ECE 5314: Power System Operation & Control

Lecture 3: Convex Optimization Problems

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 4.1-4.4.
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Optimization problem in standard form

rnxin fo(x)

sto fi(x) <0, i=1,.

..,m
hi(x):(), iZl,...,p

feasible set: the set of feasible points

optimal value: f* = infxcx fo(x) [Why inf and not simply min?]
e f* = —oo (unbounded problem)

e f* = 400 (infeasible problem)

optimal point: a feasible point x attaining the optimum f(x) = f*

optimal set: the set of optimal points
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Feasibility problem

can be considered an optimization problem with fy(x) = 0:
min 0
sto fi(x) <0, i=1,....,m

hi(x)=0, i=1,...,p

either find x € X (f* = 0); or determine that X =0 (f* = c0)
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Convex optimization problem

Convex optimization problem in standard form:

min  fo(x)

sto fi(x) <0, i=1,...

T .
a,x=0b, i1=1,...

1. fo, f1,..., fm are convex

P

2. equality constraints are affine (alternatively Ax = b)

Q.3.1 Show that the feasible set is convex.
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Locally and globally optimal solutions

Consider problem minxex fo(x)

Definitions:

e x € X is locally optimal if there exists an R > 0 such that
forally € X with [y —x[| <R = fo(x) < fo(y)
e x € X is optimal (or simply optimal) if
forally ¢ X = fo(x) < fo(y)

Important properties:
1. For convex problems, any local solution is also global
2. If additionally fo(x) is strictly convex, there is at most one minimum

3. The optimal set Xpt is convex
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An optimality criterion

Consider problem minxec fo(x) with differentiable fo and convex C

contour lines of fq

Condition:

e |f x is a local minimum, then

fo(z)
Vio(x) (y —x)>0forally e C

e The condition becomes sufficient

when fo is convex

Figure: Source [R3]

Unconstrained problem (C' = R"): x is optimal iff V fo(x) = 0
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Epigraph trick

min - fo(x) mip ¢t
sto fi(x) <0, i=1,...,m sto fo(x) <t
hi(x)=0, i=1,...,p fi(x) <0,
hi(x) =0,

The variables in second problem are (x,t)

Convexity is preserved
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Restriction and relaxation

original problem new problem
f*=min fo(x) = min - fo(x)
sto xe sto xeC

The new problem is a
o relaxation of original if C C C, then f* < f*

o restriction of original if C C C, then f* > f*

Example: If fo(x) is convex and C' is nonconvex, set C' = conv(C) to get a

convex problem and a lower bound for the original nonconvex problem
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Linear program (LP)

Linear cost; feasible set is a polyhedron

T

min ¢ X -
sto Gx=<h
Ax=Db

standard form: widely used in LP literature and software (MATLAB, Sedumi)
. T
min ¢ x
sto Ax=Db

x>0

Lecture 3 V. Kekatos



Converting LP to standard form

Inequality constraints: transform linear inequalities as
Gx+s=h and s>0

new vector s is called a slack variable

Unconstrained variables: decompose variable as
x=x"—-x" and xT,x >0

Problem in standard form

. T. + T —
mm € X —C X

sto GxT—Gx +s=h
AxT —Ax  =b

x+>0, x »=0,s>0
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Piecewise-linear minimization
max; (csz +d;)

min  max (¢; x +di)

x i=1,...,

sto Ax=<b

use epigraph trick to express problem as an LP

s.to c;rx—&—digt, i=1,..., K

Ax<b
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Minimizing a quadratic function
Convex problem iff P > 0
mxin fx) = x Px + 2qTx +r
nonconvex case (P % 0): unbounded below
proof: choose x = tv and t — oo, where Pv = Av for A < 0
convex case (P = 0): x is optimal if and only if
Vfx)=2Px+29=0

*

e q € range(P): x* = —P'q is a minimizer and f* =r — q' Piq
special case P ~ 0: the unique minimizer (PT = P~1)

e q ¢ range(P): unbounded below [Why?]
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Least squares fit

Minimize (squared) Euclidean norm with A € RM*¥

min |[Ax—b|3=x"ATAx—2b"Ax+b'b

Q.3.2 Show that the Hessian is psd, so the problem is convex

Geometrically: project b on range(A)

Minimizer: set gradient equal to zero to get the normal equations

ATAx=A"b

e system is always solvable since ATb € range(ATA)

e if rank(A) = N, unique LS solution x;c = (ATA)"!ATb
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Quadratic program (QP)

min x' Px+ 2qTx +r

sto Gx<h, Ax=b

Figure: Source [R3]

e quadratic objective, linear constraints (inequalities and equalities)
e convex problem if P > 0

o NP-hard problem if P % 0
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QCQP and SOCP
quadratically constrained quadratic program (QCQP):

min x ' Pox + QqOTx + 70
s.to xTPZ—x—|—2qZ~Tx+m <0, 2=1,...,m

convex if P; > 0 for i =0,1,...,m; NP-hard in general, otherwise

second-order cone programs (SOCP):
min f'x

s.to ||Aix + bsll2 Sc;rx—&—di7 i=1,...,m
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Robust linear program

LP with uncertain parameters: a; € & = {a; + P;u: |luljz <1}
T
min ¢ x
X
s.to a;rxgbi foralla; €&, i=1,...,m

Robust LP has infinitely many constraints...

Key point: alx<bVa €& < Ina.X“u”le{ﬁZTX—F uTPiTx} < b;

. T
Robust LP becomes SOCP! mn-¢ox

sto & x+||Pix|2 <bi;, i=1,...
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Semidefinite program (SDP)
Semidefinite program in standard form (symmetric A; with i =0,...,p)
min Tr(AoX)
X

sto Tr(A;X)=10b;, i=1,...,p

X =0
LMI constraint is convex
LT
SDP in inequality form min ¢ x

sto x1A1+ ...+, An X A

Although LMIs correspond to a set of polynomial inequalities, they can be

handled efficiently by modern solvers
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Maximum eigenvalue minimization

mgn Amax (A ()

where A(x) = Ao+ z1A1+ ... + TmAm, A; €S”

problem can be cast as an SDP:
min ¢t
x,t

sto A(x) <XtI

Lecture 3 V. Kekatos 18



Conic problem hierarchy

Model generality: LP < QP < QCQP < SOCP < SDP

Solution efficiency: LP > QP > QCQP > SOCP > SDP

Q.3.3 Show that that LP C QP € QCQP c SOCP c SDP

where symbol C means ‘“special case of”.

Example: an SOCP constraint can be expressed as SDP constraint as

(c"x+dI Ax+b

[Ax+blla<c'x+d <
(Ax+b)T c"x+d

Hint: the above follows from property of Schur’'s complement
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