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Generation control hierarchy

Primary control: governor mechanism or droop control
response: fast (1-100 sec)
input: frequency

goals: a) rebalance power; b) stabilize/synchronize frequency

Secondary control: automatic generation control (AGC)
response: slower (1-2 min)
input: frequency and inter-area inter-changes

goal: a) restore nominal frequency; b) rebalance inter-area power exchanges

Tertiary control: economic dispatch, optimal power flow
response: 5-10 min (unit commitment over day)
input: demand and generation bids

goal: economical and secure dispatch of generation units
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Laplace transform and basic properties

Unit step function: Llu(t)] = %

Differentiation: L[z(t)] = sX(s) — z(0)

X(s)

Integration: ,C[fot z(r)dr]) =

e Frequency shift: L[e*z(t)] = X(s — a)

Final value theorem (FVT)
tlggloo z(t) = sl_lfél+ sX(s)

[Proof: take lim,_,o+ on both sides of differentiation property]
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Basic structure of feedback controller

error controller’s system
+ signal output output
X(s) H_.(s) > H(s) >Y(s)
1 E(s) C(s)
controller system
System output in Laplace domain:
Y(s) = H(s)C(s)
= H(s)Hc(s)E(s)
= H(s)Hc(s)(X(s) —Y(s))
Input-output transfer function: Y{(s) He(s)H(s)
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Proportional (P-type) controller
e Special controller: Hc(s) = G > 0 (simple gain)

e What is the output y(¢) for a unit step input z(t) = u(t)?
4 2(1)

y(t)

o If z(t) = u(t), then X(s) = % and Y(s) = %15515{5()5)

e Output of controlled system in steady-state [FVT]

. . 1
y(too) = dim y(t) = tm sY(s) = T amorT <1

Lecture 12 V. Kekatos



Proportional-integral (Pl-type) controller

Special controller: gain plus integrator

c(t) = Ge(t) + A/t e(r)dr <= H.(s)=G+ é

1 [sG+AJH(s)
s [s(G+1)+A]H(s)

System output for unit step input: Y (s) =

Output of controlled system in steady-state [FVT]

y(too) = lim y(t) = lim s¥(s) = AH(0)

Output of controlled system reaches desired value
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Rotor dynamics

Control mechanical power output of prime mover (steam/gas/water turbine)

to adjust the electrical power delivered by a generator

e T,,: net mechanical torque applied to shaft

Te: net electric torque applied to shaft (ignoring Ohmic losses)

Turbine Tetec

Mechanical .
ooy > .- —— Generator | - Efectrical energy
Tmnh

0(t) = wot + &(t): angular position [rad]
wo: nominal rotor speed (60Hz for two poles); §(t) instantaneous phase
e w(t) = 0(t) = wo + 4(t): rotor speed [rad/sec]

o W(t) = 6(t) = 5(t): rotor acceleration [rad/sec?]
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Swing equation

e Second Newton’s law [cf. F' = ma] in rotational motion (ignoring friction)
I6(t) = T, — T (1)

where I moment of inertia of rotating masses

o Recall power = force x speed: P = (T, — Te)w

e Multiplying (1) by w(t) yields the swing equation:

M@(t) = MW(t) :Prn _Pe

where M := [w is the angular momentum of rotating masses
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Effect of power disturbances
Mw(t) = Py — P
If no disturbances (steady state)
o P, =P and P, = P? with P%, = P?
e wt)=0 = w(t)=wo

e constant rotor speed

Consider small disturbances P, = P2 + AP,, and P, = P? + AP.
o if AP, <AP. = w(t)<0
o frequency decreases

o If w(t) = wo + Aw(t), then w(t) = Aw(t) and
MAW(t) = APy, (t) — AP.(t)
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Generator modeling

e Time-domain behavior (differential equation)

MAG(E) = AP (t) — AP (2)

o Laplace-domain description

Aw(s) = 1o [APu(s) — AP.(5)
1 Aw

Ms

generator

e Assume angle deviations in internal and terminal voltage of generator are

approximately equal
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Generator plus load model

e Power consumed by load (frequency (in)dependent components)
AP, = APr, + APLM = AP, 4+ DAw (D > 0)

e Power consumption in motors increases with frequency due to friction

e Laplace-domain description

MsAw(s) = APp(s) — APL(s) — DAw(s)

AP, t+ 1 Aw
Ms+ D ’

APy,

e Sensitivity factor D captures both motor loads and generation friction
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Example
o Find the frequency change for a sudden load increase of 0.01 pu

AP,, + 1 Aw
4.565s + 0.8

e Output frequency in Laplace domain (partial fraction expansion)

1

i AP AP

Aw(s):s_f2 (07 SL):, DL
M

1 1

S 5—}—%

e Qutput frequency in time domain

Aw(t) =

- AIJ;L [1 - e‘%t] ult) = —0.0125 [1 — e~ 1754] y ()

e Frequency stabilized due to load: Aw(+o0) = f% = —0.0125 Hz
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Turbine-generator modeling

+ 1 N 1 1 Aw
setpoint "5 1+ 5T | APy | 1+ 5T Ms :
governor turbine generator
1
R
P-controller

Te (Ten) time constant for governor (turbine); R is the droop

voltage magnitude control has been ignored
Aw(s) _ i
AP.(s)
©) 1+ () @) () ()

If AP.(t) = AP. - u(t), then frequency changes to Aw(4+00) = —R - AP,

Input-output response:
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Droop characteristic

Frequency Frequency

P, Py Py 7,
Unit 1 output Unit 2 output
e Power output change in response to a frequency change AP! = — 2 Aw

o Related to participation factors from economic dispatch with quadratic

costs!
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Speed-changer settings

e Setpoint is the basic control variable to a generation unit
e Governor can provide fo for any desired unit output by changing setpoint

Nominal speed
at 0.5 pu output Nominai speed for full
output

Load reference setting
for nominal speed at
no load | 1

0.5 1.0

o Final frequency for setpoint ¢(t) = C - u(t) and AP.(t) = AP, - u(t)

Aw(+o00) = R(C — AP,)
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Incorporating load

Unit output is connected to load AP, = AP, + DAw

APy,
+ > 1 N 1 + E_ 1 Aw _
setpoint ' | L+ 5T6 | APpve | 1+ 5T | AP, Ms+D -
governor turbine gen+ load
1
B [€
P-controller
A 1
Input-output response: w(s) _ Ms+D

APL(s) 14 (M51+D) (%) (1+;TG) (1+iTch)

Final frequency for setpoint ¢(t) = C - u(t) and APr(t) = APL - u(t)

C - AP
Aw(400) = fDL
R
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Transmission line model

o Active power on purely inductive line between buses 1 and 2

P12 = Vle2 sin(91 — 92)

T12

o Consider voltage angle deviations §; = 69 + A#f;

e First-order approximation: sin 6 ~ sin 6y + cos 6o (6 — 6o) =

sin(fy — 02) ~ sin(0 — 69) + cos(6 — 69) (A0, — ABy)  [A0;, — Aby ~ 0]

e Deviation in line power flow

s .
Py = xl 2 sin(69 — 69) 4+ T1o (Al — Abs) = Py + APrs
12
where T, := ‘;11‘;2 COS(@? — 08) is line stiffness at nominal voltages
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Deviation in line power flow
Time-domain description

APi(t) = Tiz (A0 (t) — Aba(t))

Laplace-domain description; due to w(t) = 8(t) = w(s) = s0(s)

70
APis(s) = f (Awi(s) — Awz(s))

—+ AUJ1 - 1
setpoint 1 S
- __ 1 1 o 1
Define Gari(s) := (H—sTGl) . (1+5Tch1) and Gpi(s) = 357D,
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Two-bus system

+ Aw 1 |A6
Gri(s) 1 - 1
setpoint 1
’+
AP,
12 Tia D)
A —
+
+ + A 1
Gria(s) Gra(s) |—23] =
setpoint 2 17 _ AP 5 | Ab,
AP,
1, ”
R»

What happens when APp1(t) = APr1 - u(t) and APra(t) = APpo - u(t)?
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Frequency deviations in two-bus system

-1
. Gp;(s s H —
Define H;(s) := WG(]&(M for ¢ = 1,2 with H;(0) := (Di + R%)

After some algebra, we get the system of linear differential equations

1+ %le —%Tm Aw _%APLl
7, 1+ 2T, Aws — 2 AP,
with solution: 1 HiAPri(s + H2Ti2) + HyAProHiTio
Awi(s) = =
S 5+(H1+H2)T12

Final frequency deviation: Aw;(4+00) = Aws(+00) = —%
Ry Rs

e deviations converge to the same value

e smaller deviation than if buses were not connected 772 = 0 and there is

load diversity (i.e., APr1 > 0 and APz < 0)
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Line flow deviations in two-bus system

To find steady-state power flow deviation, exploit the fact

Aws = Gpa (AP12 _ A]:LZ - G]\/[QAU_)Q)

Ry

Solve for APy and apply FVT [Awz(+00) found in previous slide]

APra (D1 + %1) — APri(D2 + %2)
D1+ 5+ D2 + 75

AP12(+OO) =

e If APy > 0 and APrs =0, then P> decreases from the scheduled value

e No contradiction with slide 20:
APi2(+00) = T12(Aw1(0) — Aw2(0))

where Aw;(0) # 0 and can be found from initial value theorem
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Secondary frequency control

How to maintain frequency at the nominal value?

APp
setpoint + 1 1 4 E— 1 Aw
y 1+ 5Tg | APuve | 15T | AP, Ms+ D
governor turbine gent+ load

primary P-control

secondary Pl-control

a | = ==

Single-area system with primary and secondary frequency control

e We can show that Aw(+00) =0
e Setpoint adjusted to C'(+00) = APy, (without knowing APr!)

o Larger K yields faster but more unstable response
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Multi-area systems
Practically, power grids are partitioned in control areas
Each control area can be thought of as a bus in the previous analysis

Secondary frequency control should respect pool operations:
e each control area eventually balances its own load
e power flow schedules across areas remain unchanged
e frequency maintained at nominal value
Currently implemented using Area Control Error (ACE) signals:
ACE; = > APy + BiAw;
Jiinvg

where B; > 0 is the frequency bias setting for area i
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Tie-line bias control

Gura(s)

Power system with two control areas [Power system analysis, A. R. Bergen, V. Vittal]

It can be shown that Aw;(+00) = Awz(+00) =0
If B =D; + % for i = 1,2, then APi2(+00) =0
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