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Problem statement

e N power generation units
e serving a given load D
e P;: power output of unit ¢ [MW]

e C;(P;): operation cost [$/h]

Find the most economic dispatch (ED) of units

{Pi}ﬁvzl i=1

N
s.to z P,=D
i=1

J R Il S B T

Convex problem if C;(P;) are convex functions
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Cost functions and energy markets

min max
P Gi P Gi

e Typical options for cost functions (linear, quadratic, piecewise linear)

Who solves the economic dispatch?

Fuel-cost curves or market bids

Bilateral contracts and spot markets (2010)

Day-ahead and real-time markets
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Dispatch with linear costs

N
min E a; P;

{Pi}é\’:] i=1

N
s.to Z P,=D
i=1

PRt < P < PP =1, N

e solved as an LP or by simply sorting the cost coefficients

e uniqueness issues (case when az = ag of the example)

PPN [MW] PP MW a; [$/MW]
Example: Gl 0 100 20
G2 0 400 25
D = 350MW G3 0 100 22
G4 0 200 18
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Dispatch with convex piecewise-linear costs

The range [0, P;***] is divided into K blocks
Cost C;(P;) expressed as K; pairs: {(pik,ai,r) = (block size, price)}f:i1

e Any power in [0, p; 1] has incremental cost a;1 $/MW

e Any power in [p;1, pi 2] has incremental cost a;2 $/MW ...

Ci(Pg;)

slope = a; 1

max
pis = Fg;

Di1 Pi2 FPa,

Cost C;(FP;) is convex if prices are increasing (a1 < ... < ai,k;)
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Rewriting convex piecewise linear costs

Ci(Pg;) i

slope = a; 1

piz = Pg™

Pg,

Express each cost function as the pointwise maximum of linear functions:

() = iP5 + b
G = iy lon Pt buad

Q.5.1 Show that b; 1 = (as,k—1 — @4,k)Pik—1 + bik—1.

Lecture 5 V. Kekatos



Using the epigraph form

dispatch with convex piecewise-linear costs dispatch in epigraph form

N N
min max a; 1 P; + b; min t;
T 2 e (1% oo bk (Pt} ;

N
s.to ZP" =D
i=1

0< P <P™ Vi

s.to a;i kP + bk < ti, Vi, k

N
ZPi =D
=1

0< P, <P™ Vv
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An alternative formulation

e Introduce one variable per block

K;
P = Z P; i
k=1

e Let Pio = 0 and PiK; = Pimax

mm ZZal Pk

i=1 k=1

s.to ZZZPM =D

i=1 k=1

0< Pir <pik —Pik—1, Vi, k

e At the optimum: P/, = pir — pix—1 if Pl >0
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Comparing the two formulations

Epigraph form Form with one variable per block

N N K;
min E ti min E E ai7kP7;7k
i=1 i=1 k=1

sto ai kP + bk <t Vi k N K

s.to Z P,,=D
N i=1 k=1
Sp-p |
i=1 0< P x <pir —pijk—1 Vik
0P <PVi
_ N
variables: 2V variables: z:lKi
=
equality constraints: 1 equality constraints: 1
N ] . _ N
inequality constraints: > K; + 2N inequality constraints: 2 21 K;
i=1 i=

solved by simply sorting prices
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Dispatch with convex quadratic costs

N
min Z(aiPi + ciP,?)

{P}N

N
s.to ZPi =D
i=1

i=1

PR < p< PR =L

e convex quadratic costs ¢; > 0 [$/(MW)?]
e solved as a quadratic program (QP)

® NO uniqueness issues
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Lagrangian function

For general (strictly) convex and differentiable C;(F;)

Introduce Lagrange multipliers:

N
min C;i(P;
(P}, ;
N
sto Y Pi=D — A

PRSP PP =1, N — {(p, )}

Lagrangian function

Z - (Z P — D)
Z (P — P)) + Z 1, (P, — P)
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Optimality conditions

Fori=1,...,N,
1. N Pf=D; PM»<pr<pme
24720, ;>0
3. Ci(P) =\ — [ + ]

4o (PP —PY)=0; (P = P) =0

Conditions 3 and 4 can be equivalently written as

A*, if Pimin < Pi* < Pimax
CiPT) = QN +p, if PF = prie

)\* _ ﬁ:, If P;k — Pitnax
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Optimality conditions simplified

Because H:,ﬁf > 0, optimality conditions become

N
L. Y P =D
=1

C;(Pz*) — )\*’ if Pimin < Pi* < Pimax
20 QP =N, if P =P

CUPF) < A", if Pf = P/

e Any Pg,,..., P&, , \" satisfying the above conditions will be optimal
e Ci(P;) is the marginal or incremental cost for unit i
e Optimal dispatch when all units not operating at their limits have the

same incremental cost
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Solving economic dispatch

e Strict convexity implies that C;(P;) is increasing in P;

e Define the increasing function f; = (C})™!

e Given a ), the {Pi}fvzl satisfying condition 2" are expressed as

fi (>\)7 if C{(Pimi“) <A< CZ{(PiIIlaX)
PZ(A) = lpz_min7

if X <GP
PR if A > Ci(P)

e Goal: find \* such that {P;}, satisfy condition 1 (power balance) too

e Pi(\) and 32, P;(\) — D are increasing in A

e Bisection on A until | "N | Pi(\) — D| < e (tolerance)
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A-iteration or bisection method

Given tolerance € > 0, start with A and X so that A < \* < \

for example: A = min; C/(P/™™) and X = max; C}(P™*).

1. Set A=A+ ))/2
2. Find P;()) for all i as follows
2.1 If Ci(Pmin) > X, set P;(\) = Pmin
2.2 If CL(PMax) < X, set Pi(A\) = P/
2.3 Otherwise, set P;()) as the solution to C/(P;) = A

3. If vazl P;(A\) =D > ¢, set X:= )\ and go to Step 1
4. If vazl Pi(A\) — D < —¢, set A := X and go to Step 1

5. Else {P;(\)}/, is the solution within the specified tolerance
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Graphical illustration

tIC
1C, IC;
/ I }\‘A
L 7bB
I

A-iteration method for two generators with quadratic costs
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A-iteration with convex piecewise linear costs

Convex piecewise linear C;(P;) is non-differentiable

KKT conditions with constraints P/'" < P; < P/™** kept implicit

N N
Lagrangian function : L(P1,...,Px,A) = Y Ci(P,) — A (Z P, — D)
=1 =1

Optimality conditions:

N
L. Y P'=D
=1

2. P €arg  min {Ci(P) = X"P} Vi
pmin<p, < pmax

Step 2 of A-iteration now becomes

~ min {Ci(P;) — AP}
pmin< p, < pmax
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Economic interpretation

Optimality conditions with general costs

N
1. Y P'=D
i=1

pmin< p. < pmax
i STs

Interpret multiplier A [$/MW] as the price at which unit ¢ will be compensated
for producing P, MW

Given A, unit i chooses P; so its net cost C;(P;) — AP; is minimized

(net revenue maximized)

Optimal multiplier A* maximizes the total net revenue
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Sensitivity interpretation

N
C(D) = min Ci(P;
@) {ppin<p<ppaxilN ; )
N
s.to ZR::D — A
=1

Cost of generation as a function of demand D is a perturbation function!

If the problem is convex, then function C(D) is convex

If C(D) is differentiable and strong duality holds, then C’'(D) = A\*(D)

Marginal price \*: extra price one would pay for slight increase in demand
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Participation factors

Consider an optimal dispatch P and a small load variation AD

Assume new dispatch does not alter which units are at P/™® or Pax

current ED perturbed ED
> p=D > AP, =AD
A=Ci(P) AN = C{ (P)AP;

Participation factors: How much each unit contributes to serve the new load?

AP, ANCI(P)  1/CY(P)
AD L ANCH(P:) X, 1/Cl(Pr)

constant for quadratic costs

€(0,1)

Used for fast generation in response to load variation P = P; + f;’” AD
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Elastic demand

Elastic demand is characterized by its utility function U;(D;) [$/h]:
the benefit by consuming D; MW for 1h

Jj=1

min ZCZ(P»L)—ZU](DJ)

{Pi}L, AD; L,
N M

s.to ZPi = Z D;
i=1 j=1

PRt < P PP i =1,...,N

D™ < D; <D™ j=1,...,M

e demand bids U;(D;) are submitted by utilities, load serving entities,

aggregators, or industrial costumers

e convex problem for concave U;(D;)’s (diminishing returns or buy in bulk)
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Transmission losses

Accounting for losses on transmission lines (3-5%):

min Z Ci(F)

{P}N P

s.to ZP Poss(p — A
PRt p< PP i=1,...,N

where p := [Py ... Pn]' captures generation and (fixed or elastic) demand

e Losses Poss(p) is a non-linear function of p (non-convex problem)
e In the past, modeled as quadratic functions: Pos(p) =p Bp+c¢'p

e Now typically calculated by (successive) linearization of power flow
equations or via the optimal power flow problem

Lecture 5 V. Kekatos

22



Penalty factors

Lagrangian function (non-convex problem; KKT conditions are only necessary)

N N

N N
L = ZC'L(PL)_)\ (Z P; — Hoss(p)) +ZHZ‘(Pimin_Pi)+2ﬁi(Pi_Pimax)
i=1 i=1

i=1 =1

Optimality conditions simplified:
N
1. ZP’L* = Ross(p*)
i=1

*) — \* 9 Pioss(P)
ClPF) = A (17 lea(P

) , if Pimin < P’L* < Pimax
p=p~

, if Pf =prin

) , |f Pi* — Pl_rnax

! * * O Ploss
2! doupr) > (1— 2e)|

ci(Pr) < x° (1 - e

Marginal costs: f;C}(P;") for penalty factors f;= (1— 31’5,%1%(1))

-1
pzp*)
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Solving economic dispatch with losses

Solve economic dispatch ignoring losses to get initial dispatch p°

At iteration t =0,1,..., do

1. Calculate Poss(p’) and f} := (1 — %

-1
1) fori=1,...,N
pt

2. Find p'*! via A-iteration with costs {ffC,}l and Zf\;l P, = Ploss(pt)

3. If |p™™ — p’||2 < ¢ stop; otherwise go to Step 1

e heuristic manner to account for losses

e how to compute V Poss(p)?
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Computing penalty factors

Active power injections are not independent (swing bus 1 makes up for losses)

p= plfp) eRY

p
Active power losses: Pss(p) = p'ly = p1(P) + P ln_1
Interest in finding Vp Poss(p) (assume 3135%;(?) =0)

Gradient vector for losses: Vi Poss(P) = 1+ Vpi1(D)

Resort to power flow equations to find Vp1(p)
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Finding Vp1(p) from power flow equations

power flow equations (dependence on voltage magnitudes has been ignored)

= f1(0)
p =1(0)
where @ := [0 --- O] is the vector of voltage phases (61 = 0)
Jacobian matrix: 6‘29 = afgé") =J(0) e RIV-Dx(N-1)

Jacobian matrix of inverse function: under technical conditions

20 oty 1 (p) N — _ _
200) — S B) — [3(6(p))] ! € RIVDX(VD

Gradient vector:

Vi Ros(B) = 1+ (252)) Vo fi(6) = 1+ [3(3)]Vosi(6)
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