
ECE 5314: Power System Operation & Control

Lecture 11: Control of Power Generation

Vassilis Kekatos

R5 A. R. Bergen and V. Vittal, Power Systems Analysis, Prentice Hall, 2002, Chapter 11.

R2 A. Gomez-Exposito, A. J. Conejo, C. Canizares, Electric Energy Systems: Analysis and

Operation, Chapter 9.

R1 A. J. Wood, B. F. Wollenberg, and G. B. Sheble, Power Generation, Operation, and Control,

Wiley, 2014, Chapter 10.

Lecture 12 V. Kekatos 1



Generation control hierarchy

Primary control: governor mechanism or droop control

response: fast (1-100 sec)

input: frequency

goals: a) rebalance power; b) stabilize/synchronize frequency

Secondary control: automatic generation control (AGC)

response: slower (1-2 min)

input: frequency and inter-area inter-changes

goal: a) restore nominal frequency; b) rebalance inter-area power exchanges

Tertiary control: economic dispatch, optimal power flow

response: 5-10 min (unit commitment over day)

input: demand and generation bids

goal: economical and secure dispatch of generation units
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Laplace transform and basic properties

X(s) := L[x(t)] =

∫ ∞
0

x(t)e−stdt

• Unit step function: L[u(t)] = 1
s

• Differentiation: L[ẋ(t)] = sX(s)− x(0)

• Integration: L[
∫ t

0
x(τ)dτ ] = X(s)

s

• Frequency shift: L[eatx(t)] = X(s− a)

• Final value theorem (FVT)

lim
t→+∞

x(t) = lim
s→0+

sX(s)

[Proof: take lims→0+ on both sides of differentiation property]
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Basic structure of feedback controller

System output in Laplace domain:

Y (s) = H(s)C(s)

= H(s)Hc(s)E(s)

= H(s)Hc(s)(X(s)− Y (s))

Input-output transfer function: Y (s)

X(s)
=

Hc(s)H(s)

1 +Hc(s)H(s)
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Proportional (P-type) controller

• Special controller: Hc(s) = G > 0 (simple gain)

• What is the output y(t) for a unit step input x(t) = u(t)?

• If x(t) = u(t), then X(s) = 1
s

and Y (s) = 1
s

GH(s)
1+GH(s)

• Output of controlled system in steady-state [FVT]

y(+∞) = lim
t→+∞

y(t) = lim
s→0+

sY (s) =
1

1 + [GH(0)]−1
< 1
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Proportional-integral (PI-type) controller

• Special controller: gain plus integrator

c(t) = Ge(t) +A

∫ t

0

e(τ)dτ ⇐⇒ Hc(s) = G+
A

s

• System output for unit step input: Y (s) = 1
s

[sG+A]H(s)
[s(G+1)+A]H(s)

• Output of controlled system in steady-state [FVT]

y(+∞) = lim
t→+∞

y(t) = lim
s→0+

sY (s) =
AH(0)

AH(0)
= 1

• Output of controlled system reaches desired value
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Rotor dynamics

Control mechanical power output of prime mover (steam/gas/water turbine)

to adjust the electrical power delivered by a generator

• Tm: net mechanical torque applied to shaft

• Te: net electric torque applied to shaft (ignoring Ohmic losses)

• θ(t) = ω0t+ δ(t): angular position [rad]

ω0: nominal rotor speed (60Hz for two poles); δ(t) instantaneous phase

• ω(t) = θ̇(t) = ω0 + δ̇(t): rotor speed [rad/sec]

• ω̇(t) = θ̈(t) = δ̈(t): rotor acceleration [rad/sec2]
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Swing equation

• Second Newton’s law [cf. F = ma] in rotational motion (ignoring friction)

Iθ̈(t) = Tm − Te (1)

where I moment of inertia of rotating masses

• Recall power = force × speed: P = (Tm − Te)ω

• Multiplying (1) by ω(t) yields the swing equation:

Mθ̈(t) = Mω̇(t) = Pm − Pe

where M := Iω is the angular momentum of rotating masses
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Effect of power disturbances

Mω̇(t) = Pm − Pe

If no disturbances (steady state)

• Pm = P 0
m and Pe = P 0

e with P 0
m = P 0

e

• ω̇(t) = 0 ⇒ ω(t) = ω0

• constant rotor speed

Consider small disturbances Pm = P 0
m + ∆Pm and Pe = P 0

e + ∆Pe

• if ∆Pm < ∆Pe ⇒ ω̇(t) < 0

• frequency decreases

• If ω(t) = ω0 + ∆ω(t), then ω̇(t) = ∆ω̇(t) and

M∆ω̇(t) = ∆Pm(t)−∆Pe(t)
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Generator modeling

• Time-domain behavior (differential equation)

M∆ω̇(t) = ∆Pm(t)−∆Pe(t)

• Laplace-domain description

∆ω(s) =
1

Ms
[∆Pm(s)−∆Pe(s)]

• Assume angle deviations in internal and terminal voltage of generator are

approximately equal
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Generator plus load model

• Power consumed by load (frequency (in)dependent components)

∆Pe = ∆PL + ∆PL,ω = ∆PL +D∆ω (D > 0)

• Power consumption in motors increases with frequency due to friction

• Laplace-domain description

Ms∆ω(s) = ∆Pm(s)−∆PL(s)−D∆ω(s)

• Sensitivity factor D captures both motor loads and generation friction
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Example
• Find the frequency change for a sudden load increase of 0.01 pu

• Output frequency in Laplace domain (partial fraction expansion)

∆ω(s) =
1
M

s+ D
M

(
0− ∆PL

s

)
= −∆PL

D

[
1

s
− 1

s+ D
M

]
• Output frequency in time domain

∆ω(t) = −∆PL

D

[
1− e−

D
M

t
]
u(t) = −0.0125

[
1− e−0.1754t]u(t)

• Frequency stabilized due to load: ∆ω(+∞) = −∆PL
D

= −0.0125 Hz

Lecture 12 V. Kekatos 12



Turbine-generator modeling

TG (Tch) time constant for governor (turbine); R is the droop

voltage magnitude control has been ignored

Input-output response: ∆ω(s)

∆Pe(s)
= −

1
Ms

1 +
(

1
Ms

) (
1
R

) (
1

1+sTG

)(
1

1+sTch

)
If ∆Pe(t) = ∆Pe · u(t), then frequency changes to ∆ω(+∞) = −R ·∆Pe
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Droop characteristic

• Power output change in response to a frequency change ∆P i
e = − 1

Ri
∆ω

• Related to participation factors from economic dispatch with quadratic

costs!
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Speed-changer settings

• Setpoint is the basic control variable to a generation unit

• Governor can provide f0 for any desired unit output by changing setpoint

• Final frequency for setpoint c(t) = C · u(t) and ∆Pe(t) = ∆Pe · u(t)

∆ω(+∞) = R(C −∆Pe)
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Incorporating load

Unit output is connected to load ∆Pe = ∆PL +D∆ω

Input-output response: ∆ω(s)

∆PL(s)
= −

1
Ms+D

1 +
(

1
Ms+D

) (
1
R

) (
1

1+sTG

)(
1

1+sTch

)
Final frequency for setpoint c(t) = C · u(t) and ∆PL(t) = ∆PL · u(t)

∆ω(+∞) =
C −∆PL

1
R

+D
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Transmission line model

• Active power on purely inductive line between buses 1 and 2

P12 =
V1V2

x12
sin(θ1 − θ2)

• Consider voltage angle deviations θi = θ0
i + ∆θi

• First-order approximation: sin θ ' sin θ0 + cos θ0(θ − θ0) ⇒

sin(θ1 − θ2) ' sin(θ0
1 − θ0

2) + cos(θ0
1 − θ0

2)(∆θ1 −∆θ2) [∆θ1 −∆θ2 ' 0]

• Deviation in line power flow

P12 =
V1V2

x12
sin(θ0

1 − θ0
2) + T 0

12(∆θ1 −∆θ2) = P 0
12 + ∆P12

where T 0
12 := V1V2

x12
cos(θ0

1 − θ0
2) is line stiffness at nominal voltages
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Deviation in line power flow

Time-domain description

∆P12(t) = T 0
12(∆θ1(t)−∆θ2(t))

Laplace-domain description; due to ω(t) = θ̇(t) ⇒ ω(s) = sθ(s)

∆P12(s) =
T 0

12

s
(∆ω1(s)−∆ω2(s))

Define GM1(s) :=
(

1
1+sTG1

)
·
(

1
1+sTch1

)
and GP1(s) := 1

M1s+D1
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Two-bus system

What happens when ∆PL1(t) = ∆PL1 · u(t) and ∆PL2(t) = ∆PL2 · u(t)?
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Frequency deviations in two-bus system

Define Hi(s) := GPi(s)
1+GPi(s)GMi(s)/Ri

for i = 1, 2 with Hi(0) :=
(
Di + 1

Ri

)−1

After some algebra, we get the system of linear differential equations 1 + H1
s
T12 −H1

s
T12

−H2
s
T12 1 + H2

s
T12

 ∆ω1

∆ω2

 =

 −H1
s

∆PL1

−H2
s

∆PL2



with solution:
∆ω1(s) =

1

s

H1∆PL1(s+H2T12) +H2∆PL2H1T12

s+ (H1 +H2)T12

Final frequency deviation: ∆ω1(+∞) = ∆ω2(+∞) = − ∆PL1+∆PL2

D1+ 1
R1

+D2+ 1
R2

• deviations converge to the same value

• smaller deviation than if buses were not connected T12 = 0 and there is

load diversity (i.e., ∆PL1 > 0 and ∆PL2 < 0)
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Line flow deviations in two-bus system

To find steady-state power flow deviation, exploit the fact

∆ω2 = GP2

(
∆P12 −

∆PL2

s
− GM2∆ω2

R2

)

Solve for ∆P12 and apply FVT [∆ω2(+∞) found in previous slide]

∆P12(+∞) =
∆PL2(D1 + 1

R1
)−∆PL1(D2 + 1

R2
)

D1 + 1
R1

+D2 + 1
R2

• If ∆PL1 > 0 and ∆PL2 = 0, then P12 decreases from the scheduled value

• No contradiction with slide 20:

∆P12(+∞) = T12(∆ω1(0)−∆ω2(0))

where ∆ωi(0) 6= 0 and can be found from initial value theorem
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Secondary frequency control

How to maintain frequency at the nominal value?

Single-area system with primary and secondary frequency control

• We can show that ∆ω(+∞) = 0

• Setpoint adjusted to C(+∞) = ∆PL (without knowing ∆PL!)

• Larger K yields faster but more unstable response
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Multi-area systems

Practically, power grids are partitioned in control areas

Each control area can be thought of as a bus in the previous analysis

Secondary frequency control should respect pool operations:

• each control area eventually balances its own load

• power flow schedules across areas remain unchanged

• frequency maintained at nominal value

Currently implemented using Area Control Error (ACE) signals:

ACEi =
∑
j:i∼j

∆Pij +Bi∆ωi

where Bi > 0 is the frequency bias setting for area i
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Tie-line bias control

Power system with two control areas [Power system analysis, A. R. Bergen, V. Vittal]

It can be shown that ∆ω1(+∞) = ∆ω2(+∞) = 0

If Bi = Di + 1
Ri

for i = 1, 2, then ∆P12(+∞) = 0
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