ECE 5314: Power System Operation \& Control

Lecture 12: Gradient and Newton Methods

Vassilis Kekatos

R3 S. Boyd and L. Vandenberghe, Convex Optimization, Chapter 9.
R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, Electric Energy Systems: Analysis and Operation, Appendix B.

R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control, Wiley, 2014, Chapter 13.

Unconstrained minimization

Assume f convex, twice continuously differentiable, and finite p^{*}

$$
p^{*}:=\min _{\mathbf{x}} f(\mathbf{x})
$$

unconstrained minimization methods

- produce sequence of points \mathbf{x}^{t} with $f\left(\mathbf{x}^{t}\right) \rightarrow p^{*}$
- interpreted as iterative methods for solving optimality condition

$$
\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}
$$

- if $\nabla^{2} f(\mathbf{x}) \succeq m \mathbf{I}$ with $m>0$ (strong convexity), then

$$
0 \leq f(\mathbf{x})-p^{*} \leq \frac{1}{2 m}\|\nabla f(\mathbf{x})\|_{2}^{2}
$$

useful as stopping criterion (assuming m is known)

Examples

Example 1: unconstrained QP $\left(\mathbf{P}=\mathbf{P}^{\top} \succ \mathbf{0}\right)$:

$$
\min _{\mathbf{x}} \mathbf{x}^{\top} \mathbf{P} \mathbf{x}+2 \mathbf{q}^{\top} \mathbf{x}+r
$$

Example 2: analytic center of linear inequalities

$$
\min _{\mathbf{x}}-\sum_{i=1}^{m} \log \left(b_{i}-\mathbf{a}_{i}^{\top} \mathbf{x}\right)
$$

Example 3: interior-point methods tackle constrained problems by solving a sequence of unconstrained minimization problems

Descent method

1. Compute search direction $\Delta \mathbf{x}^{t}$
2. Choose step size $\mu_{t}>0$
3. Update $\mathbf{x}^{t+1}=\mathbf{x}^{t}+\mu_{t} \Delta \mathbf{x}^{t}$
4. Iterate $(t \rightarrow t+1)$ until stopping criterion is satisfied

Definition: An iterative method is a descent method if $f\left(\mathbf{x}^{t+1}\right)<f\left(\mathbf{x}^{t}\right) \forall t$
Recall for convex f, we have $f\left(\mathbf{x}^{t+1}\right) \geq f\left(\mathbf{x}^{t}\right)+(\nabla f(\mathbf{x}))^{\top}\left(\mathbf{x}^{t+1}-\mathbf{x}^{t}\right)$. Then:

$$
f\left(\mathbf{x}^{t+1}\right)<f\left(\mathbf{x}^{t}\right) \Rightarrow \text { descent direction satisfies }\left(\nabla f\left(\mathbf{x}^{t}\right)\right)^{\top} \Delta \mathbf{x}^{t}<0
$$

Step size $\mu_{t}>0$: constant, exact line search, or backtracking search

$$
\text { exact line search : } \quad \mu_{t}:=\arg \min _{\mu>0} f\left(\mathbf{x}^{t}+\mu \Delta \mathbf{x}^{t}\right)
$$

Gradient descent

1. Compute search direction $\Delta \mathbf{x}^{t}=-\nabla f\left(\mathbf{x}^{t}\right)$ (special case of descent method)
2. Choose a step size $\mu_{t}>0$
3. Update $\mathbf{x}^{t+1}=\mathbf{x}^{t}+\mu_{t} \Delta \mathbf{x}^{t}$
4. Iterate until stopping criterion is satisfied

- converges with exact or backtracking line search and upper bounded μ
- convergence rate results: $c \in(0,1)$ depends on m, \mathbf{x}^{0}, and line search linear for strongly convex $f: f\left(\mathbf{x}^{t}\right)-p^{*} \leq c^{t}\left(f\left(\mathbf{x}^{0}\right)-p^{*}\right)$ sublinear for general convex: $f\left(\mathbf{x}^{t}\right)-p^{*} \leq \frac{L}{t}\left(f\left(\mathbf{x}^{0}\right)-p^{*}\right)$
- very simple but typically slow

Example

$$
\min _{\mathbf{x}} x_{1}^{2}+M x_{2}^{2}
$$

where $M>0$

- exact line search
- initialize at $\mathbf{x}^{0}=(M, 1)$

- iterates take the form

$$
\mathbf{x}^{t}=\left(M\left(\frac{M-1}{M+1}\right)^{t},\left(-\frac{M-1}{M+1}\right)^{t}\right)
$$

- fast convergence when M close to 1 ; one step if $M=1$!
- slow, zig-zagging if $M \gg 1$ or $M \ll 1$

Example 2

For $m=100$ and $n=50$, use gradient method (exact line search)

$$
\min _{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}-\sum_{i=1}^{m} \log \left(\mathbf{a}_{i}^{\top} \mathbf{x}-b_{i}\right)
$$

Figure: Function value convergence for gradient method [Z.-Q. Luo's slides]

Steepest descent direction

Term $\nabla f(\mathbf{x})^{\top} \mathbf{z}$ gives approximate decrease in f for small \mathbf{z}

$$
f(\mathbf{x}+\mathbf{z}) \approx f(\mathbf{x})+\nabla f(\mathbf{x})^{\top} \mathbf{z}
$$

Find the direction of steepest descent (SD):

$$
\mathbf{z}_{\mathbf{s d}}=\arg \min _{\|\mathbf{z}\| \leq 1} \nabla f(\mathbf{x})^{\top} \mathbf{z}
$$

Euclidean norm $\|\mathbf{z}\|_{2}: \mathbf{z}_{\text {sd }}=-\nabla f(\mathbf{x}) /\|\nabla f(\mathbf{x})\|_{2}$ (gradient descent)

Quadratic norm $\|\mathbf{z}\|_{\mathbf{P}}:=\sqrt{\mathbf{z}^{\top} \mathbf{P z}}$ for some $\mathbf{P} \succeq \mathbf{0}$

$$
\mathbf{z}_{\mathrm{sd}}=-\left(\nabla f(\mathbf{x})^{\top} \mathbf{P}^{-1} \nabla f(\mathbf{x})\right)^{-1 / 2} \mathbf{P}^{-1} \nabla f(\mathbf{x})
$$

Equivalent to SD with Euclidean norm on transformed variables $\mathbf{y}=\mathbf{P}^{1 / 2} \mathbf{x}$

Geometric interpretation

move as far as possible in direction $-\nabla f(\mathbf{x})$, while staying inside the unit ball

Figure: Boyd's slides

Choosing the norm

Figure: choice of \mathbf{P} strongly affects speed of convergence [Boyd's slides]

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\left\{\mathbf{x}:\left\|\mathbf{x}-\mathbf{x}^{t}\right\|_{\mathbf{P}}=1\right\}$

Pure Newton step and interpretations

Newton update: $\mathrm{x}^{+}=\mathrm{x}+\mathbf{v}$

$$
\text { Newton step: } \quad \mathbf{v}=-\nabla^{2} f(\mathbf{x})^{-1} \nabla f(\mathbf{x})
$$

minimizes second-order expansion of f at \mathbf{x}

$$
f(\mathbf{x})+\nabla f(\mathbf{x})^{\top}\left(\mathbf{x}^{+}-\mathbf{x}\right)+\frac{1}{2}\left(\mathbf{x}^{+}-\mathbf{x}\right)^{\top} \nabla^{2} f(\mathbf{x})\left(\mathbf{x}^{+}-\mathbf{x}\right)
$$

solves linearized optimality condition

$$
\nabla f(\mathbf{x})+\nabla^{2} f(\mathbf{x})\left(\mathbf{x}^{+}-\mathbf{x}\right)=\mathbf{0}
$$

Global behavior of Newton iterations

Example: $f(x)=\log \left(e^{x}+e^{-x}\right)$, starting at $x^{0}=-1.1$

k	$x^{(k)}$	$f\left(x^{(k)}\right)-f^{\star}$
1	$-1.129 \cdot 10^{0}$	$5.120 \cdot 10^{-1}$
2	$1.234 \cdot 10^{0}$	$5.349 \cdot 10^{-1}$
3	$-1.695 \cdot 10^{0}$	$6.223 \cdot 10^{-1}$
4	$5.715 \cdot 10^{0}$	$1.035 \cdot 10^{0}$
5	$-2.302 \cdot 10^{4}$	$2.302 \cdot 10^{4}$

Figure: pure Newton iterations may diverge! [Z.Q. Luo's slides]

Newton method

Also called damped or guarded Newton method

1. Compute Newton direction $\Delta \mathbf{x}^{t}=-\left[\nabla^{2} f\left(\mathbf{x}^{t}\right)\right]^{-1} \nabla f\left(\mathbf{x}^{t}\right)$
2. Choose step size μ_{t}
3. Update $\mathbf{x}^{t+1}=\mathbf{x}^{t}+\mu_{t} \Delta \mathbf{x}^{t}$
4. Iterate until stopping criterion is satisfied

- global convergence with backtracking or exact line search
- quadratic local convergence
- affine invariance:

Newton iterates for $\min _{\mathbf{x}} f(\mathbf{x})$ and $\min _{\mathbf{z}} f(\mathbf{T z})$ for invertible \mathbf{T} are equivalent and $\mathbf{x}^{t}=\mathbf{T} \mathbf{z}^{t}$

Convergence results

assumptions: $m \mathbf{I} \preceq \nabla^{2} f(\mathbf{x}) \preceq M \mathbf{I}$ and Lipschitz condition

$$
\left\|\nabla^{2} f(\mathbf{x})-\nabla^{2} f(\mathbf{y})\right\| \leq L\|\mathbf{x}-\mathbf{y}\|
$$

1. damped Newton phase: $\|\nabla f(\mathbf{x})\|_{2} \geq \eta_{1}: f\left(\mathbf{x}^{+}\right) \leq f(\mathbf{x})-\eta_{2}$, hence

$$
\# \text { iterations } \leq \eta_{2}^{-1}\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right)
$$

2. quadratically convergent phase: $\|\nabla f(\mathbf{x})\|_{2}<\eta_{1}$

$$
\# \text { iterations } \leq \log _{2} \log _{2}\left(\eta_{3} / \epsilon\right)
$$

total \# iterations for reaching accuracy $f\left(\mathbf{x}^{t}\right)-f^{*} \leq \epsilon$ bounded by:

$$
\eta_{2}^{-1}\left(f\left(\mathbf{x}^{0}\right)-f^{*}\right)+\log _{2} \log _{2}\left(\eta_{3} / \epsilon\right)
$$

$\eta_{1}, \eta_{2}, \eta_{3}$ depend on m, M, L (waived for self-concordant functions)

Example

$$
f(\mathbf{x})=-\sum_{n=1}^{10,000} \log \left(1-x_{n}^{2}\right)-\sum_{i=1}^{100,000} \log \left(b_{i}-\mathbf{a}_{i}^{\top} \mathbf{x}\right)
$$

Figure: Two-phase convergence of Newton method [Boyd's slides]

- $\mathbf{x} \in \mathbb{R}^{10,000}$ with sparse $\mathbf{a}_{i}{ }^{\prime}$ s

Minimization with linear equality constraints

Linearly-constrained optimization problem:

$$
\min _{\mathbf{x}}\{f(\mathbf{x}): \mathbf{A} \mathbf{x}=\mathbf{b}\}
$$

Approach 1: solve reduced or eliminated problem

$$
\min _{\mathbf{z}} f\left(\mathbf{F z}+\mathbf{x}_{0}\right)
$$

where $\mathbf{A} \mathbf{x}_{0}=\mathbf{b}$ and $\operatorname{range}(\mathbf{F})=\operatorname{null}(\mathbf{A})$

Approach 2: Find feasible update that minimizes second-order approximation

$$
\begin{array}{rl}
\Delta \mathbf{x}:=\arg \min _{\mathbf{v}} & f(\mathbf{x})+\nabla f(\mathbf{x})^{\top} \mathbf{v}+\frac{1}{2} \mathbf{v}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{v} \\
\text { s.to } & \mathbf{A}(\mathbf{x}+\mathbf{v})=\mathbf{b}
\end{array}
$$

[Q: How can this be solved?]

