ECE 5314: Power System Operation & Control

Lecture 0: Mathematical Background

Vassilis Kekatos

R3 Boyd and Vandenberghe, Convex Optimization, Appendix A.
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Vectors

Q.01
Q.0.2

Q.03

Notation for vectors: b = : e RV

bn

A linear function of x can be expressed as the inner product:
N
fix) = Zbixi —b'x
=1

where T denotes transposition, i.e., b’ = [br -+ bn].
The gradient of a multivariate function is the vector of partial derivatives:

i =2l . A

oz ox N
Show that V f1(x) = b.
Write f(x) = 2x1 + 3x2 — x4 as an inner product and find its gradient

N .
Express 3 ;" , «; and x2 as inner products of x
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Vector norms

A vector norm is a function |.|| : RN — R satisfying the following three

properties for all x,y € RY, and a € R:

1. Positive definiteness: ||x|| > 0, and ||x|| = 0 if and only if x =0
2. Scaling: ||lax|| = |a| - ||x]]

3. Triangle inequality: ||x +y|| < |Ix|| + |ly]]
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¢, norms

For x € RN and p > 1,

n 1/p
lIxllp = (Z |$i|p) -
i—1

1. p = 2: Euclidean norm
2. p=1: sum-abs-values ||x[[1 = >, |=i]

3. p = co: max-abs-value [|X||oc = limp— oo ||X||p = max; |z;|

Q.0.4 Find x|

1, |Ixll2, and [|x[|eo for x =[30 —4].

Q.0.5 Show that x"x = ||x]|3.
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Norm inequalities
Cauchy-Schwartz inequality
-
xy < |xll2 - [lyll2

hold with equality iff x and y are linearly dependent.

Hoélder’s inequality

X'y < [xlollyls for =+>=1 and p>1.

1
q

SRR

Comparing norms [|x]|eo < ||x]|2 < ||x]|1

Q.0.6 How does Holder's inequality apply for p = 17

Q.0.7 Show all three norms are equal for x =[c 0 --- 0]T for any c € R.
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Matrices

Ain A - Aim

. . Az Azz -+ Aam
Notation for matrices: A = € RVXM,

An1  An2 -+ ANm

Q.0.8 What is the matrix transpose A" ?

Matrix-vector product: If b = Ax with A € RV *M  then
M
bi = Z AijZL‘j
j=1
If A.; denotes the j-th column of A, verify that
b=Ax= A;,1I1 + ...+ A;,A[IM

M
= Az
i=1
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Quadratic functions

Every homogeneous quadratic function of x can be expressed as follows

(x)=> > Aymiz;

i=1 j=1
N
(o)

x;[Ax]; = x' Ax for some A ¢ RYV*¥N

Il
'Mz i

<
Il
-

Q.0.9 Express 22 — 222 as x ' Ax.
Q.0.10 Express 2% — 2z172 as x| Ax.
Q.0.11 Express m% — 22172+ 272 as X Ax+b'x

Q.0.12 If A is symmetric, show that V fo(x) = 2Ax.
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Square matrices

e Symmetric matrix.: A = A" (Ai; = Aj; for all (i, 7))

Q13: Show that x' Ax = x ' A;x where A, = #

(A is symmetric even if A is not)
o Trace: Tr(A) = 3"V | Ai; (sum of diagonal elements)
e Inner product: Tr(ABT) = >4, AijBij

o Orthonormal matricess AAT = ATA =1
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Hessian and Jacobian matrices

Hessian matrix: the matrix of second-order partial derivatives of f : RY — R

31‘% Ox10z N
2
Vif(x) =
o2t % f
Oz Ny Oz Bac?v

Q.0.14 For symmetric A, show that V2 fa(x) = 2A.

Jacobian matrix: its rows are the gradients of f : RY — RM

T af af
df VHR) 3ot T Ban
J=— = : = : :
dx :
VfM(x)T %’;‘f gif‘;

Q.0.15 What is the Jacobian matrix of f(x) = 2Ax? Note f : RY — RY
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Eigenvalue decomposition

o Eigenvalue/eigenvector pair (A, v) of A:
Av=Av for v#0
e For every diagonalizable A (linearly independent eigenvectors)
A=VAV™

eigenvectors as columns of V; eigenvalues as entries of diagonal A
e For a symmetric matrix:

A =UAU"

where U is orthonormal and A is diagonal and real

Q.0.15 Use MATLAB's eig to compute the eigenvalue decomposition for the
symmetric matrices A obtained from Q.0.9-Q.0.11.
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Singular value decomposition

e Defined even for non-square matrices:
A=UzV'

where U and V are orthonormal and ¥ diagonal matrix

singular values: o; = \/\;(AAT)

left (right) singular vectors are the eigenvectors of AAT (ATA)

Rank of a matrix: number of non-zero singular values

Q.0.16 Show that o;(A) = |\;(A)]| for symmetric A.
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Positive definite matrices

If all eigenvalues are positive, symmetric A is positive definite A > 0

If all eigenvalues are non-negative, symmetric A is positive semi-definite

A>0

e Square root: AY? = U\/KUT

Matrix A is positive (semi-)definite iff x " Ax > 0 (> 0) for all x.

Q.0.17 Are matrices A in Q.0.9-Q.0.11 positive definite or positive semi-definite?
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Schur complement

A B

For invertible A and symmetric matrix X =
BT C

Define Schur complement as S = C — BT A~'B (Appendix A.5.5 of R3)

Y1 b:
Q.0.18 Show that X = <= Syi1 =Db:

y2 0

Properties
1. det(X) = det(A) det(S)
2.X>0iffA>0and S>>0

3. Assume A > 0. Then X > 0iff S>>0
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Vector spaces of a matrix

Range space: range(A) = {x: x = Av for v € RV} C RM
e vectors that are linear combinations of the columns of A

o first rank(A) columns of U form a basis for range(A)

Null space: null(A) = {x: Ax =0} CRY
e vectors perpendicular to all rows of A

e a basis for null(A) are the last N — rank(A) columns of V
Fundamental theorem of linear algebra:
range(A) = (null(A"))*
i.e., the vectors in range(A) are orthogonal to the vectors in null(A ")
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Taylor's Series Expansion and Mean Value Theorem

e Univariate function (yields linear and quadratic approximations)

17" Zo ) ) o .
Fl@) = Flao)+f (o) (a0t T o) :ZfTﬂ%Ho)

e Multivariate function:
1
F(x) & f(x0) + (Vf(x0)) " (x = x0) + 5(x= x0) " V2 f (x0) (x — %0)
o Mean value theorem: There exist y and z between x and x( such that

f@) = f(zo) + f'(y)(z — zo)
f@) = f(zo) + f'(z0)(x — o) +

MVT generalizes to multivariate functions.
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Open and closed sets

e Ball of radius € > 0 around x is {y : [|[x — y|| < €}.

e A point x is an interior point of a set S if x € S and there exists a ball

around x that is contained entirely in S

e Open set: if every point in S is an interior point

Examples: (0, 1), interior of a circle

o Closed set: if its compliment set is open

Examples: [0, 1], circle

o R” and () are both closed and open sets!
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