ECE 5314: Power System Operation & Control

Lecture 4: Lagrangian Duality

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 5.1-5.6.
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Lagrangian function

primal problem: any problem in standard form (convexity not assumed yet)
p’=min  fo(x)
sto fi(x) <0, i=1,...,m

hi(x)=0, i=1,...,p

Lagrangian function: L : R"™™™? 4 R
P
L(x, A\, v) = +Z>\ fi(%) + ) vihi(x)
i=1

e \;,v;: Lagrange multipliers or dual variables

e objective augmented with weighted sum of constraint functions

Lecture 4 V. Kekatos



Dual function

Dual function: g : R™"? - R

x

m P
g(A,v) = min L(x, A, v) = min fo(x) + Z Aifi(x) + Z vihi(x)
i=1 i=1
e can be —oo for some (A, v)
e g is concave even for nonconvex f;(x) or h;(x)! [Why?]

Example: LP

. T

min ¢ x

sto Gx<h
Ax=Db

Lagrangian function: L(x,\,v) = (c+ G A+ A v)'x—A"Th—v'b

) ATh—v™b ,c+G"A+ATv=0
Dual function: g(A,v) =
—00 , otherwise
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Lower bound property (weak duality)
if A > 0 and x is primal feasible, then
g(Av V) S fO(X)

Proof: if f;(x) <0, hi(x) =0, and A = 0,

g(Av) = min foly) + Y Aifily +Zv2 (¥) < folx +ZAfz ) < folx)
=1

Duality gap between primal feasible x and dual feasible (A > 0, v),
g\ wv) <p

dual feasible points yield lower bounds on optimal value!
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Dual problem

find the best lower bound on p*:

d = max g(A,v)

)

stoA >0

dual problem associated with primal problem

e always convex problem even for nonconvex primal

weak duality: d* < p*

e p* — d* is optimal duality gap
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Strong duality

e for convex problems, we (usually) have strong duality
d"=p

e then (A*,v") serves as certificate of optimality for primal optimal x*

e many conditions or constraint qualifications guarantee strong duality for

convex problems

Slater’s condition: if primal problem is convex and strictly feasible
filx)<0, ¢=1,...,m, Ax=Db

(fi(x) < 0is allowed for affine inequality constraints), then d* =p
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Dual of linear program
primal LP: n variables, m inequality and p equality constraints

. T
mim cC X
x

sto Gx<h

Ax=D

dual of LP is LP! max — A h—v'b

Av
sto c+G"A+ATv=0

A>0

e (m+ p) variables, n equality and m nonnegativity constraints
e What happens when primal problem is unbounded below?

e strong duality holds always in LP, unless p* = 400 and d* = —oc0
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Dual of quadratic program
primal QP: assume P > 0 for simplicity
min x'Px

sto Ax<b

Lagrangian function: x"Px 4+ AT (Ax — b)

o setting VxL(x,A) =0, yields x = —1P"'ATX

Dual function:  g(A) = —iATAP 'ATA-b'A

e concave quadratic; all A > 0 are dual feasible

dual of QP is QP!: max {g(A) : A = 0}
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Complementary slackness

suppose x*, A", v* are primal dual feasible with zero duality gap

(hence, they are primal and dual optimal)
m p

fo(x") = g\, w") =min fo(y) + > Al fily) +>_vihi(y)
i=1 i=1

< fo(x +Z)\ fi(x") < fo(x")

Complementary slackness condition:
SANf(x) =0 = Nfi(x)=0,i=1...,m

e if i-th constraint inactive at optimum, then \] =

o if A\j > 0 at optimum, then i-th constraint active at optimum
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Lagrangian optimality

Suppose
e f; and h; are differentiable

o X" A" v* are primal-dual optimal with zero duality gap

due to complementary slackness:

L(x*,A\",v") = min L(y, A", V")
y

i.e., x* minimizes L(x, A*,v"); therefore Vi L(x*, A", ") =0

V fo(x +ZA Vfi(x +Zu Vhi(
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Karush-Kuhn-Tucker optimality conditions

For differentiable functions, if x*, A*, v* are primal-dual optimal with zero

duality gap, then they satisfy the KKT conditions:

1. Primal feasibility: f;(x*) <0, hi(x*) =0
2. Dual feasibility: A* =0

3. Lagrangian optimality:
Vfo(x") + 20 MV Fi(x") + 220, vi Vhi(x") = 0

4. Complementary slackness: Aj f;(x*) =0

Conversely: for convex problems, if x*, A v* satisfy the KKT conditions,

then they are primal-dual optimal and strong duality holds
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Examples

Minimization over the nonnegative orthant: min {fo(x) : x = 0}

1.x*>0

2.2 >0 1.x*>=0

3. Vfo(x) —A"=0 2. Vfo(x*) = 0

4o ai N = 3.z [Vfo(x*)])i =0

Minimization with equality constraints: min {fo(x) : Ax = b}
Vi(x")+ATv* =0

Ax*=b

Q.4.1 Apply this for the quadratic cost fo(x) = x ' x.
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Implicit constraints
primal problem: (no convexity or differentiability assumptions)

p* =min fo(x)
sto fi(x) <0, i=1,...,m
hi(X)IO, izl,...,p

X € X,

implicit constraints x € X’ (we decide which constraints are kept implicit)

dual function: Lagrangian function is now minimized over X

9(A,v) = min L(x, A, ) = min {fO(X) + Zl Aifi(x) + Zl Vz‘hi(x)}

Lecture 4 V. Kekatos



KKT optimality conditions (general form)

if x*, A*, ™ are primal-dual optimal with zero duality gap, then they satisfy:
1. Primal feasibility: f;(x*) <0, hi(x*) =0, x" € X
2. Dual feasibility: A* = 0

3. Lagrangian optimality: (includes X', no assumptions on differentiability)
x* = arg )1(11615 fo(x) + Z A; fi(x) + Z v; hi(x)

4. Complementary slackness: Aj f;(z*) =0

Conversely: for convex problems, if x*, A* ™ satisfy the above conditions,

then they are (primal,dual) optimal and strong duality holds
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Perturbation and sensitivity analysis
Perturbation function of an optimization problem

p(u) = minfo(x)

sto fix)<w;y, i=1,...,m

Claim 1: If the problem is convex wrt x, then p(u) is a convex function

Claim 2: If p(u) is differentiable at ug and strong duality holds, then

Ip(u)
Bui

=\

u=ug

where A} is the optimal Lagrange multiplier for the i-th constraint
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