ECE 5314: Power System Operation & Control

Lecture 2: Convex Sets and Convex Functions

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 2.1-2.3, 3.1-3.3.

What is an optimization problem?

Minimization of a function subject to constraints on its variables

$$\begin{aligned} & \min_{\mathbf{x}} \quad f_0(\mathbf{x}) \\ & \text{s.to} \quad g_i(\mathbf{x}) \leq 0, \quad i=1,\dots,m \quad \text{(inequality constraints)} \\ & \quad h_j(\mathbf{x}) = 0, \quad j=1,\dots,p \quad \text{(equality constraints)} \end{aligned}$$

- vector of unknowns or variables $\mathbf{x} = [x_1 \ x_2 \ \cdots \ x_n]^{\mathsf{T}}$
- objective or cost function $f_0(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$
- constraint functions $g_i(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$ and $h_j(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$
- feasible set: the set of points satisfying all constraints

$$\mathcal{X} := \{ \mathbf{x} : g_i(\mathbf{x}) \le 0, \ i = 1, \dots, m; \ h_j(\mathbf{x}) = 0, \ j = 1, \dots, p \}$$

A simple example

$$\min_{x} (x_{1} - 2)^{2} + (x_{2} - 1)^{2}$$
 s.to $x_{1}^{2} - x_{2} \le 0$
$$x_{1} + x_{2} \le 2$$

Figure: Nocedal-Wright, Numerical Optimization

Economic dispatch problem

- N generation units serving load P_L
- power output of unit i is P_{G_i} [MW]
- generation cost for unit is $C_i(P_{G_i})$ [\$/h]

Problem: find the most economical power schedule

$$\begin{aligned} \min_{\left\{P_{G_i}\right\}_{i=1}^{N}} & \sum_{i=1}^{N} C_i(P_{G_i}) \\ \text{s.to} & \sum_{i=1}^{N} P_{G_i} = P_L \\ & P_{G_i} \geq 0, \ i=1,\dots,N \end{aligned}$$

Difficult versus easy problems

Convex vs. nonconvex: dividing line between easy and difficult problems

Convex problem: convex objective $f_0(\mathbf{x})$ and convex feasible set \mathcal{X}

$$\min_{\mathbf{x} \in \mathcal{X}} f_0(\mathbf{x})$$

Features of convex problems:

- 1. Every local minimum is a global minimum
- 2. Computationally tractable
 - · computation time grows gracefully with problem size
 - non-heuristic stopping criteria and provable lower bounds
- 3. Occur often in engineering; yet sometimes hard to recognize

Convex sets

 $\mathcal{X} \subseteq \mathbb{R}^n$ is convex if

$$\mathbf{x}, \mathbf{y} \in \mathcal{X} \implies \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \mathcal{X} \text{ for all } \theta \in [0, 1]$$

geometrically: $x, y \in \mathcal{X} \Rightarrow$ line segment from x to y belongs to \mathcal{X}

Examples: which are convex?

- Q.2.1 Show that $\mathcal{X} = \{\mathbf{x} : \mathbf{x} = \mathbf{A}\mathbf{v} + \mathbf{b} \ \text{ for some } \ \mathbf{v} \in \mathbb{R}^m \}$ is convex.
- Q.2.2 Show that $\mathcal{X} = \{\mathbf{x} : \mathbf{B}\mathbf{x} = \mathbf{d}\}$ is convex.

Hyperplanes and halfspaces

hyperplane $\{\mathbf{x} \mid \mathbf{a}^{\top}\mathbf{x} = b\}$ alternative representation $\{\mathbf{x} \mid \mathbf{a}^{\top}(\mathbf{x} - \mathbf{x}_0) = 0\}$ a is *normal* vector; \mathbf{x}_0 lies on hyperplane

$$\begin{split} & \textbf{halfspace} \ \{ \mathbf{x} \mid \mathbf{a}^{\top} \mathbf{x} \leq b \} \\ & \text{alternative representation} \ \{ \mathbf{x} \mid \mathbf{a}^{\top} (\mathbf{x} - \mathbf{x}_0) \leq 0 \} \\ & \mathbf{a} \text{ is } \textit{outward} \text{ normal vector; } \mathbf{x}_0 \text{ lies on boundary} \end{split}$$

Q.2.3 Show that both sets are convex.

Set operations that preserve convexity

Intersection: the intersection of convex sets is also a convex set!

Q.2.4 How about unions or differences of convex sets?

Convex hull: $\operatorname{conv}(\mathcal{X})$ is the set of all convex combinations of the points in \mathcal{X}

• Convex combination of $\{\mathbf{x}_1,\ldots,\mathbf{x}_k\}$ is $\mathbf{x}_{\theta}=\theta_1\mathbf{x}_1+\ldots+\theta_k\mathbf{x}_k$ with $\theta_i\geq 0$ and $\sum_{i=1}^k\theta_i=1$

• Examples:

Q.2.5 If $\mathcal{X} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ and \mathbf{e}_i are the *canonical vectors* in \mathbb{R}^3 , find $\mathrm{conv}(\mathcal{X})$? Repeat for $\mathcal{X} = \{\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$?

Polyhedra

Polyhedron is the solution set of finitely many linear inequalities and equalities

$$\mathcal{P} = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \preceq \mathbf{b}, \ \mathbf{C}\mathbf{x} = \mathbf{d}\}$$

Symbol \leq for component-wise inequality. Equalities as two inequalities.

Figure: Source [R3]

A bounded polyhedron is called a polytope

Economic dispatch

- N generators serve load P_L
- generation costs $C_i(P_{G_i})$ \$/h

$$\min_{\{P_{G_i}\}_{i=1}^N} \quad \sum_{i=1}^N C_i(P_{G_i})$$
 s.to $\sum_{i=1}^N P_{G_i} = P_L$ $0 < P_{G_i} \ orall \ i$

- Is the feasible set convex? Polyhedron?
- What if units have production limits, i.e., $P_{G_i} \leq P_{G_i}^{\max}$?

Norm balls and cones

Norm ball: $\mathcal{B} = \{\mathbf{x} : \|\mathbf{x} - \mathbf{x}_c\| \le 1\} \subset \mathbb{R}^N$ is convex

example: ℓ_p -norms in \mathbb{R}^2

Norm cone: $C = \{(\mathbf{x}, t) : ||\mathbf{x}|| \le t\} \subset \mathbb{R}^{N+1}$ is a convex cone

 $\textbf{example} \colon \textit{second-order cone} \text{ or Lorentz cone } S = \{(\mathbf{x},t): \|\mathbf{x}\|_2 \leq t\}$

Q.2.6 The second-order cone (SOC) constr. $\|\mathbf{A}\mathbf{x} + \mathbf{b}\|_2 \leq \mathbf{c}^{\top}\mathbf{x} + d$ is convex

Lecture 2 V. Kekatos 11

Ellipsoids

$$\mathcal{E}_1 = \left\{\mathbf{x}: (\mathbf{x} - \mathbf{x}_c)^\top \mathbf{A}^{-1} (\mathbf{x} - \mathbf{x}_c) \leq 1\right\} \text{ where } \mathbf{A} \in \mathbb{S}_{++}^n \text{ and } \mathbf{x}_c \in \mathbb{R}^n \text{ (center)}$$

- semiaxis length: $\sqrt{\lambda_i}$; λ_i eigenvalues of ${\bf A}$
- semiaxis directions: eigenvectors of A

Figure: Source [R3]

- Q.2.7 Show that an ellipsoid is a convex set.
- Q.2.8 Find matrix \mathbf{B} so that $\mathcal{E}_2 = \{\mathbf{B}\mathbf{u} + \mathbf{x}_c : \|\mathbf{u}\|_2 \leq 1\}$ is an alternative representation for ellipsoid \mathcal{E}_1 .

Linear matrix inequalities

Symmetric matrices: $\mathbb{S}^n = \{ \mathbf{X} \in \mathbb{R}^{n \times n} : \mathbf{X} = \mathbf{X}^\top \}$ (set of linear equalities)

Symmetric PSD cone: $\mathbb{S}^n_+ = \{\mathbf{X} \in \mathbb{S}^n : \mathbf{X} \succeq \mathbf{0}\}$ is a convex cone

$$\mathbf{X} \in \mathbb{S}^n_+ \quad \Longleftrightarrow \quad \mathbf{z}^\top \mathbf{X} \mathbf{z} \geq 0 \text{ for all } \mathbf{z} \in \mathbb{R}^n$$

(intersection of infinite number of halfspaces)

Example: $\mathbb{S}^2_+ := \left\{ (x,y,z) : \left[\begin{array}{cc} x & y \\ y & z \end{array} \right] \succeq 0 \right\}$

Figure: Source [R3]

Convex functions

• Function $f: \mathbb{R}^n \to \mathbb{R}$ is *convex* if its domain is convex set and for all \mathbf{x}, \mathbf{y} :

$$f(\theta\mathbf{x} + (1-\theta)\mathbf{y}) \leq \theta f(\mathbf{x}) + (1-\theta)f(\mathbf{y}) \text{ for all } \theta \in [0,1]$$

Figure: Source [R3]

- f is concave if -f is convex
- f is strictly convex if strict inequality for $\theta \in (0,1)$

V. Kekatos 14

First- and second-order conditions for convexity

1st-order condition: differentiable f is convex iff

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^{\top} (\mathbf{y} - \mathbf{x}) \text{ for all } \mathbf{x}, \mathbf{y} \in \text{dom} f$$

• first-order (Taylor's series) approximation of f is a global underestimator

2nd-order conditions: twice differentiable f with convex dom f:

- f is convex iff $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all $\mathbf{x} \in \mathrm{dom} f$
- if $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$ for all $\mathbf{x} \in \mathrm{dom} f$, then f is strictly convex

Lecture 2 V. Kekatos 15

Operations that preserve convexity

nonnegative multiple: f convex, $\alpha \ge 0 \implies \alpha f$ convex

finite sum: f_1, f_2 convex $\implies f_1 + f_2$ convex

pointwise maximum: f_1, f_2 convex $\implies \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}$ convex

partial minimization if $f(\mathbf{x}, \mathbf{y})$ is convex in (\mathbf{x}, \mathbf{y}) and C is a convex set, then

$$g(\mathbf{x}) = \min_{\mathbf{y} \in C} f(\mathbf{x}, \mathbf{y})$$
 is convex

affine transformation of domain: f is convex $\implies f(\mathbf{A}\mathbf{x} + \mathbf{b})$ convex

V. Kekatos 16

Function examples

Examples in \mathbb{R} :

- x^{α} is convex on \mathbb{R}_{++} for $\alpha \geq 1$, $\alpha \leq 0$; concave for $\alpha \in [0,1]$
- $e^{\alpha x}$ is convex; $\log x$ is concave
- |x|, $\max\{0, x\}$, $\max\{0, -x\}$ are convex

Examples in \mathbb{R}^n :

- linear and affine functions are both convex and concave!
- vector norms are convex
- piecewise linear functions $f(\mathbf{x}) = \max_i \{\mathbf{a}_i^\top \mathbf{x} + b_i\}$ are convex

Q.2.9 Show three of the above claims.