ECE 5314: Power System Operation & Control

Lecture 2: Convex Sets and Convex Functions

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapters 2.1-2.3, 3.1-3.3.
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What is an optimization problem?

Minimization of a function subject to constraints on its variables

min  fo(x)
s.to ¢i(x) <0, ¢=1,...,m (inequality constraints)

hj(x)=0, j=1,...,p (equality constraints)

e vector of unknowns or variables x = [z, =2 --- x,] "
e objective or cost function fo(x): R" — R

e constraint functions g;(x) : R® — R and h;(x) : R" - R

feasible set: the set of points satisfying all constraints

Xi={x:9:(x)<0,i=1,...,m; hj(x)=0, j=1,...
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A simple example
min (z1 —2)® + (z2 — 1)°

sto 23 —22<0

1+ w2 < 2

feasible
region

Figure: Nocedal-Wright, Numerical Optimization
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Economic dispatch problem

e N generation units serving load P,
e power output of unit 7 is Pg, [MW]

e generation cost for unit is C;(Pg,) [$/h]

Problem: find the most economical power schedule

N
min Ci(Pg;)
{PGi}rf\Ll ,LZ;

N
s.to ZPgi =P
i=1

Ps, >0,i=1,...,N
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Difficult versus easy problems

Convex vs. nonconvex: dividing line between easy and difficult problems
Convex problem: convex objective fo(x) and convex feasible set X

min fo(x)

Features of convex problems:

1. Every local minimum is a global minimum
2. Computationally tractable

e computation time grows gracefully with problem size

e non-heuristic stopping criteria and provable lower bounds

3. Occur often in engineering; yet sometimes hard to recognize
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Convex sets
X C R"™ is convex if
x,y€X =0x+(1-0yeX foralldel0,1]

geometrically: x,y € X = line segment from x to y belongs to X’

Examples: which are convex?

]
I

Q.2.1 Show that X = {x:x = Av + b for some v € R™} is convex.

Q.2.2 Show that X = {x: Bx = d} is convex.
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Hyperplanes and halfspaces

hyperplane {x |a'x = b}
alternative representation {x|a' (x — xo) = 0}

a is normal vector; x¢ lies on hyperplane

halfspace {x |a'x < b}
alternative representation {x|a' (x —xo) < 0}

a is outward normal vector; xq lies on boundary

Q.2.3 Show that both sets are convex.
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Set operations that preserve convexity

Intersection: the intersection of convex sets is also a convex set!

Q.2.4 How about unions or differences of convex sets?

Convex hull: conv(X) is the set of all convex combinations of the points in X

e Convex combination of {x1,...,xx} is

X9 = 01x1 + ...+ Opxy with 0; >0 and Zle 0, =1

e Examples:

Q.25 If X = {e1,e2,e3} and e; are the canonical vectors in R?, find conv(X)?

Repeat for X = {0,e1,e2,e3}?
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Polyhedra

Polyhedron is the solution set of finitely many linear inequalities and equalities
P={x|Ax <b, Cx=d}
Symbol < for component-wise inequality. Equalities as two inequalities.

al as

as
asg

a4
Figure: Source [R3]

A bounded polyhedron is called a polytope
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Economic dispatch

e N generators serve load Py,

e generation costs C;(Pg,) $/h

N
min Z Ci(Pg;)

N
{Pa, }iz1 i=1

N
s.to chl =P
i=1
0< Pg, V1

e |Is the feasible set convex? Polyhedron?

e What if units have production limits, i.e., Pg, < Pg*7?
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Norm balls and cones

Norm ball: B = {x: ||x — x| <1} C RY is convex

example: £,-norms in R?

Norm cone: C = {(x,t) : ||x|| <t} c RY¥*! is a convex cone

example: second-order cone or Lorentz cone S = {(x,t) : ||x||2 < t}

Tr9 -1 —1

xy
Q.2.6 The second-order cone (SOC) constr. |[Ax + b2 < c'x +d is convex
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Ellipsoids

x:(x— %) A’lx—xC <1} where A € ST, and x. € R" (center
4

e semiaxis length: \/\;; \; eigenvalues of A g

e semiaxis directions: eigenvectors of A

Figure: Source [R3]
Q.2.7 Show that an ellipsoid is a convex set.

Q.2.8 Find matrix B so that & = {Bu + x, : ||ul|2 < 1} is an alternative

representation for ellipsoid &£;.
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Linear matrix inequalities

Symmetric matrices: S” = {X € R"*" : X = X T} (set of linear equalities
y

Symmetric PSD cone: S’} = {X € S" : X > 0} is a convex cone
XeS; <= z'Xz>0forallzeR"

(intersection of infinite number of halfspaces)

Example:

8% =4 @y, 2) =0

|
o

Figure: Source [R3]
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Convex functions

e Function f: R™ — R is convex if its domain is convex set and for all x,y:

F(0x + (1= 0)y) < 05(x) + (1 — 0)f(y) for all 6 € [0,1]

(v, f())
(z, f(2))

Figure: Source [R3]
e fis concave if —f is convex

e f is strictly convex if strict inequality for 6 € (0, 1)
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First- and second-order conditions for convexity

1st-order condition: differentiable f is convex iff
F¥) 2 f(x) + VI (x) " (y = x) for all x,y € domf

fy)
f@) + V@) (y— )

(z, f(=))

o first-order (Taylor’s series) approximation of f is a global underestimator

2nd-order conditions: twice differentiable f with convex domf:
e fis convex iff V2 f(x) = 0 for all x € domf

o if V2f(x) > 0 for all x € domf, then f is strictly convex
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Operations that preserve convexity

nonnegative multiple: f convex, @« > 0 = «af convex

finite sum: fi, fo convex = f1 + f2 convex

pointwise maximum: f1, fo convex = max{ f1(x), f2(x)} convex

partial minimization if f(x,y) is convex in (x,y) and C' is a convex set, then

g(x) = min f(x,y) is convex
yeC

affine transformation of domain: f is convex = f(Ax + b) convex
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Function examples

Examples in R:
e z% is convex on R4 for @ > 1, a < 0; concave for a € [0, 1]
ax

o ™" is convex; log x is concave

o |z|, max{0,z}, max{0, —z} are convex

Examples in R":
e linear and affine functions are both convex and concave!
e vector norms are convex

e piecewise linear functions f(x) = max;{a; x 4 b;} are convex

Q.2.9 Show three of the above claims.
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