}=\infty$), then CUT this branch since the solution cannot be improved
- 6. If queue is empty, output minimizer $\bar{\mathbf{x}}$; else go to Step 3.

There exists variations where ℓ progressively increases

Example on branch and bound method

$$\begin{aligned} \min_{\{P_i, u_i\}_{i=1}^2} \quad & \sum_{i=1}^2 u_i C_{0i} + a_i P_i + \frac{b_i}{2} P_i^2 \\ \text{s.to} \quad & P_1 + P_2 = 300 \\ & 0 \leq P_i \leq u_i P_i^{\max}, \ i = 1, 2 \\ & u_i \in \{0, 1\}, \ i = 1, 2 \end{aligned}$$

Problem	\hat{P}_1	\hat{P}_2	\hat{u}_1	\hat{u}_2	\hat{f}	ℓ	u	$\bar{\mathbf{x}}$
$u_1, u_2 \in [0, 1]$	236.1	63.9	0.59	0.21	8,019	8,019	$+\infty$	-]
$u_1 = 0, u_2 \in [0, 1]$	0	300	0	1	12,200	8,019	12,200	store
$u_1 = 1, u_2 \in [0, 1]$	237.8	62.2	1	0.21	8,059	8,059	12,200	branch
$u_1 = 1, u_2 = 0$	300	0	1	0	8,350	8,059	8,350	store
$u_1 = 1, u_2 = 1$	233	67	1	1	8,217	8,059	8,217	store

Dynamic programming method

Multi-stage problems (continuous/discrete) with a recursive structure

- Stages: indexed by $n = 1, \ldots, N$
- States: x_n (discrete or continuous)
- **Decision**: $u_n \in \mathcal{U}_n(x_n)$ (actions, controls, opt. variables)
- Dynamic system: $x_{n+1} = f_n(x_n, u_n)$ for n = 1, ..., N
- Per-stage cost: $c_n(x_n, u_n)$ for n = 1, ..., N, and final cost $c_{N+1}(x_{N+1})$

Problems solved with dynamic programming

Given state recursion, per-state costs and constraints, minimize the total cost

$$J^*(x_1) = \min_{\{u_n\}} \quad \sum_{n=1}^N c_n(x_n, u_n) + c_{N+1}(x_{N+1})$$
 s.to $x_{n+1} = f_n(x_n, u_n), \ \forall n$ (dynamic system)
$$u_n \in \mathcal{U}_n(x_n), \ \forall n$$
 (control options)

DP widely used in a variety of applications:

- optimal (stochastic) control
- financial applications
- Kalman filter and hidden Markov models (HMMs)
- · graph theory and networking problems
- wireless communications (Viterbi algorithm)

Optimality principle

Solving the tail problem after stage k for a state value x_k is optimal regardless how you reached x_k

$$J_k^*(x_k) = \min_{\{u_k\}_{k=1}^N} \quad \sum_{n=k}^N c_n(x_n, u_n) + c_{N+1}(x_{N+1})$$
s.to $x_{n+1} = f_n(x_n, u_n), \ \forall n = k, \dots, N$ (dynamic system)
$$u_n \in \mathcal{U}_n(x_n), \ \forall n = k, \dots, N$$
 (control options)

Recursive solution

Find last action
$$u_N$$

$$J_N^*(x_N) = \min_{u_N} \quad c_N(x_N, u_N) + c_{N+1}(x_{N+1})$$

s.to $x_{N+1} = f_N(x_N, u_N)$
 $u_N \in \mathcal{U}_N(x_N)$

$$x_1$$
 f_1 x_2 \cdots x_{N-1} f_{N-1} x_N f_N x_{N+1}

$$J_{N-1}^*(x_{N-1}) = \min_{u_{N-1}} c_{N-1}(x_{N-1}, u_{N-1}) + J_N^*(x_N)$$
s.to $x_N = f_N(x_{N-1}, u_{N-1})$

$$u_{N-1} \in \mathcal{U}_{N-1}(x_{N-1})$$

Find u_{N-1}

 x_1 f_1 x_2 f_N f_N f_N f_N

Dynamic programming algorithm

- 1. Start with $J_{N+1}^*(x_{N+1}) = c_{N+1}(x_{N+1})$
- 2. Go backwards: solve the previous stage for all possible values of state x_k

$$J_k^*(x_k) = \min_{u_k} c_k(x_k, u_k) + J_{k+1}^*(x_{k+1})$$
s.to $x_{k+1} = f_k(x_k, u_k)$

$$u_k \in \mathcal{U}_k(x_k)$$

or equivalently

$$J_k^*(x_k) = \min_{u_k} c_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k))$$

s.to $u_k \in \mathcal{U}_k(x_k)$

until you reach the initial state x_1

Finite-state problems

Number of possible states per stage is discrete

- nodes correspond to state values; arcs correspond to actions
- c_{ij}^k : transitioning cost from state i to j at stage k, i.e., $c_k(x_k=i,u_{i\rightarrow j})$
- c_{ii}^N : cost of terminating at state x_i
- minimum-cost path yields optimal cost and actions

Shortest path problem

In a graph with weighted edges and N nodes, find the shortest paths from any node to a destination node d

- **State**: the node you are at time n $\{1, 2, 3, 4, 5\}$
- **Decision cost**: c moving from one node to another (edge weight)
- Cost $J_k(i)$: minimum cost for moving from i to d within N-k steps
- Stages: N since within N steps you can reach d from any node

Solving a simple UC problem with DP

Start-up costs $s_i(0,1)$; shut-down costs $s_i(1,0)$; and $s_i(0,0) = s_i(1,1) = 0$

$$\begin{aligned} \min_{\{P_i^t, u_i^t\}_{i,t}} \sum_{t=1}^T \sum_{i=1}^2 u_i^t C_i(P_i^t) + s_i(x_i^t, u_i^t) \\ \text{s.to} \quad & \sum_{i=1}^2 P_i^t = D^t, \ \forall \ t \\ & u_i^t P_i^{\min} \leq P_i^t \leq u_i^t P_i^{\max}, \ u_i^t \in \{0,1\}, \ \forall \ i,t \end{aligned} \right\} \quad \text{control options} \\ & x_i^{t+1} = u_i^t \qquad \qquad \text{dynamic system!} \end{aligned}$$

- Stages: time periods $t = 1, \dots, T$
- States: three possible configurations $\{(0,1),(1,0),(1,1)\}$ per stage t
- Actions: (u_i^t, P_i^t) for i = 1, 2
- **Termination cost**: no cost for being online or offline at time T+1
- $J_{t}^{*}(x_{i}^{t})$: minimal total cost from t to T if starting with configuration x_{i}

Summarizing

Consider ${\cal N}=6$ units to be dispatched over ${\cal T}=24$ hours for the next day

Exhaustive search: entails solving $2^{NT} = 2.2 \cdot 10^{43}$ ED problems!

Branch-and-bound method: avoids solving entire "sub-trees" of ED problems

- · finds optimal solution, but not in deterministic time
- ullet complexity depends on (ℓ,u) and order of visiting UC cases in the queue
- ullet tight initial (ℓ,u) can reduce complexity significantly

Dynamic programming: exploits recursive structure to check fewer UC cases

- entails solving $2^N \times T = 1,536$ single-period UC problems
- each smaller UC involves 2^N ED problems, or can be solved with B&B
- ullet DP still suffers from combinatorial complexity in N

Lagrangian relaxation

Consider the single-period UC problem

$$\min_{\{(P_i, u_i) \in \mathcal{S}_i\}_i} \quad \sum_{i=1}^N C_i(P_i, u_i)$$
s.to
$$\sum_{i=1}^N P_i = D$$

where $S_i = \{(P_i, u_i) : u_i P_i^{\min} \le P_i \le u_i P_i^{\max}, u_i \in \{0, 1\}\}$

Lagrangian function:
$$L(\{(P_i, u_i)\}; \lambda) = \sum_{i=1}^{N} (C_i(P_i, u_i) - \lambda P_i) + \lambda D$$

- separable over generators
- for fixed λ , it can be minimized independently per generator i

$$\min_{(P_i, u_i) \in \mathcal{S}_i} C_i(P_i, u_i) - \lambda P_i$$

Updating the dual variable

Dual function:
$$g(\lambda) = \min_{\{(P_i, u_i) \in S_i\}} \sum_{i=1}^{N} (C_i(P_i, u_i) - \lambda P_i) + \lambda D$$

- find λ^* by maximizing $g(\lambda)$, which is always a concave function
- minimize Lagrangian function separately per generator i for λ^k

$$(P_i(\lambda^k), u_i(\lambda^k)) = \arg\min_{(P_i, u_i) \in S_i} C_i(P_i, u_i) - \lambda^k P_i \quad \forall i$$

two easy problems: one for $u_i = 0$ and one for $u_i = 1$

- power imbalance $D \sum_{i=1}^{N} P_i(\lambda^k)$ serves as sort of gradient of $g(\lambda^k)$
- update dual variable through dual ascent and iterate

$$\lambda^{k+1} = \lambda^k + \mu \left(D - \sum_{i=1}^N P_i(\lambda^k) \right)$$

Lagrangian relaxation for multi-period UC

$$\min_{\{\{(P_i^t, u_i^t)\}_t \in \mathcal{S}_i\}_i} \quad \sum_{i=1}^N \sum_{t=1}^T C_i^t(P_i^t, u_i^t)$$
s.to
$$\sum_{i=1}^N P_i^t = D^t \ \forall \ t \qquad \longleftarrow \ \mathbf{\lambda} = [\lambda_1 \ \cdots \ \lambda_T]^\top$$

• minimize Lagrangian per unit i for λ^k and over the entire horizon

$$\{P_i^t(\boldsymbol{\lambda}^k), u_i^t(\boldsymbol{\lambda}^k)\}_{t=1}^T = \arg\min_{\{(P_i^t, u_i^t)\}_t \in \mathcal{S}_i} \sum_{t=1}^T C_i^t(P_i^t, u_i^t) - \lambda_t^k P_i^t \quad \forall \ i$$

this problem is solved via DP with only two states $u_i^t \in \{0,1\}$ per stage!

· update dual variables through dual ascent and iterate

$$\lambda_t^{k+1} = \lambda_t^k + \mu \left(D^t - \sum_{i=1}^N P_i^t(\boldsymbol{\lambda}^k) \right) \quad \forall \ t$$

Comments on Lagrangian relaxation

- subgradient iterations for dual problem converge for diminishing step size
- a.k.a. dual decomposition if primal is convex
- not optimal for UC due to non-convexity
- LR output may be infeasible (power balance not precisely satisfied)
- relative duality gap $\frac{p^*-d^*}{d^*}$ decreases with increasing N
- LR can be used to initialize a branch-and-bound scheme or it can be heuristically adjusted to yield feasibility

D. Bertsekas, G. Laurel, N. Sandell, T. Posbergh, "Optimal Short-Term Scheduling of Large-Scale Power Systems," *IEEE Trans. on Automatic Control*, Vol. 28, No. 1, Jan. 1983, pp. 1–11.