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Lagrangian function

primal problem: any problem in standard form (convexity not assumed yet)

p∗ = min
x

f0(x)

s.to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

Lagrangian function: L : Rn+m+p → R

L(x,λ,ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

• λi, νi: Lagrange multipliers or dual variables

• objective augmented with weighted sum of constraint functions
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Dual function

Dual function: g : Rm+p → R

g(λ,ν) = min
x
L(x,λ,ν) = min

x
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

• can be −∞ for some (λ,ν)

• g is concave even for nonconvex fi(x) or hi(x)! [Why?]

Example: LP
min
x

c>x

s.to Gx ≤ h

Ax = b

Lagrangian function: L(x,λ,ν) = (c+G>λ+A>ν)>x− λ>h− ν>b

Dual function: g(λ,ν) =

 −λ
>h− ν>b , c+G>λ+A>ν = 0

−∞ , otherwise
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Lower bound property (weak duality)

if λ � 0 and x is primal feasible, then

g(λ,ν) ≤ f0(x)

Proof: if fi(x) ≤ 0, hi(x) = 0, and λ � 0,

g(λ,ν) = min
y
f0(y)+

m∑
i=1

λifi(y)+

p∑
i=1

νihi(y) ≤ f0(x)+
m∑
i=1

λifi(x) ≤ f0(x)

Duality gap between primal feasible x and dual feasible (λ � 0,ν),

g(λ,ν) ≤ p∗

dual feasible points yield lower bounds on optimal value!
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Dual problem

find the best lower bound on p∗:

d∗ = max
λ,ν

g(λ,ν)

s.to λ � 0

• dual problem associated with primal problem

• always convex problem even for nonconvex primal

• weak duality: d∗ ≤ p∗

• p∗ − d∗ is optimal duality gap
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Strong duality

• for convex problems, we (usually) have strong duality

d∗ = p∗

• then (λ∗,ν∗) serves as certificate of optimality for primal optimal x∗

• many conditions or constraint qualifications guarantee strong duality for

convex problems

• Slater’s condition: if primal problem is convex and strictly feasible

fi(x) < 0, i = 1, . . . ,m, Ax = b

(fi(x) ≤ 0 is allowed for affine inequality constraints), then d∗ = p∗
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Dual of linear program

primal LP: n variables, m inequality and p equality constraints

min
x

c>x

s.to Gx ≤ h

Ax = b

dual of LP is LP! max
λ,ν

− λ>h− ν>b

s.to c+G>λ+A>ν = 0

λ � 0

• (m+ p) variables, n equality and m nonnegativity constraints

• What happens when primal problem is unbounded below?

• strong duality holds always in LP, unless p∗ = +∞ and d∗ = −∞
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Dual of quadratic program

primal QP: assume P � 0 for simplicity

min
x

x>Px

s.to Ax ≤ b

Lagrangian function: x>Px+ λ>(Ax− b)

• setting ∇xL(x,λ) = 0, yields x = − 1
2
P−1A>λ

Dual function: g(λ) = − 1
4
λ>AP−1A>λ− b>λ

• concave quadratic; all λ � 0 are dual feasible

dual of QP is QP!: max {g(λ) : λ � 0}
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Complementary slackness

suppose x∗,λ∗,ν∗ are primal dual feasible with zero duality gap

(hence, they are primal and dual optimal)

f0(x
∗) = g(λ∗,ν∗) = min

y
f0(y) +

m∑
i=1

λ∗i fi(y) +

p∑
i=1

ν∗i hi(y)

≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) ≤ f0(x∗)

Complementary slackness condition:

m∑
i=1

λ∗i fi(x
∗) = 0 =⇒ λ∗i fi(x

∗) = 0, i = 1, . . . ,m

• if i-th constraint inactive at optimum, then λ∗i = 0

• if λ∗i > 0 at optimum, then i-th constraint active at optimum
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Lagrangian optimality

Suppose

• fi and hi are differentiable

• x∗,λ∗,ν∗ are primal-dual optimal with zero duality gap

due to complementary slackness:

L(x∗,λ∗,ν∗) = min
y
L(y,λ∗,ν∗)

i.e., x∗ minimizes L(x,λ∗,ν∗); therefore ∇xL(x
∗,λ∗,ν∗) = 0

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i∇hi(x
∗) = 0
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Karush-Kuhn-Tucker optimality conditions

For differentiable functions, if x∗,λ∗,ν∗ are primal-dual optimal with zero

duality gap, then they satisfy the KKT conditions:

1. Primal feasibility: fi(x
∗) ≤ 0, hi(x

∗) = 0

2. Dual feasibility: λ∗ � 0

3. Lagrangian optimality:

∇f0(x∗) +
∑m

i=1 λ
∗
i∇fi(x∗) +

∑p
i=1 ν

∗
i∇hi(x

∗) = 0

4. Complementary slackness: λ∗i fi(x
∗) = 0

Conversely: for convex problems, if x∗,λ∗,ν∗ satisfy the KKT conditions,

then they are primal-dual optimal and strong duality holds
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Examples

Minimization over the nonnegative orthant: min {f0(x) : x � 0}

1. x∗ � 0

2. λ∗ � 0

3. ∇f0(x∗)− λ∗ = 0

4. x∗i λ
∗
i = 0

1′. x∗ � 0

2′. ∇f0(x∗) � 0

3′. x∗i [∇f0(x∗)]i = 0

Minimization with equality constraints: min {f0(x) : Ax = b}

∇f0(x∗) +A>ν∗ = 0

Ax∗ = b

Q.4.1 Apply this for the quadratic cost f0(x) = x>x.
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Implicit constraints

primal problem: (no convexity or differentiability assumptions)

p∗ = min f0(x)

s.to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

x ∈ X ,

implicit constraints x ∈ X (we decide which constraints are kept implicit)

dual function: Lagrangian function is now minimized over X

g(λ,ν) = min
x∈X

L(x,λ,ν) = min
x∈X

{
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

}
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KKT optimality conditions (general form)

if x∗,λ∗,ν∗ are primal-dual optimal with zero duality gap, then they satisfy:

1. Primal feasibility: fi(x
∗) ≤ 0, hi(x

∗) = 0, x∗ ∈ X

2. Dual feasibility: λ∗ � 0

3. Lagrangian optimality: (includes X , no assumptions on differentiability)

x∗ = argmin
x∈X

f0(x) +
∑
i

λ∗i fi(x) +
∑
i

ν∗i hi(x)

4. Complementary slackness: λ∗i fi(x
∗) = 0

Conversely: for convex problems, if x∗,λ∗,ν∗ satisfy the above conditions,

then they are (primal,dual) optimal and strong duality holds
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Perturbation and sensitivity analysis

Perturbation function of an optimization problem

p(u) = min
x

f0(x)

s.to fi(x) ≤ ui, i = 1, . . . ,m

Claim 1: If the problem is convex wrt x, then p(u) is a convex function

Claim 2: If p(u) is differentiable at u0 and strong duality holds, then

∂p(u)

∂ui

∣∣∣∣
u=u0

= −λ∗i

where λ∗i is the optimal Lagrange multiplier for the i-th constraint
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