
ECE 5314: Power System Operation & Control

Lecture 2: Convex Sets and Convex Functions

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 2.1-2.3, 3.1-3.3.
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What is an optimization problem?

Minimization of a function subject to constraints on its variables

min
x

f0(x)

s.to gi(x) ≤ 0, i = 1, . . . ,m (inequality constraints)

hj(x) = 0, j = 1, . . . , p (equality constraints)

• vector of unknowns or variables x = [x1 x2 · · · xn]>

• objective or cost function f0(x) : Rn → R

• constraint functions gi(x) : Rn → R and hj(x) : Rn → R

• feasible set: the set of points satisfying all constraints

X := {x : gi(x) ≤ 0, i = 1, . . . ,m; hj(x) = 0, j = 1, . . . , p}
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A simple example

min
x

(x1 − 2)2 + (x2 − 1)2

s.to x21 − x2 ≤ 0

x1 + x2 ≤ 2

Figure: Nocedal-Wright, Numerical Optimization
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Economic dispatch problem

• N generation units serving load PL

• power output of unit i is PGi [MW]

• generation cost for unit is Ci(PGi) [$/h]

~

~

~

Load%

PG1

PG2

PGN

PL

Problem: find the most economical power schedule

min
{PGi

}Ni=1

N∑
i=1

Ci(PGi)

s.to
N∑
i=1

PGi = PL

PGi ≥ 0, i = 1, . . . , N

Lecture 2 V. Kekatos 4



Difficult versus easy problems

Convex vs. nonconvex: dividing line between easy and difficult problems

Convex problem: convex objective f0(x) and convex feasible set X

min
x∈X

f0(x)

Features of convex problems:

1. Every local minimum is a global minimum

2. Computationally tractable

• computation time grows gracefully with problem size

• non-heuristic stopping criteria and provable lower bounds

3. Occur often in engineering; yet sometimes hard to recognize
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Convex sets

X ⊆ Rn is convex if

x,y ∈ X =⇒ θx+ (1− θ)y ∈ X for all θ ∈ [0, 1]

geometrically: x,y ∈ X ⇒ line segment from x to y belongs to X

Examples: which are convex?

Convex set

line segment between x1 and x2: all points

x = θx1 + (1 − θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

examples (one convex, two nonconvex sets)

Convex sets 2–3

Q.2.1 Show that X = {x : x = Av + b for some v ∈ Rm} is convex.

Q.2.2 Show that X = {x : Bx = d} is convex.
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Hyperplanes and halfspaces

hyperplane {x | a>x = b}

alternative representation {x | a>(x− x0) = 0}

a is normal vector; x0 lies on hyperplane

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a ̸= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a ̸= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

halfspace {x | a>x ≤ b}

alternative representation {x | a>(x− x0) ≤ 0}

a is outward normal vector; x0 lies on boundary

Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a ̸= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a ̸= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex

Convex sets 2–6

Q.2.3 Show that both sets are convex.
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Set operations that preserve convexity

Intersection: the intersection of convex sets is also a convex set!

Q.2.4 How about unions or differences of convex sets?

Convex hull: conv(X ) is the set of all convex combinations of the points in X

• Convex combination of {x1, . . . ,xk} is

xθ = θ1x1 + . . .+ θkxk with θi ≥ 0 and
∑k
i=1 θi = 1

• Examples:

Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · · + θkxk

with θ1 + · · · + θk = 1, θi ≥ 0

convex hull conv S: set of all convex combinations of points in S

Convex sets 2–4Q.2.5 If X = {e1, e2, e3} and ei are the canonical vectors in R3, find conv(X )?

Repeat for X = {0, e1, e2, e3}?
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Polyhedra

Polyhedron is the solution set of finitely many linear inequalities and equalities

P = {x |Ax � b, Cx = d}

Symbol � for component-wise inequality. Equalities as two inequalities.

Polyhedra

solution set of finitely many linear inequalities and equalities

Ax ≼ b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, ≼ is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes

Convex sets 2–9

Figure: Source [R3]

A bounded polyhedron is called a polytope
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Economic dispatch

• N generators serve load PL

• generation costs Ci(PGi) $/h

min
{PGi

}Ni=1

N∑
i=1

Ci(PGi)

s.to
N∑
i=1

PGi = PL

0 ≤ PGi ∀ i

~

~

~
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PGN

PL

• Is the feasible set convex? Polyhedron?

• What if units have production limits, i.e., PGi ≤ Pmax
Gi

?
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Norm balls and cones

Norm ball: B = {x : ‖x− xc‖ ≤ 1} ⊂ RN is convex

example: `p-norms in R2

Norm cone: C = {(x, t) : ‖x‖ ≤ t} ⊂ RN+1 is a convex cone

example: second-order cone or Lorentz cone S = {(x, t) : ‖x‖2 ≤ t}

Q.2.6 The second-order cone (SOC) constr. ‖Ax+ b‖2 ≤ c>x+ d is convex
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Ellipsoids

E1 =
{
x : (x− xc)

>A−1(x− xc) ≤ 1
}

where A ∈ Sn++ and xc ∈ Rn (center)

• semiaxis length:
√
λi; λi eigenvalues of A

• semiaxis directions: eigenvectors of A

Figure: Source [R3]

Q.2.7 Show that an ellipsoid is a convex set.

Q.2.8 Find matrix B so that E2 = {Bu+ xc : ‖u‖2 ≤ 1} is an alternative

representation for ellipsoid E1.
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Linear matrix inequalities

Symmetric matrices: Sn = {X ∈ Rn×n : X = X>} (set of linear equalities)

Symmetric PSD cone: Sn+ = {X ∈ Sn : X � 0} is a convex cone

X ∈ Sn+ ⇐⇒ z>Xz ≥ 0 for all z ∈ Rn

(intersection of infinite number of halfspaces)

Example:

S2
+ :=

(x, y, z) :

 x y

y z

 � 0


Figure: Source [R3]
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Convex functions

• Function f : Rn → R is convex if its domain is convex set and for all x,y:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) for all θ ∈ [0, 1]

Figure: Source [R3]

• f is concave if −f is convex

• f is strictly convex if strict inequality for θ ∈ (0, 1)
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First- and second-order conditions for convexity

1st-order condition: differentiable f is convex iff

f(y) ≥ f(x) +∇f(x)>(y − x) for all x,y ∈ domf

• first-order (Taylor’s series) approximation of f is a global underestimator

2nd-order conditions: twice differentiable f with convex domf :

• f is convex iff ∇2f(x) � 0 for all x ∈ domf

• if ∇2f(x) � 0 for all x ∈ domf , then f is strictly convex
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Operations that preserve convexity

nonnegative multiple: f convex, α ≥ 0 =⇒ αf convex

finite sum: f1, f2 convex =⇒ f1 + f2 convex

pointwise maximum: f1, f2 convex =⇒ max{f1(x), f2(x)} convex

partial minimization if f(x,y) is convex in (x,y) and C is a convex set, then

g(x) = min
y∈C

f(x,y) is convex

affine transformation of domain: f is convex =⇒ f(Ax+ b) convex
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Function examples

Examples in R:

• xα is convex on R++ for α ≥ 1, α ≤ 0; concave for α ∈ [0, 1]

• eαx is convex; log x is concave

• |x|, max{0, x}, max{0,−x} are convex

Examples in Rn:

• linear and affine functions are both convex and concave!

• vector norms are convex

• piecewise linear functions f(x) = maxi{a>i x+ bi} are convex

Q.2.9 Show three of the above claims.
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