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Unconstrained minimization
Assume [ convex, twice continuously differentiable, and finite p*
p* = min f(x)
X
unconstrained minimization methods
e produce sequence of points x* with f(x*) — p*

e interpreted as iterative methods for solving optimality condition

Vi(x) =0
o if V2f(x) = mI with m > 0 (strong convexity), then
" 1
0< 1)~ p" < o VI3

useful as stopping criterion (assuming m is known)
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Examples
Example 1: unconstrained QP (P =P > 0):

min x' Px + 2qTx +r

Example 2: analytic center of linear inequalities

min — Z log(b; — a; x)
=1

Example 3: interior-point methods tackle constrained problems by solving a

sequence of unconstrained minimization problems
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Descent method

1. Compute search direction Ax’
2. Choose step size py >0
3. Update xt = xt + utAxt
4. lterate (t — t + 1) until stopping criterion is satisfied
Definition: An iterative method is a descent method if f(x'™") < f(x") V¢

Recall for convex f, we have f(xt1) > f(x') + (VF(x)) T (x!*? — x*). Then:

F(x") < f(x') = descent direction satisfies (Vf(x"))" Ax" <0

Step size ¢ > 0: constant, exact line search, or backtracking search
exact line search :  py := argmigf(xt + pAxh)
n>
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Gradient descent

1. Compute search direction Ax' = -V f(x")

(special case of descent method)
2. Choose a step size pur > 0
3. Update xtt = xt + ,utAxt

4. lterate until stopping criterion is satisfied

e converges with exact or backtracking line search and upper bounded p

e convergence rate results: ¢ € (0,1) depends on m, x°, and line search
linear for strongly convex f: f(x') —p* < c'(f(x°) —p*)

sublinear for general convex: f(x') —p* < Z(f(x") —p")

e very simple but typically slow
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Example

. 2 2
min z7 + Mz5
X

where M > 0
e exact line search vl
e initialize at x° = (M, 1) 15 ‘ L ‘
20

Figure: [Tom Luo’s slides]

iterates take the form
M-1\"' M-1\"*
f= (M -
* < M+1) T M+1

o fast convergence when M close to 1; one step if M = 1!

o slow, zig-zagging if M > 1or M < 1
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Example 2

For m = 100 and n = 50, use gradient method (exact line search)

m
min ¢’ x — Z log(a; x — b;)
i=1
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Figure: Function value convergence for gradient method [Z.-Q. Luo’s slides]

Lecture 10 V. Kekatos



Steepest descent direction
Term Vf(x) "z gives approximate decrease in f for small z
flx+2) = f(x) + V(x) 2
Find the direction of steepest descent (SD):

Zeq = arg min VF(x) z
«a = arg min Vf(x)

Euclidean norm ||z||2: zsa = —V f(x)/||V f(x)||2 (gradient descent)

Quadratic norm ||z||p := Vz TPz for some P > 0

—1/2 )
P 'Vf(x)

70 == (V60 PV (x)

Equivalent to SD with Euclidean norm on transformed variables y = P'/?x
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Geometric interpretation

move as far as possible in direction —V f(x), while staying inside the unit ball

Figure: Boyd's slides
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Choosing the norm

Figure: choice of P strongly affects speed of convergence [Boyd's slides]

o steepest descent with backtracking line search for two quadratic norms

o ellipses show {x: ||x —x!|lp = 1}
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Pure Newton step and interpretations

Newton update: x" =x+v

Newton step: v = —V?*f(x)

minimizes second-order expansion of f at x

FEOHVF(x) T (¢ =)+ 5 (xF—x) TV F(x) (x T —x)

solves linearized optimality condition

Vix)+ Viix)(xT—x)=0
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Figure: [Boyd's slides]



Global behavior of Newton iterations

Example: f(x) = log(e® 4 ¢™"), starting at 2° = —1.1

f(x) 1)
\ S : /

k = =" —
1] —1.129-10% | 5.120- 1071
2 1.234-10° | 5.349 - 107!
3| —1.695-10° | 6.223-107!
4 5.715-10° | 1.035 - 10°

5 | —2.302-10* | 2.302 - 10*

Figure: pure Newton iterations may diverge! [Z.Q. Luo's slides]
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Newton method

Also called damped or guarded Newton method
1. Compute Newton direction Ax" = — [VQf(xt)T1 Vf(x")
2. Choose step size
3. Update x'™! = x* + i, Ax’

4. lterate until stopping criterion is satisfied

e global convergence with backtracking or exact line search
e quadratic local convergence

o affine invariance:
Newton iterates for miny f(x) and min, f(Tz) for invertible T

are equivalent and x' = Tz’
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Convergence results
assumptions: mI < V?f(x) < MI and Lipschitz condition
IV2f(x) = V£ ()]l < Llx — vl
1. damped Newton phase: ||V f(x)|2 > m: f(xT) < f(x) — 12, hence
#iterations < 75 ' (f(x°) — f7)
2. quadratically convergent phase: ||V f(x)|2 < m
#iterations < log, log,(n3/€)
total # iterations for reaching accuracy f(x") — f* < € bounded by:
3 ' (f(x") = ) + log, log, (113 /)
m, 12, n3 depend on m, M, L (waived for self-concordant functions)
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Example

10,000 100,000

f(x) =~ Z log(1 — l‘i) - Z log(b; — a;rx)

10°

fa®)) —p*

Figure: Two-phase convergence of Newton method [Boyd's slides]

o x ¢ R:000 ith sparse a;'s
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Minimization with linear equality constraints
Linearly-constrained optimization problem:
min{f(x) : Ax = b}
Approach 1: solve reduced or eliminated problem
mzin f(Fz + xo)

where Axo = b and range(F) = null(A)

Approach 2: Find feasible update that minimizes second-order approximation
Ax :=argmin f(x)+ Vf(x) v+ %VTVQf(x)v
sto A(x+v)=b

[Q: How can this be solved?]
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