ECE 5314: Power System Operation & Control

Lecture 3: Convex Optimization Problems

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 4.1-4.4.

Optimization problem in standard form

$$\begin{split} \min_{\mathbf{x}} & f_0(\mathbf{x}) \\ \text{s.to} & f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m \\ & h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p \end{split}$$

feasible set: the set of feasible points

optimal value: $f^* = \inf_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$ [Why inf and not simply min?]

- $f^{\star} = -\infty$ (unbounded problem)
- $f^{\star} = +\infty$ (infeasible problem)

optimal point: a *feasible* point \mathbf{x} attaining the optimum $f(\mathbf{x}) = f^*$ optimal set: the set of optimal points

Feasibility problem

find ${\bf x}$

s.to
$$f_i(\mathbf{x}) \le 0, \quad i = 1, ..., m$$

 $h_i(\mathbf{x}) = 0, \quad i = 1, ..., p$

can be considered an optimization problem with $f_0(\mathbf{x}) = 0$:

$$\min_{\mathbf{x}} \quad 0$$
s.to $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m$
 $h_i(\mathbf{x}) = 0, \quad i = 1, \dots, p$

either find $\mathbf{x}\in\mathcal{X}~(f^{\star}=0);$ or determine that $\mathcal{X}=\emptyset~(f^{\star}=\infty)$

Lecture 3

Convex optimization problem in standard form:

$$\begin{split} \min_{\mathbf{x}} & f_0(\mathbf{x}) \\ \text{s.to} & f_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & \mathbf{a}_i^\top \mathbf{x} = b_i, \quad i = 1, \dots, p \end{split}$$

1. f_0, f_1, \ldots, f_m are convex

- 2. equality constraints are affine (alternatively Ax = b)
- Q.3.1 Show that the feasible set is convex.

Locally and globally optimal solutions

Consider problem $\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$

Definitions:

• $\mathbf{x} \in \mathcal{X}$ is locally optimal if there exists an R > 0 such that

for all $\mathbf{y} \in \mathcal{X}$ with $\|\mathbf{y} - \mathbf{x}\| \leq R \implies f_0(\mathbf{x}) \leq f_0(\mathbf{y})$

• $\mathbf{x} \in \mathcal{X}$ is optimal (or simply optimal) if

for all
$$\mathbf{y} \in \mathcal{X} \implies f_0(\mathbf{x}) \leq f_0(\mathbf{y})$$

Important properties:

- 1. For convex problems, any local solution is also global
- 2. If additionally $f_0(\mathbf{x})$ is strictly convex, there is at most one minimum
- 3. The optimal set \mathcal{X}_{opt} is convex

An optimality criterion

Consider problem $\min_{\mathbf{x}\in C} f_0(\mathbf{x})$ with differentiable f_0 and convex C

Condition:

• If ${\bf x}$ is a local minimum, then

$$\nabla f_0(\mathbf{x})^{\top}(\mathbf{y}-\mathbf{x}) \ge 0$$
 for all $\mathbf{y} \in C$

• The condition becomes sufficient when f₀ is convex

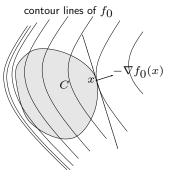


Figure: Source [R3]

Unconstrained problem ($C = \mathbb{R}^n$): x is optimal iff $\nabla f_0(\mathbf{x}) = \mathbf{0}$

Epigraph trick

$\min_{\mathbf{x}}$	$f_0(\mathbf{x})$		$\min_{\mathbf{x},t}$	t	
s.to	$f_i(\mathbf{x}) \le 0,$	$i=1,\ldots,m$	s.to	$f_0(\mathbf{x}) \le t$	
	$h_i(\mathbf{x}) = 0,$	$i=1,\ldots,p$		$f_i(\mathbf{x}) \leq 0,$	$i = 1, \dots, m$
				$h_i(\mathbf{x}) = 0,$	$i = 1, \ldots, p$

The variables in second problem are (\mathbf{x},t)

Convexity is preserved

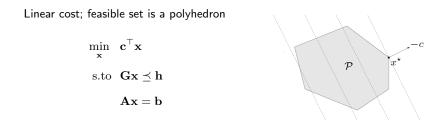
Restriction and relaxation

The new problem is a

- relaxation of original if $C \subseteq \tilde{C}$, then $\tilde{f}^* \leq f^*$
- restriction of original if $\tilde{C} \subseteq C$, then $\tilde{f}^* \ge f^*$

Example: If $f_0(\mathbf{x})$ is convex and C is nonconvex, set $\tilde{C} = \operatorname{conv}(C)$ to get a convex problem and a lower bound for the original nonconvex problem

Linear program (LP)



standard form: widely used in LP literature and software (MATLAB, Sedumi)

$$\begin{array}{ll} \min_{\mathbf{x}} \quad \mathbf{c}^{\top}\mathbf{x} \\ \text{s.to} \quad \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \succeq \mathbf{0} \end{array}$$

Converting LP to standard form

Inequality constraints: transform linear inequalities as

 $\mathbf{Gx} + \mathbf{s} = \mathbf{h}$ and $\mathbf{s} \succeq \mathbf{0}$

new vector ${\bf s}$ is called a *slack variable*

Unconstrained variables: decompose variable as

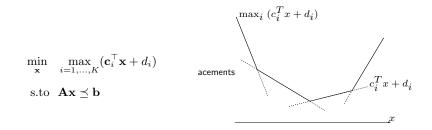
$$\mathbf{x} = \mathbf{x}^+ - \mathbf{x}^-$$
 and $\mathbf{x}^+, \mathbf{x}^- \succeq \mathbf{0}$

Problem in standard form

min
$$\mathbf{c}^{\top}\mathbf{x}^{+} - \mathbf{c}^{\top}\mathbf{x}^{-}$$

s.to $\mathbf{G}\mathbf{x}^{+} - \mathbf{G}\mathbf{x}^{-} + \mathbf{s} = \mathbf{h}$
 $\mathbf{A}\mathbf{x}^{+} - \mathbf{A}\mathbf{x}^{-} = \mathbf{b}$
 $\mathbf{x}^{+} \succeq \mathbf{0}, \ \mathbf{x}^{-} \succeq \mathbf{0}, \ \mathbf{s} \succeq \mathbf{0}$

Piecewise-linear minimization



use epigraph trick to express problem as an LP

$$\begin{split} \min_{\mathbf{x},t} & t \\ \text{s.to} & \mathbf{c}_i^\top \mathbf{x} + d_i \leq t, \ i = 1, \dots, K \\ & \mathbf{A}\mathbf{x} \preceq \mathbf{b} \end{split}$$

Minimizing a quadratic function

Convex problem iff $\mathbf{P}\succeq \mathbf{0}$

$$\min_{\mathbf{x}} f(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{P} \mathbf{x} + 2\mathbf{q}^{\top} \mathbf{x} + r$$

nonconvex case $(\mathbf{P} \not\succeq \mathbf{0})$: unbounded below

proof: choose $\mathbf{x} = t\mathbf{v}$ and $t \to \infty$, where $\mathbf{P}\mathbf{v} = \lambda\mathbf{v}$ for $\lambda < 0$

convex case $(\mathbf{P} \succeq \mathbf{0})$: \mathbf{x} is optimal if and only if

$$\nabla f(\mathbf{x}) = 2\mathbf{P}\mathbf{x} + 2\mathbf{q} = \mathbf{0}$$

q ∈ range(P): x* = -P[†]q is a minimizer and f* = r - q^TP[†]q
 special case P ≻ 0: the unique minimizer (P[†] = P⁻¹)

• $\mathbf{q} \notin \operatorname{range}(\mathbf{P})$: unbounded below [Why?]

Least squares fit

Minimize (squared) Euclidean norm with $\mathbf{A} \in \mathbb{R}^{M imes N}$

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \mathbf{x}^\top \mathbf{A}^\top \mathbf{A}\mathbf{x} - 2\mathbf{b}^\top \mathbf{A}\mathbf{x} + \mathbf{b}^\top \mathbf{b}$$

Q.3.2 Show that the Hessian is psd, so the problem is convex

Geometrically: project \mathbf{b} on range(\mathbf{A})

Minimizer: set gradient equal to zero to get the normal equations

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$$

- system is always solvable since $\mathbf{A}^{\top}\mathbf{b} \in \mathrm{range}(\mathbf{A}^{\top}\mathbf{A})$
- if $\operatorname{rank}(\mathbf{A}) = N$, unique LS solution $\mathbf{x}_{\operatorname{ls}} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$

Quadratic program (QP)

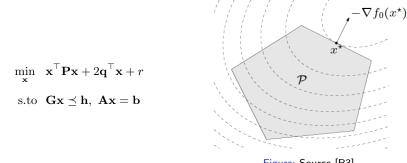


Figure: Source [R3]

- quadratic objective, linear constraints (inequalities and equalities)
- convex problem if $\mathbf{P} \succeq \mathbf{0}$
- NP-hard problem if $\mathbf{P} \nsucceq \mathbf{0}$

QCQP and SOCP

quadratically constrained quadratic program (QCQP):

$$\min_{\mathbf{x}} \quad \mathbf{x}^{\top} \mathbf{P}_0 \mathbf{x} + 2\mathbf{q}_0^{\top} \mathbf{x} + r_0$$

s.to $\mathbf{x}^{\top} \mathbf{P}_i \mathbf{x} + 2\mathbf{q}_i^{\top} \mathbf{x} + r_i \leq 0, \quad i = 1, \dots, m$

convex if $\mathbf{P}_i \succeq \mathbf{0}$ for $i = 0, 1, \dots, m$; NP-hard in general, otherwise

second-order cone programs (SOCP):

$$\min_{\mathbf{x}} \mathbf{f}^{\top} \mathbf{x}$$
s.to $\|\mathbf{A}_i \mathbf{x} + \mathbf{b}_i\|_2 \le \mathbf{c}_i^{\top} \mathbf{x} + d_i, \quad i = 1, \dots, m$

Robust linear program

LP with uncertain parameters: $\mathbf{a}_i \in \mathcal{E}_i = \{ \bar{\mathbf{a}}_i + \mathbf{P}_i \mathbf{u} : \|\mathbf{u}\|_2 \leq 1 \}$

$$\begin{split} \min_{\mathbf{x}} \ \mathbf{c}^{\top} \mathbf{x} \\ \text{s.to} \ \mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i} \quad \text{for all } \mathbf{a}_{i} \in \mathcal{E}_{i}, \quad i = 1, \dots, m \end{split}$$

Robust LP has infinitely many constraints...

 $\text{Key point: } \mathbf{a}_i^\top \mathbf{x} \leq b_i \; \forall \; \mathbf{a}_i \in \mathcal{E}_i \; \Leftrightarrow \; \max_{\|\mathbf{u}\|_2 \leq 1} \{ \bar{\mathbf{a}}_i^\top \mathbf{x} + \mathbf{u}^\top \mathbf{P}_i^\top \mathbf{x} \} \leq b_i$

Robust LP becomes SOCP!
$$\begin{array}{ll} \min_{\mathbf{x}} \ \mathbf{c}^{\top}\mathbf{x} \\ \text{s.to} \ \bar{\mathbf{a}}_{i}^{\top}\mathbf{x} + \|\mathbf{P}_{i}^{\top}\mathbf{x}\|_{2} \leq b_{i}, \quad i = 1, \dots, m \end{array}$$

Semidefinite program (SDP)

Semidefinite program in standard form (symmetric A_i with i = 0, ..., p)

$$\begin{split} \min_{\mathbf{X}} & \operatorname{Tr}(\mathbf{A}_0 \mathbf{X}) \\ \text{s.to} & \operatorname{Tr}(\mathbf{A}_i \mathbf{X}) = b_i, \quad i = 1, \dots, p \\ & \mathbf{X} \succeq 0 \end{split}$$

LMI constraint is convex

SDP in inequality form
$$\begin{array}{ll} \min_{\mathbf{x}} \ \mathbf{c}^{\top}\mathbf{x} \\ \mathrm{s.to} \ x_1\mathbf{A}_1 + \ldots + x_n\mathbf{A}_n \preceq \mathbf{A}_0 \end{array}$$

Although LMIs correspond to a set of polynomial inequalities, they can be handled efficiently by modern solvers

Maximum eigenvalue minimization

 $\min_{\mathbf{x}} \ \lambda_{\max}(\mathbf{A}(x))$

where $\mathbf{A}(\mathbf{x}) = \mathbf{A}_0 + x_1 \mathbf{A}_1 + \ldots + x_m \mathbf{A}_m$, $\mathbf{A}_i \in \mathbb{S}^n$

problem can be cast as an SDP:

 $\min_{\mathbf{x},t} t$ s.to $\mathbf{A}(\mathbf{x}) \preceq t\mathbf{I}$

Conic problem hierarchy

Model generality: LP < QP < QCQP < SOCP < SDP

Solution efficiency: LP > QP > QCQP > SOCP > SDP

Q.3.3 Show that that LP \subset QP \subset QCQP \subset SOCP \subset SDP where symbol \subset means *"special case of"*.

Example: an SOCP constraint can be expressed as SDP constraint as

$$\|\mathbf{A}\mathbf{x} + \mathbf{b}\|_{2} \leq \mathbf{c}^{\top}\mathbf{x} + d \quad \Longleftrightarrow \quad \begin{bmatrix} (\mathbf{c}^{\top}\mathbf{x} + d)\mathbf{I} & \mathbf{A}\mathbf{x} + \mathbf{b} \\ (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top} & \mathbf{c}^{\top}\mathbf{x} + d \end{bmatrix} \succeq 0$$

Hint: the above follows from property of Schur's complement

Lecture 3