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Unconstrained minimization

Assume f convex, twice continuously differentiable, and finite p∗

p∗ := min
x

f(x)

unconstrained minimization methods

• produce sequence of points xt with f(xt)→ p∗

• interpreted as iterative methods for solving optimality condition

∇f(x∗) = 0

• if ∇2f(x) � mI with m > 0 (strong convexity), then

0 ≤ f(x)− p∗ ≤ 1

2m
‖∇f(x)‖22

useful as stopping criterion (assuming m is known)
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Examples

Example 1: unconstrained QP (P = P> � 0):

min
x

x>Px + 2q>x + r

Example 2: analytic center of linear inequalities

min
x
−

m∑
i=1

log(bi − a>i x)

Example 3: interior-point methods tackle constrained problems by solving a

sequence of unconstrained minimization problems
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Descent method

1. Compute search direction ∆xt

2. Choose step size µt > 0

3. Update xt+1 = xt + µt∆xt

4. Iterate (t→ t+ 1) until stopping criterion is satisfied

Definition: An iterative method is a descent method if f(xt+1) < f(xt) ∀t

Recall for convex f , we have f(xt+1) ≥ f(xt) + (∇f(x))>(xt+1 − xt). Then:

f(xt+1) < f(xt) ⇒ descent direction satisfies (∇f(xt))>∆xt < 0

Step size µt > 0: constant, exact line search, or backtracking search

exact line search : µt := arg min
µ>0

f(xt + µ∆xt)
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Gradient descent

1. Compute search direction ∆xt = −∇f(xt)

(special case of descent method)

2. Choose a step size µt > 0

3. Update xt+1 = xt + µt∆xt

4. Iterate until stopping criterion is satisfied

• converges with exact or backtracking line search and upper bounded µ

• convergence rate results: c ∈ (0, 1) depends on m, x0, and line search

linear for strongly convex f : f(xt)− p∗ ≤ ct(f(x0)− p∗)

sublinear for general convex: f(xt)− p∗ ≤ L
t

(f(x0)− p∗)

• very simple but typically slow
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Example

min
x

x21 +Mx22

where M > 0

• exact line search

• initialize at x0 = (M, 1)

Figure: [Tom Luo’s slides]

• iterates take the form

xt =

(
M

(
M − 1

M + 1

)t
,

(
−M − 1

M + 1

)t)
• fast convergence when M close to 1; one step if M = 1!

• slow, zig-zagging if M � 1 or M � 1
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Example 2

For m = 100 and n = 50, use gradient method (exact line search)

min
x

c>x−
m∑
i=1

log(a>i x− bi)

Figure: Function value convergence for gradient method [Z.-Q. Luo’s slides]
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Steepest descent direction

Term ∇f(x)>z gives approximate decrease in f for small z

f(x + z) ≈ f(x) +∇f(x)>z

Find the direction of steepest descent (SD):

zsd = arg min
‖z‖≤1

∇f(x)>z

Euclidean norm ‖z‖2: zsd = −∇f(x)/‖∇f(x)‖2 (gradient descent)

Quadratic norm ‖z‖P :=
√
z>Pz for some P � 0

zsd = −
(
∇f(x)>P−1∇f(x)

)−1/2

P−1∇f(x)

Equivalent to SD with Euclidean norm on transformed variables y = P1/2x
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Geometric interpretation

move as far as possible in direction −∇f(x), while staying inside the unit ball

Figure: Boyd’s slides
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Choosing the norm

Figure: choice of P strongly affects speed of convergence [Boyd’s slides]

• steepest descent with backtracking line search for two quadratic norms

• ellipses show {x : ‖x− xt‖P = 1}
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Pure Newton step and interpretations

Newton update: x+ = x + v

Newton step: v = −∇2f(x)−1∇f(x)

minimizes second-order expansion of f at x

f(x)+∇f(x)>(x+−x)+ 1
2
(x+−x)>∇2f(x)(x+−x)

solves linearized optimality condition

∇f(x) +∇2f(x)(x+ − x) = 0

Figure: [Boyd’s slides]
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Global behavior of Newton iterations

Example: f(x) = log(ex + e−x), starting at x0 = −1.1

Figure: pure Newton iterations may diverge! [Z.Q. Luo’s slides]
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Newton method

Also called damped or guarded Newton method

1. Compute Newton direction ∆xt = −
[
∇2f(xt)

]−1∇f(xt)

2. Choose step size µt

3. Update xt+1 = xt + µt∆xt

4. Iterate until stopping criterion is satisfied

• global convergence with backtracking or exact line search

• quadratic local convergence

• affine invariance:

Newton iterates for minx f(x) and minz f(Tz) for invertible T

are equivalent and xt = Tzt
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Convergence results

assumptions: mI � ∇2f(x) �MI and Lipschitz condition

‖∇2f(x)−∇2f(y)‖ ≤ L‖x− y‖

1. damped Newton phase: ‖∇f(x)‖2 ≥ η1: f(x+) ≤ f(x)− η2, hence

#iterations ≤ η−1
2 (f(x0)− f∗)

2. quadratically convergent phase: ‖∇f(x)‖2 < η1

#iterations ≤ log2 log2(η3/ε)

total # iterations for reaching accuracy f(xt)− f∗ ≤ ε bounded by:

η−1
2 (f(x0)− f∗) + log2 log2(η3/ε)

η1, η2, η3 depend on m,M,L (waived for self-concordant functions)

Lecture 10 V. Kekatos 14



Example

f(x) = −
10,000∑
n=1

log(1− x2n)−
100,000∑
i=1

log(bi − a>i x)

Figure: Two-phase convergence of Newton method [Boyd’s slides]

• x ∈ R10,000 with sparse ai’s
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Minimization with linear equality constraints

Linearly-constrained optimization problem:

min
x
{f(x) : Ax = b}

Approach 1: solve reduced or eliminated problem

min
z
f(Fz + x0)

where Ax0 = b and range(F) = null(A)

Approach 2: Find feasible update that minimizes second-order approximation

∆x := arg min
v

f(x) +∇f(x)>v + 1
2
v>∇2f(x)v

s.to A(x + v) = b

[Q: How can this be solved?]
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