ECE 5314: Power System Operation & Control

Lecture 0: Mathematical Background

Vassilis Kekatos

R3 Boyd and Vandenberghe, Convex Optimization, Appendix A.

Vectors

• Notation for vectors:
$$\mathbf{b} = \left[egin{array}{c} b_1 \\ \vdots \\ b_N \end{array}
ight] \in \mathbb{R}^N$$

A linear function of x can be expressed as the inner product:

$$f_1(\mathbf{x}) = \sum_{i=1}^N b_i x_i = \mathbf{b}^{\top} \mathbf{x}$$

where $^{\top}$ denotes transposition, i.e., $\mathbf{b}^{\top} = [b_1 \ \cdots \ b_N]$.

• The gradient of a multivariate function is the vector of partial derivatives:

$$\nabla f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1} \cdots \frac{\partial f}{\partial x_N} \right]^{\top}$$

- Q.0.1 Show that $\nabla f_1(\mathbf{x}) = \mathbf{b}$.
- Q.0.2 Write $f(\mathbf{x}) = 2x_1 + 3x_2 x_4$ as an inner product and find its gradient
- Q.0.3 Express $\sum_{i=1}^{N} x_i$ and x_2 as inner products of \mathbf{x}

Lecture 0

Vector norms

A vector norm is a function $\|.\|: \mathbb{R}^N \to \mathbb{R}$ satisfying the following three properties for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^N$, and $a \in \mathbb{R}$:

- 1. Positive definiteness: $\|\mathbf{x}\| \ge 0$, and $\|\mathbf{x}\| = 0$ if and only if $\mathbf{x} = \mathbf{0}$
- 2. Scaling: $||a\mathbf{x}|| = |a| \cdot ||\mathbf{x}||$
- 3. Triangle inequality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$

ℓ_p norms

For $\mathbf{x} \in \mathbb{R}^N$ and $p \geq 1$,

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}.$$

- 1. p=2: Euclidean norm
- 2. p=1: sum-abs-values $\|\mathbf{x}\|_1 = \sum_i |x_i|$
- 3. $p = \infty$: max-abs-value $\|\mathbf{x}\|_{\infty} = \lim_{p \to \infty} \|\mathbf{x}\|_p = \max_i |x_i|$
- Q.0.4 Find $\|\mathbf{x}\|_1$, $\|\mathbf{x}\|_2$, and $\|\mathbf{x}\|_{\infty}$ for $\mathbf{x} = [3\ 0\ -4]^{\top}$.
- Q.0.5 Show that $\mathbf{x}^{\top}\mathbf{x} = \|\mathbf{x}\|_2^2$.

Norm inequalities

Cauchy-Schwartz inequality

$$\mathbf{x}^{\top}\mathbf{y} \leq \|\mathbf{x}\|_2 \cdot \|\mathbf{y}\|_2$$

hold with equality iff x and y are linearly dependent.

Hölder's inequality

$$\mathbf{x}^{\top}\mathbf{y} \leq \|\mathbf{x}\|_p \|\mathbf{y}\|_q \quad \text{for} \quad \frac{1}{p} + \frac{1}{q} = 1 \quad \text{and} \quad p \geq 1.$$

Comparing norms $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_2 \leq \|\mathbf{x}\|_1$

- Q.0.6 How does Hölder's inequality apply for p = 1?
- Q.0.7 Show all three norms are equal for $\mathbf{x} = [c \ 0 \ \cdots \ 0]^{\top}$ for any $c \in \mathbb{R}$.

Lecture 0

Matrices

$$\text{Notation for matrices:} \quad \mathbf{A} = \left[\begin{array}{cccc} A_{11} & A_{12} & \cdots & A_{1M} \\ A_{21} & A_{22} & \cdots & A_{2M} \\ \vdots & \vdots & \ddots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NM} \end{array} \right] \in \mathbb{R}^{N \times M}.$$

Q.0.8 What is the matrix transpose A^{\top} ?

Matrix-vector product: If $\mathbf{b} = \mathbf{A}\mathbf{x}$ with $\mathbf{A} \in \mathbb{R}^{N \times M}$, then

$$b_i = \sum_{j=1}^{M} A_{ij} x_j$$

If $A_{:,i}$ denotes the j-th column of A, verify that

$$\mathbf{b} = \mathbf{A}\mathbf{x} = \mathbf{A}_{:,1}x_1 + \ldots + \mathbf{A}_{:,M}x_M$$
$$= \sum_{j=1}^{M} \mathbf{A}_{:,j}x_j.$$

Quadratic functions

Every homogeneous $quadratic\ function\ of\ x$ can be expressed as follows

$$f_2(\mathbf{x}) = \sum_{i=1}^{N} \sum_{j=1}^{N} A_{ij} x_i x_j$$

$$= \sum_{i=1}^{N} x_i \left(\sum_{j=1}^{N} A_{ij} x_j \right)$$

$$= \sum_{i=1}^{N} x_i [\mathbf{A} \mathbf{x}]_i = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \quad \text{for some} \quad \mathbf{A} \in \mathbb{R}^{N \times N}$$

- Q.0.9 Express $x_1^2 2x_2^2$ as $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$.
- Q.0.10 Express $x_1^2 2x_1x_2$ as $\mathbf{x}^{\top}\mathbf{A}\mathbf{x}$.
- Q.0.11 Express $x_1^2 2x_1x_2 + 2x_2$ as $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b}^{\top} \mathbf{x}$.
- Q.0.12 If **A** is symmetric, show that $\nabla f_2(\mathbf{x}) = 2\mathbf{A}\mathbf{x}$.

Square matrices

• Symmetric matrix: $\mathbf{A} = \mathbf{A}^{\top} (A_{ij} = A_{ji} \text{ for all } (i, j))$ Q13: Show that $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \mathbf{x}^{\top} \mathbf{A}_s \mathbf{x}$ where $\mathbf{A}_s = \frac{\mathbf{A} + \mathbf{A}^{\top}}{2}$ (\mathbf{A}_s is symmetric even if \mathbf{A} is not)

- Trace: $Tr(\mathbf{A}) = \sum_{i=1}^{N} A_{ii}$ (sum of diagonal elements)
- Inner product: $\operatorname{Tr}(\mathbf{A}\mathbf{B}^{\top}) = \sum_{i,j} A_{ij} B_{ij}$
- Orthonormal matrices: $AA^{\top} = A^{\top}A = I$

Hessian and Jacobian matrices

Hessian matrix: the matrix of second-order partial derivatives of $f: \mathbb{R}^N \to \mathbb{R}$

$$\nabla^2 f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$

Q.0.14 For symmetric **A**, show that $\nabla^2 f_2(\mathbf{x}) = 2\mathbf{A}$.

Jacobian matrix: its rows are the gradients of $\mathbf{f}: \mathbb{R}^N \to \mathbb{R}^M$

$$\mathbf{J} = \frac{d\mathbf{f}}{d\mathbf{x}} = \begin{bmatrix} \nabla f_1(\mathbf{x})^\top \\ \vdots \\ \nabla f_M(\mathbf{x})^\top \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_M}{\partial x_1} & \cdots & \frac{\partial f_M}{\partial x_N} \end{bmatrix}$$

Q.0.15 What is the Jacobian matrix of $\mathbf{f}(\mathbf{x}) = 2\mathbf{A}\mathbf{x}$? Note $\mathbf{f}: \mathbb{R}^N \to \mathbb{R}^N$

Eigenvalue decomposition

• Eigenvalue/eigenvector pair (λ, \mathbf{v}) of \mathbf{A} :

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 for $\mathbf{v} \neq \mathbf{0}$

• For every diagonalizable A (linearly independent eigenvectors)

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$$

eigenvectors as columns of V; eigenvalues as entries of diagonal Λ

• For a symmetric matrix:

$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}$$

where ${f U}$ is orthonormal and ${f \Lambda}$ is diagonal and real

Q.0.15 Use MATLAB's eig to compute the eigenvalue decomposition for the symmetric matrices ${\bf A}_s$ obtained from Q.0.9-Q.0.11.

Singular value decomposition

• Defined even for non-square matrices:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}$$

where ${\bf U}$ and ${\bf V}$ are orthonormal and ${\bf \Sigma}$ diagonal matrix

- singular values: $\sigma_i = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^\top)}$
- ullet left (right) singular vectors are the eigenvectors of $\mathbf{A}\mathbf{A}^ op (\mathbf{A}^ op \mathbf{A})$
- Rank of a matrix: number of non-zero singular values
- Q.0.16 Show that $\sigma_i(\mathbf{A}) = |\lambda_i(\mathbf{A})|$ for symmetric \mathbf{A} .

Positive definite matrices

- If all eigenvalues are positive, symmetric A is positive definite A > 0
- If all eigenvalues are non-negative, symmetric A is positive semi-definite $\mathbf{A} \succeq \mathbf{0}$
- Square root: $\mathbf{A}^{1/2} = \mathbf{U} \sqrt{\Lambda} \mathbf{U}^{\top}$
- Matrix A is positive (semi-)definite iff $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0 \ (> 0)$ for all \mathbf{x} .
- Q.0.17 Are matrices A_s in Q.0.9-Q.0.11 positive definite or positive semi-definite?

V. Kekatos 12

Schur complement

For invertible
$$A$$
 and $\textit{symmetric}$ matrix $X = \left[\begin{array}{cc} A & B \\ B^\top & C \end{array} \right]$

Define **Schur complement** as $\mathbf{S} = \mathbf{C} - \mathbf{B}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{B}$ (Appendix A.5.5 of R3)

Q.0.18 Show that
$$\mathbf{X} \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{0} \end{bmatrix} \iff \mathbf{S}\mathbf{y}_1 = \mathbf{b}_1$$

Properties

- 1. $det(\mathbf{X}) = det(\mathbf{A}) det(\mathbf{S})$
- 2. $X \succ 0$ iff $A \succ 0$ and $S \succ 0$
- 3. Assume $A \succ 0$. Then $X \succ 0$ iff $S \succ 0$

V. Kekatos 13

Vector spaces of a matrix

Range space: range(
$$\mathbf{A}$$
) = { \mathbf{x} : $\mathbf{x} = \mathbf{A}\mathbf{v}$ for $\mathbf{v} \in \mathbb{R}^N$ } $\subseteq \mathbb{R}^M$

- vectors that are linear combinations of the columns of A
- first rank(A) columns of U form a basis for range(A)

Null space:
$$\operatorname{null}(\mathbf{A}) = \{\mathbf{x} : \mathbf{A}\mathbf{x} = \mathbf{0}\} \subseteq \mathbb{R}^N$$

- vectors perpendicular to all rows of A
- a basis for $\operatorname{null}(\mathbf{A})$ are the last $N \operatorname{rank}(\mathbf{A})$ columns of \mathbf{V}

Fundamental theorem of linear algebra:

$$\mathrm{range}(\mathbf{A}) = (\mathrm{null}(\mathbf{A}^\top))^\perp$$

i.e., the vectors in $\mathrm{range}(\mathbf{A})$ are orthogonal to the vectors in $\mathrm{null}(\mathbf{A}^\top)$

Lecture 0 V. Kekatos 14

Taylor's Series Expansion and Mean Value Theorem

Univariate function (yields linear and quadratic approximations)

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2}(x - x_0)^2 + \dots = \sum_{i=1}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

Multivariate function:

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + (\nabla f(\mathbf{x}_0))^{\top} (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^{\top} \nabla^2 f(\mathbf{x}_0) (\mathbf{x} - \mathbf{x}_0)$$

• Mean value theorem: There exist y and z between x and x_0 such that

$$f(x) = f(x_0) + f'(y)(x - x_0)$$

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(z)}{2}(x - x_0)^2$$

MVT generalizes to multivariate functions.

Open and closed sets

- Ball of radius $\epsilon > 0$ around \mathbf{x} is $\{\mathbf{y} : \|\mathbf{x} \mathbf{y}\| \le \epsilon\}$.
- A point ${\bf x}$ is an *interior point* of a set ${\cal S}$ if ${\bf x} \in {\cal S}$ and there exists a ball around ${\bf x}$ that is contained entirely in ${\cal S}$
- Open set: if every point in S is an interior point Examples: (0,1), interior of a circle
- Closed set: if its compliment set is open
 Examples: [0, 1], circle
- \mathbb{R}^N and \emptyset are both closed and open sets!