ECE 5314: Power System Operation \& Control

Lecture 0: Mathematical Background

Vassilis Kekatos

R3 Boyd and Vandenberghe, Convex Optimization, Appendix A.

Vectors

- Notation for vectors: $\mathbf{b}=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{N}\end{array}\right] \in \mathbb{R}^{N}$
- A linear function of \mathbf{x} can be expressed as the inner product:

$$
f_{1}(\mathbf{x})=\sum_{i=1}^{N} b_{i} x_{i}=\mathbf{b}^{\top} \mathbf{x}
$$

where $^{\top}$ denotes transposition, i.e., $\mathbf{b}^{\top}=\left[\begin{array}{lll}b_{1} & \cdots & b_{N}\end{array}\right]$.

- The gradient of a multivariate function is the vector of partial derivatives:

$$
\nabla f(\mathbf{x})=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{N}}
\end{array}\right]^{\top}
$$

Q.0.1 Show that $\nabla f_{1}(\mathbf{x})=\mathbf{b}$.
Q.0.2 Write $f(\mathbf{x})=2 x_{1}+3 x_{2}-x_{4}$ as an inner product and find its gradient
Q.0.3 Express $\sum_{i=1}^{N} x_{i}$ and x_{2} as inner products of \mathbf{x}

Vector norms

A vector norm is a function $\|\cdot\|: \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfying the following three properties for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{N}$, and $a \in \mathbb{R}$:

1. Positive definiteness: $\|\mathbf{x}\| \geq 0$, and $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$
2. Scaling: $\|a \mathbf{x}\|=|a| \cdot\|\mathbf{x}\|$
3. Triangle inequality: $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$

For $\mathbf{x} \in \mathbb{R}^{N}$ and $p \geq 1$,

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

1. $p=2$: Euclidean norm
2. $p=1$: sum-abs-values $\|\mathbf{x}\|_{1}=\sum_{i}\left|x_{i}\right|$
3. $p=\infty$: max-abs-value $\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}=\max _{i}\left|x_{i}\right|$
Q.0.4 Find $\|\mathbf{x}\|_{1},\|\mathbf{x}\|_{2}$, and $\|\mathbf{x}\|_{\infty}$ for $\mathbf{x}=\left[\begin{array}{lll}3 & 0 & -4\end{array}\right]^{\top}$.
Q.0.5 Show that $\mathbf{x}^{\top} \mathbf{x}=\|\mathbf{x}\|_{2}^{2}$.

Norm inequalities

Cauchy-Schwartz inequality

$$
\mathbf{x}^{\top} \mathbf{y} \leq\|\mathbf{x}\|_{2} \cdot\|\mathbf{y}\|_{2}
$$

hold with equality iff \mathbf{x} and \mathbf{y} are linearly dependent.

Hölder's inequality

$$
\mathbf{x}^{\top} \mathbf{y} \leq\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q} \quad \text { for } \quad \frac{1}{p}+\frac{1}{q}=1 \quad \text { and } \quad p \geq 1
$$

Comparing norms $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1}$
Q.0.6 How does Hölder's inequality apply for $p=1$?
Q.0.7 Show all three norms are equal for $\mathbf{x}=\left[\begin{array}{llll}c & 0 & \cdots & 0\end{array}\right]^{\top}$ for any $c \in \mathbb{R}$.

Matrices

Notation for matrices: $\mathbf{A}=\left[\begin{array}{cccc}A_{11} & A_{12} & \cdots & A_{1 M} \\ A_{21} & A_{22} & \cdots & A_{2 M} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N 1} & A_{N 2} & \cdots & A_{N M}\end{array}\right] \in \mathbb{R}^{N \times M}$.
Q.0.8 What is the matrix transpose \mathbf{A}^{\top} ?

Matrix-vector product: If $\mathbf{b}=\mathbf{A x}$ with $\mathbf{A} \in \mathbb{R}^{N \times M}$, then

$$
b_{i}=\sum_{j=1}^{M} A_{i j} x_{j}
$$

If $\mathbf{A}_{:, j}$ denotes the j-th column of \mathbf{A}, verify that

$$
\begin{aligned}
\mathbf{b} & =\mathbf{A} \mathbf{x}=\mathbf{A}_{:, 1} x_{1}+\ldots+\mathbf{A}_{:, M} x_{M} \\
& =\sum_{j=1}^{M} \mathbf{A}_{:, j} x_{j}
\end{aligned}
$$

Quadratic functions

Every homogeneous quadratic function of \mathbf{x} can be expressed as follows

$$
\begin{aligned}
f_{2}(\mathbf{x}) & =\sum_{i=1}^{N} \sum_{j=1}^{N} A_{i j} x_{i} x_{j} \\
& =\sum_{i=1}^{N} x_{i}\left(\sum_{j=1}^{N} A_{i j} x_{j}\right) \\
& =\sum_{i=1}^{N} x_{i}[\mathbf{A} \mathbf{x}]_{i}=\mathbf{x}^{\top} \mathbf{A} \mathbf{x} \quad \text { for some } \quad \mathbf{A} \in \mathbb{R}^{N \times N}
\end{aligned}
$$

Q.0.9 Express $x_{1}^{2}-2 x_{2}^{2}$ as $\mathbf{x}^{\top} \mathbf{A x}$.
Q.0.10 Express $x_{1}^{2}-2 x_{1} x_{2}$ as $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$.
Q.0.11 Express $x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}$ as $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{x}$.
Q.0.12 If \mathbf{A} is symmetric, show that $\nabla f_{2}(\mathbf{x})=2 \mathbf{A x}$.

Square matrices

- Symmetric matrix: $\mathbf{A}=\mathbf{A}^{\top}\left(A_{i j}=A_{j i}\right.$ for all $\left.(i, j)\right)$

Q13: Show that $\mathbf{x}^{\top} \mathbf{A x}=\mathbf{x}^{\top} \mathbf{A}_{s} \mathbf{x}$ where $\mathbf{A}_{s}=\frac{\mathbf{A}+\mathbf{A}^{\top}}{2}$
(\mathbf{A}_{s} is symmetric even if \mathbf{A} is not)

- Trace: $\operatorname{Tr}(\mathbf{A})=\sum_{i=1}^{N} A_{i i}$ (sum of diagonal elements)
- Inner product: $\operatorname{Tr}\left(\mathbf{A B}^{\top}\right)=\sum_{i, j} A_{i j} B_{i j}$
- Orthonormal matrices: $\mathbf{A A}^{\top}=\mathbf{A}^{\top} \mathbf{A}=\mathbf{I}$

Hessian and Jacobian matrices

Hessian matrix: the matrix of second-order partial derivatives of $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$

$$
\nabla^{2} f(\mathbf{x})=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{N} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{N}^{2}}
\end{array}\right]
$$

Q.0.14 For symmetric \mathbf{A}, show that $\nabla^{2} f_{2}(\mathbf{x})=2 \mathbf{A}$.

Jacobian matrix: its rows are the gradients of $\mathbf{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$

$$
\mathbf{J}=\frac{d \mathbf{f}}{d \mathbf{x}}=\left[\begin{array}{c}
\nabla f_{1}(\mathbf{x})^{\top} \\
\vdots \\
\nabla f_{M}(\mathbf{x})^{\top}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{N}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial x_{1}} & \cdots & \frac{\partial f_{M}}{\partial x_{N}}
\end{array}\right]
$$

Q.0.15 What is the Jacobian matrix of $\mathbf{f}(\mathbf{x})=2 \mathbf{A} \mathbf{x}$? Note $\mathbf{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$

Eigenvalue decomposition

- Eigenvalue/eigenvector pair (λ, \mathbf{v}) of \mathbf{A} :

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \text { for } \mathbf{v} \neq \mathbf{0}
$$

- For every diagonalizable A (linearly independent eigenvectors)

$$
\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{-1}
$$

eigenvectors as columns of \mathbf{V}; eigenvalues as entries of diagonal $\boldsymbol{\Lambda}$

- For a symmetric matrix:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\top}
$$

where \mathbf{U} is orthonormal and $\boldsymbol{\Lambda}$ is diagonal and real
Q.0.15 Use MATLAB's eig to compute the eigenvalue decomposition for the symmetric matrices \mathbf{A}_{s} obtained from Q.0.9-Q.0.11.

Singular value decomposition

- Defined even for non-square matrices:

$$
\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}
$$

where \mathbf{U} and \mathbf{V} are orthonormal and $\boldsymbol{\Sigma}$ diagonal matrix

- singular values: $\sigma_{i}=\sqrt{\lambda_{i}\left(\mathbf{A A}^{\top}\right)}$
- left (right) singular vectors are the eigenvectors of $\mathbf{A} \mathbf{A}^{\top}\left(\mathbf{A}^{\top} \mathbf{A}\right)$
- Rank of a matrix: number of non-zero singular values
Q.0.16 Show that $\sigma_{i}(\mathbf{A})=\left|\lambda_{i}(\mathbf{A})\right|$ for symmetric \mathbf{A}.

Positive definite matrices

- If all eigenvalues are positive, symmetric \mathbf{A} is positive definite $\mathbf{A} \succ \mathbf{0}$
- If all eigenvalues are non-negative, symmetric \mathbf{A} is positive semi-definite $\mathrm{A} \succeq \mathbf{0}$
- Square root: $\mathbf{A}^{1 / 2}=\mathbf{U} \sqrt{\boldsymbol{\Lambda}} \mathbf{U}^{\top}$
- Matrix \mathbf{A} is positive (semi-)definite iff $\mathbf{x}^{\top} \mathbf{A x}>0(\geq 0)$ for all \mathbf{x}.
Q.0.17 Are matrices \mathbf{A}_{s} in Q.0.9-Q.0.11 positive definite or positive semi-definite?

Schur complement

For invertible \mathbf{A} and symmetric matrix $\mathbf{X}=\left[\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{B}^{\top} & \mathbf{C}\end{array}\right]$

Define Schur complement as $\mathbf{S}=\mathbf{C}-\mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B}$ (Appendix A.5.5 of R3)
Q.0.18 Show that $\mathbf{X}\left[\begin{array}{l}\mathbf{y}_{1} \\ \mathbf{y}_{2}\end{array}\right]=\left[\begin{array}{c}\mathbf{b}_{1} \\ \mathbf{0}\end{array}\right] \Longleftrightarrow \mathbf{S y}_{1}=\mathbf{b}_{1}$

Properties

1. $\operatorname{det}(\mathbf{X})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{S})$
2. $\mathbf{X} \succ \mathbf{0}$ iff $\mathbf{A} \succ \mathbf{0}$ and $\mathbf{S} \succ \mathbf{0}$
3. Assume $\mathbf{A} \succ \mathbf{0}$. Then $\mathbf{X} \succeq \mathbf{0}$ iff $\mathbf{S} \succeq \mathbf{0}$

Vector spaces of a matrix

Range space: range $(\mathbf{A})=\left\{\mathbf{x}: \mathbf{x}=\mathbf{A v}\right.$ for $\left.\mathbf{v} \in \mathbb{R}^{N}\right\} \subseteq \mathbb{R}^{M}$

- vectors that are linear combinations of the columns of \mathbf{A}
- first $\operatorname{rank}(\mathbf{A})$ columns of \mathbf{U} form a basis for range(\mathbf{A})

Null space: $\operatorname{null}(\mathbf{A})=\{\mathbf{x}: \quad \mathbf{A x}=\mathbf{0}\} \subseteq \mathbb{R}^{N}$

- vectors perpendicular to all rows of \mathbf{A}
- a basis for null(\mathbf{A}) are the last $N-\operatorname{rank}(\mathbf{A})$ columns of \mathbf{V}

Fundamental theorem of linear algebra:

$$
\operatorname{range}(\mathbf{A})=\left(\operatorname{null}\left(\mathbf{A}^{\top}\right)\right)^{\perp}
$$

i.e., the vectors in range(\mathbf{A}) are orthogonal to the vectors in $\operatorname{null}\left(\mathbf{A}^{\top}\right)$

Taylor's Series Expansion and Mean Value Theorem

- Univariate function (yields linear and quadratic approximations)

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\ldots=\sum_{i=1}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

- Multivariate function:

$$
f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right)+\left(\nabla f\left(\mathbf{x}_{0}\right)\right)^{\top}\left(\mathbf{x}-\mathbf{x}_{0}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{\top} \nabla^{2} f\left(\mathbf{x}_{0}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

- Mean value theorem: There exist y and z between x and x_{0} such that

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+f^{\prime}(y)\left(x-x_{0}\right) \\
& f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}(z)}{2}\left(x-x_{0}\right)^{2}
\end{aligned}
$$

MVT generalizes to multivariate functions.

Open and closed sets

- Ball of radius $\epsilon>0$ around \mathbf{x} is $\{\mathbf{y}:\|\mathbf{x}-\mathbf{y}\| \leq \epsilon\}$.
- A point x is an interior point of a set \mathcal{S} if $\mathrm{x} \in \mathcal{S}$ and there exists a ball around x that is contained entirely in \mathcal{S}
- Open set: if every point in \mathcal{S} is an interior point

Examples: $(0,1)$, interior of a circle

- Closed set: if its compliment set is open

Examples: $[0,1]$, circle

- \mathbb{R}^{N} and \emptyset are both closed and open sets!

