ECE 5314: Power System Operation & Control

Lecture 6: Unit Commitment

Vassilis Kekatos

R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control,
Wiley, 2014, Chapters 3-4.

R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, Electric Energy Systems: Analysis and
Operation, Chapter 5.
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Motivation

Economic dispatch assumes all units to be online and ready to produce, but:
e ramping and must-stay-on/off constraints
e start-up/shut-down costs (cooling vs. banking)
e crew constraints (units that cannot be started together)
e spinning (coal) and offline (hydro, gas) reserves
e fuel constraints (use it or loose it)

e must-run status (due to voltage regulation or other functions)

Such constraints are accommodated by unit commitment problems
e bad news: non-convex, hard to solve

e good news: solved in advance (day-ahead)
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Static unit commitment

e Extend ED to include on/off scheduling of units

e Binary variable: u; = 1 if unit ¢ is scheduled to be on; 0 otherwise

o If unit 4 is scheduled to be on, it has to produce at least P/™i"

Hlln Z uz z 1 CZ(PGI)

Uit i=1

s.to ZPi =D
i=1

uipimm <P < uiPimaXa Vi P
Pn)ll] Plll'dx
G; G;

u; € {0,1}7 Vi

e For economic dispatch, all u;'s have already been decided
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An example

Two generators with quadratic costs C;(P;) = Co; + a; P; + %PE

Coi [$/h]  a; [$/MWhH]  b; [$/(MW)?h]  P™™ [MW]  Pax [MW]
Gl 100 20 0.05 0 400
G2 200 25 0.10 0 300
Unit commitment for different loads D
Case | D [MW] | P; [MW] P, [MW] X [$/MWh]  Cost [$/h]
(1,0 40 40 0 22 940
(0,1) 40 0 40 29 1,280
(1,1) 40 40 0 22 1,140
(1,0) 250 250 0 33 6,663
(0,1) 250 0 250 50 9,675
(1,1) 250 200 50 30 6,675
(1,0) 300 300 0 35 8,350
(0,1) 300 0 300 55 12,200
(1,1) 300 233 67 32 8,217
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Avoiding bilinear products

MILPs are the ‘easiest’ mixed-integer programs

e To remain within MILP class, need to avoid products of variables

e Generation capacity constraints

w P < Py < P vs. w P < up Py < ug P

o Generation cost u;C;(P;) for Ci(P;) = Coi + a; P + % P}

i b; .
u;Co i + a;i P + %Pf vs. uiCoyi + azui P + 5uz-Pf
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Multi-period unit commitment

N generation units over T' control periods (24 hours of a day)

T N
min S ulCHP) + 5,

(Phubsihin 1 =1 i
N
s.to ZPZ =D' V¢
i=1

uzpimiﬂ S Pzt S uEPimax7 v Z7t

uf € {0,1}, ¥V 4,t <— integral (binary) constraint
st > si(ub —ul™h), Vit <— startup cost s;
si>0, Vit <— startup cost variable

Decisions are coupled across time through the startup cost

What if | replace u! € {0, 1} with u} € [0, 1] for all 4,¢?
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More unit commitment constraints

Additional constraints coupling decisions across time
e Ramp up constraint: Pf — P/~! < RYP

e Ramp down constraint: P{~! — P} < Rgo"

e Spinning reserves:
N
Z ufpimax 2 D + Preserve
=1

e Must-stay-on for L; periods:

wb—ult <, r=t+1,...,min{t+ L, —1,T}
e Must-stay-off for ¢; periods:

wh—ut <1 -], T=t+1,...,min{t+ ¢ —1,T}
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Mixed-Integer (Non-)Linear Programs

Optimization problems with continuous and integer/binary variables

Brute-force method should solve 27 EDs!
Even MILPs are NP-hard in generall (sometimes MINLPs linearized to MILPs)

Common solution approaches:
1. Dynamic programming [Bell, 1950]
2. Branch and bound algorithms [Land & Doig, 1960]
3. Lagrangian relaxation [Muckstadt & Koenig, 1977; Bertsekas, 1983]

4. Bender's decomposition [Bender, 1962]
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Branch and bound method

Smart way to enumerate possible solutions; widely used in discrete optimization

1. Find lower and upper bounds (¢,u) on f*
2. Problem with all binary constraints relaxed to box cons. added in queue
3. Solve the next problem in the queue to get (ﬁ,f)

4. If % is binary and f < u, UPDATE X < % and u < f
5. If X is non-binary, then
5.1 If £ < f < w, then
BRANCH: pick a variable with non-binary value &; and add two problems in
the queue, one with constraint z; = 0 and the other with z; =1
52 If f>u (including infeasibility with f= 00), then

CUT this branch since the solution cannot be improved
6. If queue is empty, output minimizer X; else go to Step 3.

There exists variations where ¢ progressively increases
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Example on branch and bound method

2
min ZUiCOi + a; P + %Pf

{Pjui}2_, P
s.to P1 + P> =300
0< P, <u P™, i=1,2

u; € {0,1}, i =1,2

Problem Py Py o fio f ’ u %
u1,uz € [0,1] 236.1 639 059 021 8019 | 8,019 +00 -
u1 = 0,uz € [0,1] 0 300 1 12,200 | 8,019 12,200 store

up =1,u2 =0 300 0 0 8,350 | 8,059 8,350 store
up = 1luz =1 233 67 1 8,217 | 8,059 8,217 store

0

up = 1,uz € [0,1] | 237.8 62.2 1 021 8,059 | 8,059 12,200 branch
1
1
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Dynamic programming method

Multi-stage problems (continuous/discrete) with a recursive structure

ci(xy, uy) eN-1 Cfv
Ty [, ) T2 TN-1(, ZN [ | TN+1
—_— 1 —, == —)fN1—> v —= N
U UN_1 U

Stages: indexed by n=1,..., N

States: x,, (discrete or continuous)

e Decision: u,, € U,(z,) (actions, controls, opt. variables)

e Dynamic system: z,411 = fn(Zn,un) forn=1,...,N

o Per-stage cost: ¢, (zn,un) forn=1,..., N, and final cost cy+1(Tn+1)

Lecture 6 V. Kekatos 11



Problems solved with dynamic programming

Given state recursion, per-state costs and constraints, minimize the total cost

N
J*(xl) = ?211% Z Cn(xnvun) + CN+1($N+1)
" n=1
840 Znt1 = fu(Tn,un), Vn (dynamic system)
Un € Un(zn), VN (control options)

DP widely used in a variety of applications:
e optimal (stochastic) control
e financial applications

e Kalman filter and hidden Markov models (HMMs)

graph theory and networking problems

wireless communications (Viterbi algorithm)
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Optimality principle

Solving the tail problem after stage k for a state value z, is optimal regardless

how you reached xj,

S I -
Ty | X2 Ti || ) N | | TN+1
205 S SN R N g L.~

N
Ji(wk) = min Y ca(@n, un) + ens1(@n1)
{upd_, —k
840 Znt1 = fn(Tn,un), Yo =4k,...,N  (dynamic system)
Un € Un(zn), Vn=Fk,...,N (control options)
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Recursive solution

Jy(zn) =min en(zn, un) + ens1(@n+1)
N
Find last action un

sto zn+1 = fv(zNn,un)

un € Un(zN)

Jy_1(zn-1) = min eny—1(zNn_1,un—1) + INn(TN)
uN_1
Find UN—1

sto zn = fn(zN—1,uNn—-1)
un—1 € Un—1(zN-1)

il T

\
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Dynamic programming algorithm
1. Start with J]>§7+1("L.N+l) = cN+1(mN+1)
2. Go backwards: solve the previous stage for all possible values of state xj
Ji(zk) =min e (@r, uk) + Jipr (Trg1)
U
s.to Tk+1 = fk(:ck,uk)

ur € U (l‘k)
or equivalently

Ji(wg) = min  cg(zk, ur) + Jigpr (fr(zr, ur))
ug
s.to ur € Ui (zk)

until you reach the initial state z;
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Finite-state problems

Number of possible states per stage is discrete

Terminal Arcs
with Cost Equal
to Terminal Cost

'Artificial Terminal

Initial State Node

s

Stage 0 Stage 1 Stage 2 - - - StageN-1 Stage N

e nodes correspond to state values; arcs correspond to actions

° cfj: transitioning cost from state ¢ to j at stage k, i.e., ck(Tr = 4, uisj)

o ¢ cost of terminating at state z;

e minimum-cost path yields optimal cost and actions
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Shortest path problem

In a graph with weighted edges and N nodes, find the shortest paths from any

node to a destination node d

Destination 5

e State: the node you are at time n {1,2,3,4,5}
e Decision cost: ¢ moving from one node to another (edge weight)
e Cost J(4): minimum cost for moving from i to d within N — k steps

e Stages: N since within N steps you can reach d from any node
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Solving a simple UC problem with DP

Start-up costs s;(0, 1); shut-down costs s;(1,0); and s;(0,0) = s;(1,1) =0

T 2
. t t t t
(P 2 2 MO+ sl
@it =1 4=1
Z?:lpit:Dt7Vt .
s.to control options

wiPMn < PE<utpPrmex of € {0,1}, Vit

t+1 t .
it = dynamic system!

Stages: time periodst =1,...,T

States: three possible configurations {(0, 1), (1,0), (1,1)} per stage ¢
e Actions: (uf, P}) fori=1,2
e Termination cost: no cost for being online or offline at time 7"+ 1

o J;(x}): minimal total cost from ¢ to T if starting with configuration ;
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Summarizing
Consider N = 6 units to be dispatched over T' = 24 hours for the next day
Exhaustive search: entails solving 27 = 2.2 - 10*3 ED problems!

Branch-and-bound method: avoids solving entire “sub-trees” of ED problems
e finds optimal solution, but not in deterministic time
e complexity depends on (¢, u) and order of visiting UC cases in the queue

e tight initial (¢,u) can reduce complexity significantly

Dynamic programming: exploits recursive structure to check fewer UC cases
e entails solving 2 x T' = 1, 536 single-period UC problems
o each smaller UC involves 2V ED problems, or can be solved with B&B

o DP still suffers from combinatorial complexity in N
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Lagrangian relaxation

Consider the single-period UC problem

N
min gy, 2 iR

N
s.to ZP,- =D
i=1

where S; = {(P;,w:) 1 us PP < Py < wi PP u; € {0,1}}

{(P;

Lagrangian function: L({(P;,u;)}; \) = Zfil (Ci(Pys,us) — AP;) + AD
e separable over generators

e for fixed ), it can be minimized independently per generator i
min _ C;(P;,u;) — AP;

(P;,u;)€ES;
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Updating the dual variable

Dual function: g(\) = ming(p, u;yes} Sony (Ci(Pi,ui) — AP;) + AD

e find A* by maximizing g()), which is always a concave function

e minimize Lagrangian function separately per generator i for \*

(Pi(A%), wi(\F)) = arg pmin Ci(Pui) —A*P Vi

two easy problems: one for u; = 0 and one for u; = 1
e power imbalance D — Zi\;l P;(\F) serves as sort of gradient of g(\*)

e update dual variable through dual ascent and iterate

N
AR R tu (D_Zpi()\k)>
i=1
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Lagrangian relaxation for multi-period UC

N T
min > CiPu)

{(Pful)}eeS;i}s P —

N
sto Y P/=D'Vt — A=\ AT

=1

e minimize Lagrangian per unit i for A* and over the entire horizon

PYOR), uf AW, = ar min Ct Pf,ul —2plovi
{PF(A), wi(A) Yema g{Pf t)}tesltzl t

this problem is solved via DP with only two states u} € {0, 1} per stage!

e update dual variables through dual ascent and iterate

N
ANt — Nk <Dt - ij()d“)) vt
i=1
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Comments on Lagrangian relaxation

e subgradient iterations for dual problem converge for diminishing step size
e a.k.a. dual decomposition if primal is convex

e not optimal for UC due to non-convexity

e LR output may be infeasible (power balance not precisely satisfied)

e relative duality gap 2 d_*d decreases with increasing N

e LR can be used to initialize a branch-and-bound scheme or it can be

heuristically adjusted to yield feasibility

D. Bertsekas, G. Laurel, N. Sandell, T. Posbergh, “Optimal Short-Term Scheduling of Large-Scale
Power Systems,” IEEE Trans. on Automatic Control, Vol. 28, No. 1, Jan. 1983, pp. 1-11.
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