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Lecture 3: Convex Optimization Problems

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 4.1-4.4.
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Optimization problem in standard form

min
x

f0(x)

s.to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

feasible set: the set of feasible points

optimal value: f? = infx∈X f0(x) [Why inf and not simply min?]

• f? = −∞ (unbounded problem)

• f? = +∞ (infeasible problem)

optimal point: a feasible point x attaining the optimum f(x) = f?

optimal set: the set of optimal points
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Feasibility problem

find x

s.to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

can be considered an optimization problem with f0(x) = 0:

min
x

0

s.to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

either find x ∈ X (f? = 0); or determine that X = ∅ (f? =∞)
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Convex optimization problem

Convex optimization problem in standard form:

min
x

f0(x)

s.to fi(x) ≤ 0, i = 1, . . . ,m

a>i x = bi, i = 1, . . . , p

1. f0, f1, . . . , fm are convex

2. equality constraints are affine (alternatively Ax = b)

Q.3.1 Show that the feasible set is convex.
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Locally and globally optimal solutions

Consider problem minx∈X f0(x)

Definitions:

• x ∈ X is locally optimal if there exists an R > 0 such that

for all y ∈ X with ‖y − x‖ ≤ R =⇒ f0(x) ≤ f0(y)

• x ∈ X is optimal (or simply optimal) if

for all y ∈ X =⇒ f0(x) ≤ f0(y)

Important properties:

1. For convex problems, any local solution is also global

2. If additionally f0(x) is strictly convex, there is at most one minimum

3. The optimal set Xopt is convex
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An optimality criterion

Consider problem minx∈C f0(x) with differentiable f0 and convex C

Condition:

• If x is a local minimum, then

∇f0(x)>(y − x) ≥ 0 for all y ∈ C

• The condition becomes sufficient

when f0 is convex

EE 8950 Tom Luo

An optimality criterion

suppose f0 is differentiable in convex problem

then x ∈ C is optimal iff

y ∈ C =⇒ ∇f0(x)T (y − x) ≥ 0

PSfrag replacements x
−∇f0(x)

C

contour lines of f0

• −∇f0(x) defines supporting hyperplane for C at x

• if you move from x towards any feasible y, f0 does not decrease

• hence x ∈ C, ∇f0(x) = 0 implies x optimal

• for unconstr. problems, x is optimal iff ∇f0(x) = 0

10

Figure: Source [R3]

Unconstrained problem (C = Rn): x is optimal iff ∇f0(x) = 0
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Epigraph trick

min
x

f0(x)

s.to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

min
x,t

t

s.to f0(x) ≤ t

fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

The variables in second problem are (x, t)

Convexity is preserved
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Restriction and relaxation

original problem

f∗ = min
x

f0(x)

s.to x ∈ C

new problem

f̃∗ = min
x

f0(x)

s.to x ∈ C̃

The new problem is a

• relaxation of original if C ⊆ C̃, then f̃∗ ≤ f∗

• restriction of original if C̃ ⊆ C, then f̃∗ ≥ f∗

Example: If f0(x) is convex and C is nonconvex, set C̃ = conv(C) to get a

convex problem and a lower bound for the original nonconvex problem
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Linear program (LP)

Linear cost; feasible set is a polyhedron

min
x

c>x

s.to Gx � h

Ax = b

standard form: widely used in LP literature and software (MATLAB, Sedumi)

min
x

c>x

s.to Ax = b

x � 0
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Converting LP to standard form

Inequality constraints: transform linear inequalities as

Gx + s = h and s � 0

new vector s is called a slack variable

Unconstrained variables: decompose variable as

x = x+ − x− and x+,x− � 0

Problem in standard form

min c>x+ − c>x−

s.to Gx+ −Gx− + s = h

Ax+ −Ax− = b

x+ � 0, x− � 0, s � 0
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Piecewise-linear minimization

min
x

max
i=1,...,K

(c>i x + di)

s.to Ax � b
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Piecewise-linear minimization

minimize maxi (cT
i x + di)

subject to Ax ≼ b

PSfrag replacements

x

cT
i x + di

maxi (cT
i x + di)

express as
minimize t

subject to cT
i x + di ≤ t, Ax ≼ b

an LP in variables x ∈ Rn, t ∈ R

6

use epigraph trick to express problem as an LP

min
x,t

t

s.to c>i x + di ≤ t, i = 1, . . . ,K

Ax � b
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Minimizing a quadratic function

Convex problem iff P � 0

min
x
f(x) = x>Px + 2q>x + r

nonconvex case (P � 0): unbounded below

proof: choose x = tv and t→∞, where Pv = λv for λ < 0

convex case (P � 0): x is optimal if and only if

∇f(x) = 2Px + 2q = 0

• q ∈ range(P): x∗ = −P†q is a minimizer and f∗ = r − q>P†q

special case P � 0: the unique minimizer (P† = P−1)

• q /∈ range(P): unbounded below [Why?]
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Least squares fit

Minimize (squared) Euclidean norm with A ∈ RM×N

min
x
‖Ax− b‖22 = x>A>Ax− 2b>Ax + b>b

Q.3.2 Show that the Hessian is psd, so the problem is convex

Geometrically: project b on range(A)

Minimizer: set gradient equal to zero to get the normal equations

A>Ax = A>b

• system is always solvable since A>b ∈ range(A>A)

• if rank(A) = N , unique LS solution xls = (A>A)−1A>b
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Quadratic program (QP)

min
x

x>Px + 2q>x + r

s.to Gx � h, Ax = b

Figure: Source [R3]

• quadratic objective, linear constraints (inequalities and equalities)

• convex problem if P � 0

• NP-hard problem if P � 0
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QCQP and SOCP

quadratically constrained quadratic program (QCQP):

min
x

x>P0x + 2q>0 x + r0

s.to x>Pix + 2q>i x + ri ≤ 0, i = 1, . . . ,m

convex if Pi � 0 for i = 0, 1, . . . ,m; NP-hard in general, otherwise

second-order cone programs (SOCP):

min
x

f>x

s.to ‖Aix + bi‖2 ≤ c>i x + di, i = 1, . . . ,m
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Robust linear program

LP with uncertain parameters: ai ∈ Ei = {āi + Piu : ‖u‖2 ≤ 1}

min
x

c>x

s.to a>i x ≤ bi for all ai ∈ Ei, i = 1, . . . ,m

Robust LP has infinitely many constraints...

Key point: a>i x ≤ bi ∀ ai ∈ Ei ⇔ max‖u‖2≤1{ā>i x + u>P>i x} ≤ bi

Robust LP becomes SOCP! min
x

c>x

s.to ā>i x + ‖P>i x‖2 ≤ bi, i = 1, . . . ,m
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Semidefinite program (SDP)

Semidefinite program in standard form (symmetric Ai with i = 0, . . . , p)

min
X

Tr(A0X)

s.to Tr(AiX) = bi, i = 1, . . . , p

X � 0

LMI constraint is convex

SDP in inequality form min
x

c>x

s.to x1A1 + . . .+ xnAn � A0

Although LMIs correspond to a set of polynomial inequalities, they can be

handled efficiently by modern solvers
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Maximum eigenvalue minimization

min
x

λmax(A(x))

where A(x) = A0 + x1A1 + . . .+ xmAm, Ai ∈ Sn

problem can be cast as an SDP:

min
x,t

t

s.to A(x) � tI
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Conic problem hierarchy

Model generality: LP < QP < QCQP < SOCP < SDP

Solution efficiency: LP > QP > QCQP > SOCP > SDP

Q.3.3 Show that that LP ⊂ QP ⊂ QCQP ⊂ SOCP ⊂ SDP

where symbol ⊂ means “special case of”.

Example: an SOCP constraint can be expressed as SDP constraint as

‖Ax + b‖2 ≤ c>x + d ⇐⇒

 (c>x + d)I Ax + b

(Ax + b)> c>x + d

 � 0

Hint: the above follows from property of Schur’s complement
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