ECE 5984: Power Distribution System Analysis

Lecture 8: Voltage Regulation

Reference: Textbook, Chapter 7 *Instructor: V. Kekatos*

Outline

- Need for voltage regulation in distribution systems
- Voltage control mechanisms and standards
- Single-phase autotransformers and ABCD models
- Controlling single-phase voltage regulators
- Three-phase voltage regulators and models

Voltage regulation

In distribution systems, voltage control is more challenging

$$\Delta V \simeq \operatorname{Re} \{zI\} = \operatorname{Re} \left\{ z \left(\frac{s}{V}\right)^* \right\}$$

 $\simeq \operatorname{Re} \{zs^*\} = rp + xq$

Voltage drops due to both active and reactive loads (significant line resistances)

Effects of over-voltage reduced light bulb life and electronic devices

Effects of under-voltage

lower illumination constant-z heating devices (e.g., water heaters) operate slower higher starting currents on motors and overheating

Standard voltage ratings

American National Standards Institute (ANSI) C84.1-1995 on 5-min RMS voltages

Range A must be the basis for equipment's design and rating for satisfactory performance. Range B necessarily results from the practical operating conditions on supply and/or user systems. Such conditions should be limited in extent, duration and frequency. Corrective measures shall be undertaken within a reasonable time to bring back voltages within Range A limits.

- Service/delivery vs. utilitization voltage (~4V drop within customer's wiring)
- Imbalance less than 3% at the utility meter

Means to improve voltage profile

- Increase feeder conductor size (reconducting)
- Increase primary voltage level
- Converting feeder sections from single-phase to multiphase
- Load balancing across feeders
- Build new substations and feeders
- Install regulators at substation and primary feeders
- Install capacitors at substation and primary feeders

Voltage regulation mechanisms

Single-phase transformer

Detailed model

turns ratio
$$n_t = \frac{N_2}{N_1}$$

• Approximate model

• High-voltage side impedance referred to low-voltage side

$$Z_t = n_t^2 Z_1 + Z_2$$

• The dot convention for voltages and currents

Single-phase transformer ABCD

Transformation ratios
$$\frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{1}{n_t}$$
 and $\frac{I_1}{I_2} = n_t$

$$V_S = E_1 = \frac{E_2}{n_t} = \frac{1}{n_t} V_L + \frac{Z_t}{n_t} I_L$$

$$I_S = Y_m V_S + I_1$$

$$= \frac{Y_m}{n_t} V_L + \frac{Y_m Z_t}{n_t} I_L + n_t I_L$$

$$= \frac{Y_m}{n_t} V_L + \left(n_t + \frac{Y_m Z_t}{n_t}\right) I_L$$

Single-phase transformer ABCD (cont'd)

- Ideal transformer $Y_m = Z_t = 0$
- Receiving voltage in terms of its current and sending voltage (E/F model)

$$V_L = n_t V_S - Z_t I_L$$

• Lecture 9 covers network models for all transformer connections

Autotransformer

• A single-winding tapped, or a two-winding transformer reconnected

Windings magnetically and electrically coupled

Step-up autotransformer ABCD

• Transformation ratios

$$\frac{E_1}{E_2} = \frac{N_1}{N_2} = \frac{1}{n_t}$$
 and $\frac{I_1}{I_2} = n_t$

• AB model

$$V_{L} = E_{1} + E_{2} - Z_{t}I_{L}$$

$$= E_{1}(1 + n_{t}) - Z_{t}I_{L}$$

$$= V_{S}(1 + n_{t}) - Z_{t}I_{L} \implies V_{S} = \frac{1}{1 + n_{t}}V_{L} + \frac{Z_{t}}{1 + n_{t}}I_{L}$$

• Step-up because for small $Z_t: V_L \simeq (1+n_t)V_S$

• CD model
$$I_S = Y_m V_S + I_1 + I_2$$

$$= \frac{Y_m}{1 + n_t} V_L + \frac{Y_m Z_t}{1 + n_t} I_L + (1 + n_t) I_L$$

$$= \frac{Y_m}{1 + n_t} V_L + \left(1 + n_t + \frac{Y_m Z_t}{1 + n_t}\right) I_L$$

Step-up autotransformer ABCD (cont'd)

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} V_L \\ I_L \end{bmatrix} \qquad a = \frac{1}{1+n_t}; \quad b = \frac{Z_t}{1+n_t}$$

$$c = \frac{Y_m}{1+n_t}; \quad d = 1+n_t + \frac{Y_m Z_t}{1+n_t}$$

• Different from autotransformers, regulators have small ratios

Step-down autotransformer ABCD (cont'd)

• Series winding voltage is subtracted from common winding voltage

 ABCD model can be obtained similarly using

$$V_L = E_1 - E_2 - Z_t I_L$$
$$I_S = Y_m V_s - I_1 + I_2$$

step-down (subtractive)

step-up (additive)

 H_2

Current polarities have been reversed, but still satisfy dot convention

Step-down autotransformer ABCD (cont'd)

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} V_L \\ I_L \end{bmatrix} \qquad a = \frac{1}{1 - n_t}; \quad b = \frac{Z_t}{1 - n_t}$$

$$c = \frac{Y_m}{1 - n_t}; \quad d = 1 - n_t + \frac{Y_m Z_t}{1 - n_t}$$

Receiving voltage in terms of its current and sending voltage

$$V_L = (1 \pm n_t)V_S - Z_t I_L$$

• Step-down model looks like step-up model with $n_t' = -n_t$

Rating advantage

• Voltage ratings
$$V_S = E_1$$
 and $V_L = E_1 \pm E_2 = \frac{E_2}{n_t} \pm E_2 = \frac{1 \pm n_t}{n_t} E_2$

• *Power ratings* for autotransformer and two-winding transformer

$$S_A = V_S I_S = V_L I_L$$

 $S_W = E_1 I_1 = E_2 I_2$ $\frac{S_A}{S_W} = \frac{V_L I_L}{E_2 I_2} = \frac{1 \pm n_t}{n_t}$

• Significant power rating advantage for small turns ratios

If
$$V_L = (1 + n_t)V_S = 1.1 \cdot V_S$$
 \Rightarrow $n_t = 0.1$ \Rightarrow $S_A = 11 \cdot S_W$
If $V_L = (1 + n_t)V_S = 10 \cdot V_S$ \Rightarrow $n_t = 9$ \Rightarrow $S_A = 1.11 \cdot S_W$

Per-unit impedances

• Base impedances significantly larger than those of two-winding transformers

load side

$$Z_{A,\text{base}} = \frac{V_L^2}{S_A} = \frac{(E_1 \pm E_2)^2}{S_A} = \left(\frac{1 \pm n_t}{n_t}\right)^2 \frac{E_2^2}{S_A}$$

$$Z_{W,\text{base}} = \left(\frac{1 \pm n_t}{n_t}\right)^2 \frac{S_W}{S_A} = \frac{1 \pm n_t}{n_t}$$

$$Z_{W,\text{base}} = \frac{E_2^2}{S_W}$$

source side

$$Y_{A,\text{base}} = \frac{S_A}{V_S^2} = \left(\frac{1 \pm n_t}{n_t}\right)^2 \frac{S_A}{E_1^2}$$

$$Y_{W,\text{base}} = \frac{S_W}{E_1^2}$$

$$Y_{W,\text{base}} = \frac{1 \pm n_t}{n_t}$$

- *Per-unit impedances* are significantly smaller than those of two-winding transformer
- Hence, autotransformers are oftentimes modeled as ideal (impedances ignored)

Approximate model of ideal transformer

• Distribution auto-transformers can be approximated as *ideal ones* with little error

$$\begin{bmatrix} V_S \\ I_S \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} V_L \\ I_L \end{bmatrix} \qquad \begin{aligned} a &= \frac{1}{1 \pm n_t}; & b \simeq 0 \\ c &\simeq 0; & d \simeq 1 \pm n_t \end{aligned} \qquad + \text{ for raise } \\ - \text{ for lower } \end{aligned}$$

SVR of Type A

• Step-voltage regulator (SVR) = autotransformer + load tap changer (LTC) mechanism

Type A: load connected to series winding

- Reversing switch changes directions of currents
- $\pm 10\%$ range in 32 steps of 20/32=0.625% (approx. 0.75V for nominal V_S =120V)

SVR of Type B

Type B: source connected to series winding (more popular)

 $V_S = E_1 - E_2 = (1 - n_t)E_1 = (1 - n_t)V_L$ $I_L = I_2 - I_1 = (1 - n_t)I_S$

lower position

$$V_S = E_1 + E_2 = (1 + n_t)E_1 = (1 + n_t)V_L$$

 $I_L = I_2 + I_1 = (1 + n_t)I_S$

Regulator model

Neglect series impedances and shunt admittances

$$\left[\begin{array}{c} V_S \\ I_S \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \left[\begin{array}{c} V_L \\ I_L \end{array}\right]$$

• Type B (shown here)

$$a = a_R;$$
 $b = c = 0;$ $d = \frac{1}{a_R};$ $a_R = 1 \mp \frac{N_2}{N_1}$
$$a_R = 1 \mp 0.00625 \cdot \text{Tap}$$

• Type A (derived earlier)

$$a = \frac{1}{a_R}; \quad b = c = 0; \quad d = a_R; \quad a_R = 1 \pm \frac{N_2}{N_1}$$

• Example of raise position

$$V_L = (1 + n_t)V_S$$
 (type A) or $V_L = \frac{1}{1 - n_t}V_S$ (type B)

-	Type A	Type B	
Raise	+	-	
Lower	-	+	

Control settings

• *Set voltage* (e.g., 124 V)

• *Bandwidth:* allowed deviation around set voltage level (e.g., ±1V); specified as full (two-sided) bandwidth

Deadband should be wider than the voltage change obtained by a single tap, otherwise tap may be flipping back-and-forth without ever falling in the deadband

• *Time delay* before taking action (to avoid fluctuations due to e.g., motor starting)

Tuning bandwidth and delay

Avoid excessive regulator operation and oscillations (reduces lifetime)

- Tuning is harder (impossible) with fluctuations in solar irradiance and PVs
- Smart inverters can handle fluctuations at faster timescale

Time delays

• Usually, in the range of 10-120 seconds

Eaton – Cooper Power Systems

- *Rule 1:* Each regulator in series downstream requires a longer time delay
- *Rule 2:* Minimum time delay from one SVR to the next in cascade is 15 seconds

Control of voltage regulators

• Not all feeders have SVRs: no need for short and/or lightly-loaded feeders

1. Control based on *local voltage output*

Control of voltage regulators

2. Control based on remote voltage

Kevin Schneider (PNNL)

Control of voltage regulators

3. Control based on voltage predicted at a pseudo-point

• *Line drop compensator (LDC)* models the voltage drop at a remote point (load center)

Line drop compensator (LDC)

• Equivalent impedance is an analog (or digital) model of the actual line

$$\bullet \ \ \mathrm{LDC} \ \mathrm{impedance} \quad Z_{\mathrm{LDC}} = Z_{\mathrm{line}} \frac{Z_{\mathrm{LDC,base}}}{Z_{\mathrm{line,base}}} = Z_{\mathrm{line}} \left(\frac{V_{\mathrm{LDC,base}}}{V_{\mathrm{line,base}}} \right) \left(\frac{I_{\mathrm{line,base}}}{I_{\mathrm{LDC,base}}} \right) = Z_{\mathrm{line}} \frac{\mathrm{CT}_P}{N_{PT}\mathrm{CT}_S} \ \Omega$$

• LDC impedance oftentimes expressed in Volts $Z_{\text{LDC,V}} = Z_{\text{LDC}}\text{CT}_S = Z_{\text{line}}\frac{\text{CT}_P}{N_{PT}}$ V (voltage drop under rated current)

Examples 7.4-7.6

- 1. Find PT/CT ratings if the LDC ratings are 120V and 5A
- LDC potential transformer

$$V_{\rm LL,base} = 4.16 \,\mathrm{kV} \Rightarrow V_{\rm LN,base} = 2,401.8 \,\mathrm{V} \simeq 2.4 \,\mathrm{kV} \Rightarrow N_{\rm PT} = \frac{2,400 \,\mathrm{V}}{120 \,\mathrm{V}} = 20$$

• LDC current transformer

$$I_{\text{base}} = \frac{5\text{MVA}}{\sqrt{3} \cdot V_{\text{LL,base}}} = 693.9\text{A} \simeq 700\text{A} \quad \Rightarrow \quad \text{CT} = \frac{\text{CT}_P}{\text{CT}_S} = \frac{700\text{A}}{5\text{A}} = 140$$

Examples 7.4-7.6 (cont'd)

2. Find LDC setting in ohms and volts if the equivalent impedance between SVR and load center is $Z_{\rm line} = 0.3 + j0.9~\Omega$

$$Z_{\rm LDC} = Z_{\rm line} \frac{{\rm CT}_P}{N_{PT}{\rm CT}_S} \Omega = 2.1 + j6.3\Omega$$

$$Z_{\rm LDC,V} = (2.1 + j6.3)\Omega \cdot 5{\rm A} = 10.5 + j31.5{\rm V} \text{ (data entry)}$$

- 3. 2.5 MVA load is to be served at 4.16 kV with 0.9 PF lagging. Voltage level to be held within 2V around 120V. Determine tap position so relay voltage is within [119:121]V
- Line current (assuming constant-current load)

$$I_{\text{line}} = \frac{2.5 \text{MVA}}{\sqrt{3} \cdot V_{\text{LL,base}}} = 346.97 \angle - 25.84^{\circ} \implies I_{\text{LDC}} = 2.478 \angle - 25.84^{\circ} \text{ A}$$

Examples 7.4-7.6 (cont'd)

- Relay voltage models load voltage $V_{\text{relay}} = V_{\text{LDC}} Z_{\text{LDC}} I_{\text{LDC}} = \frac{V_r Z_{\text{line}} I_{\text{line}}}{N_{\text{PT}}} = \frac{V_{\text{load}}}{N_{\text{PT}}}$
- Regulator output (type-B) $V_r = \frac{V_s}{a_R(\tau)} \quad \text{where} \quad a_R(\tau) = 1 0.00625 \cdot \tau$ and $\tau \in \{-16, \dots, -1, 0, +1, \dots, +16\}$
- At neutral position $a_R(0) = 1$, relay voltage is $|V_{\text{relay}}| = 109.24 \text{V}$
- Raise tap τ so that relay voltage goes above 119V

	-16.0000	98.3929
Examples 7.4-7.6 (cont'd)	-15.0000	99.0122
Examples 7.4-7.0 (cont a)	-14.0000	99.6388
	-13.0000	100.2727
	-12.0000	100.9139
 Relay voltage magnitude for different tap settings 	-11.0000	101.5628
	-10.0000	102.2193
	-9.0000	102.8837
• Working accumptions	-8.0000	103.5560
 Working assumptions 	-7 . 0000	104.2365
 constant-current load 	-6.0000	104.9252
	-5.0000	105.6223
 VR started from neutral position 	-4.0000	106.3279
	-3.0000	107.0423
	-2.0000	107.7656
	-1.0000	108.4979
 Can you repeat the analysis for a neutral position 	0	109.2394
constant-Z load?	1.0000	109.9903
Constant-Z load:	2.0000	110.7508
	3.0000	111.5210
	4.0000	112.3012
• F	5.0000	113.0914
 For specific loading, the SVR tap depends also on 	6.0000	113.8921
prior loading conditions	7.0000	114.7032
/ '(.1 CVD	8.0000	115.5251
✓ e.g., if the SVR was at +16 before (due to heavy load)	9.0000	116.3579
earlier), then it will now stop at tap +14, not +13	10.0000	117.2019
simply because it started 'from above'	11.0000	118.0573
	12.0000	118.9243
final position	13.0000	119.8031
	14.0000	120.6941
	15.0000	121.5974
	16.0000	122.5133

Examples 7.4-7.6 (textbook solution)

Book's solution uses three approximations

$$\begin{split} V_{\text{relay}} &= \frac{V_s}{(1 - 0.00625 \cdot \tau) \, N_{\text{PT}}} - \frac{Z_{\text{line}} I_{\text{line}}}{N_{\text{PT}}} & \textit{approx. 1:} \quad \frac{1}{1 - 0.00625 \cdot \tau} \simeq 1 + 0.00625 \cdot \tau \\ &\simeq (1 + 0.00625 \cdot \tau) \, \frac{V_s}{N_{\text{PT}}} - \frac{Z_{\text{line}} I_{\text{line}}}{N_{\text{PT}}} \\ &= \left(\frac{V_s}{N_{\text{PT}}} - \frac{Z_{\text{line}} I_{\text{line}}}{N_{\text{PT}}} \right) + \left(0.00625 \frac{V_s}{N_{\text{PT}}} \right) \tau & \textit{approx. 2: 0.00625 } x \; (\sim 120) = 0.75 \\ &\simeq \hat{V}_s + 0.75 \tau \Rightarrow \\ &\tau = \frac{V_{\text{relay}} - \hat{V}_s}{0.75} \simeq \frac{|V_{\text{relay}}| - |\hat{V}_s|}{0.75} = \frac{119 - 109.24}{0.75} = 13.02 & \textit{approx. 3: small phase differences} \end{split}$$

• Textbook also repeats analysis for constant power and finds final tap position to be +12

Finding taps using a PF solver

LDC impedance

- So far, assumed Z_{LDC} models voltage drop on actual line
- However, usually Z_{LDC} is only an *equivalent impedance* to model the voltage drop between the SVR and a load center located several buses and laterals downstream
- Z_{LDC} is then computed using PF simulations to compute the three needed quantities under different conditions

$$Z_{
m line,eq} = rac{V_r - V_{
m load}}{I_{
m reg}}$$

Let's move on to three-phase SVRs...

Wye SVR

- Each regulator may have its own tap changer/LDC
- Advantage over a single three-phase SVRs that are 'gang'-operated
- Problem if LDCs share the same line impedance
- Generalized $\mathbf{v}_{\Phi} = \mathbf{A}\mathbf{v}_{\phi} + \mathbf{B}\mathbf{i}_{\ell}$ $\mathbf{A} = \begin{bmatrix} a_R^a & 0 & 0 \\ 0 & a_R^b & 0 \\ 0 & 0 & a_R^c \end{bmatrix}; \mathbf{B} = \mathbf{C} = \mathbf{0}; \mathbf{D} = \mathbf{A}^{-1}$

• Model holds for raise/lower position; extends trivially to open Wye connection

Delta-connected regulators

3 single-phase ordinary transformers connected in delta

3 single-phase voltage regulators (type B) connected in delta

• *E.g.*, point b cannot be connected at both ends of the series winding of second VR

Delta-connected regulators (voltages)

• Used in three-wire delta feeders

Voltage transformations

$$\begin{aligned} V_{AB} &= V_{Aa} + V_{ab} - V_{Bb} \\ &= -\frac{N_2^{ab}}{N_1^{ab}} V_{ab} + V_{ab} - \left(-\frac{N_2^{bc}}{N_1^{bc}} V_{bc} \right) \\ &= \left(1 - \frac{N_2^{ab}}{N_1^{ab}} \right) V_{ab} + \frac{N_2^{bc}}{N_1^{bc}} V_{bc} \\ &= a_R^{ab} V_{ab} + (1 - a_R^{bc}) V_{bc} \end{aligned}$$

recall that
$$a_R^{ab}=1\mprac{N_2^{ab}}{N_1^{ab}}$$

Repeat for other LL loops to get AB model

$$\mathbf{v}_{\Phi,LL} = \begin{bmatrix} a_R^{ab} & 1 - a_R^{bc} & 0\\ 0 & a_R^{bc} & 1 - a_R^{ca}\\ 1 - a_R^{ab} & 0 & a_R^{ca} \end{bmatrix} \mathbf{v}_{\phi,LL}$$

Delta-connected regulators (currents)

Current transformations

$$\begin{split} I_{a} &= I_{ca} + I_{A} - I_{ab} \\ &= \frac{N_{2}^{ca}}{N_{1}^{ca}} I_{C} + I_{A} - \frac{N_{2}^{ab}}{N_{1}^{ab}} I_{A} \\ &= \left(1 - \frac{N_{2}^{ab}}{N_{1}^{ab}}\right) I_{A} + \frac{N_{2}^{ca}}{N_{1}^{ca}} I_{C} \\ &= a_{R}^{ab} I_{A} + (1 - a_{R}^{ca}) I_{C} \end{split}$$

• Repeat for other load nodes to get the CD after inversion

$$\mathbf{i}_{\ell} = \left[egin{array}{cccc} a_R^{ab} & 0 & 1 - a_R^{ca} \ 1 - a_R^{ab} & a_R^{bc} & 0 \ 0 & 1 - a_R^{bc} & a_R^{ca} \end{array}
ight] \mathbf{i}_L$$

Closed delta SVR (ABCD)

Generalized matrices
$$\mathbf{v}_{\Phi,LL} = \mathbf{A}\mathbf{v}_{\phi,LL} + \mathbf{B}\mathbf{i}_{\ell}$$

 $\mathbf{i}_{L} = \mathbf{C}\mathbf{v}_{\phi,LL} + \mathbf{D}\mathbf{i}_{\ell}$

$$\mathbf{A} = \begin{bmatrix} a_R^{ab} & 1 - a_R^{bc} & 0 \\ 0 & a_R^{bc} & 1 - a_R^{ca} \\ 1 - a_R^{ab} & 0 & a_R^{ca} \end{bmatrix}; \mathbf{B} = \mathbf{C} = \mathbf{0}; \mathbf{D} = \begin{bmatrix} a_R^{ab} & 0 & 1 - a_R^{ca} \\ 1 - a_R^{ab} & a_R^{bc} & 0 \\ 0 & 1 - a_R^{bc} & a_R^{ca} \end{bmatrix}^{-1}$$

Harder to control due to coupling in voltages and currents

Open delta SVR

- Regulate voltage in 3-wire delta system with only two regulators
- Voltage transformations

$$V_{AB} = V_{Aa} + V_{ab}$$

$$= \left(1 - \frac{N_2^{ab}}{N_1^{ab}}\right) V_{ab} = a_R^{ab} V_{ab}$$

$$V_{BC} = a_R^{bc} V_{bc}$$

$$V_{CA} = -(V_{AB} + V_{BC})$$
$$= -a_R^{ab}V_{ab} - a_R^{bc}V_{bc}$$

Current transformations

$$I_A=I_a+I_{ab}=I_a+\frac{N_2^{ab}}{N_1^{ab}}I_A \quad \Rightarrow \quad I_A=\frac{1}{a_R^{ab}}I_a$$
 similarly:
$$I_C=\frac{1}{a_R^{cb}}I_c$$

$$I_B=-(I_A+I_B)$$

Open delta SVR (cont'd)

• Generalized matrices $\mathbf{v}_{\Phi,LL} = \mathbf{A}\mathbf{v}_{\phi,LL} + \mathbf{B}\mathbf{i}_{\ell}$ $\mathbf{i}_{L} = \mathbf{C}\mathbf{v}_{\phi,LL} + \mathbf{D}\mathbf{i}_{\ell}$

$$\mathbf{A} = \begin{bmatrix} a_R^{ab} & 0 & 0 \\ 0 & a_R^{cb} & 0 \\ -a_R^{ab} & -a_R^{cb} & 0 \end{bmatrix}; \mathbf{B} = \mathbf{C} = \mathbf{0}; \mathbf{D} = \begin{bmatrix} 1/a_R^{ab} & 0 & 0 \\ -1/a_R^{ab} & 0 & -1/a_R^{cb} \\ 0 & 0 & 1/a_R^{cb} \end{bmatrix}$$

Examples from IEEE 123- bus feeder

Regulator ID:	3	
Line Segment:	25 - 26	
Location:	25	
Phases:	A-C	
Connection:	2-Ph,L-G	
Monitoring Phase:	A & C	
Bandwidth:	1	
PT Ratio:	20	
Primary CT Rating:	50	
Compenator:	Ph-A	Ph-C
R - Setting:	0.4	0.4
X - Setting:	0.4	0.4
Voltage Level:	120	120

Regulator ID:	2	
Line Segment:	9 - 14	
Location:	9	
Phases:	Α	
Connection:	1-Ph, L-G	
Monitoring Phase:	Α	
Bandwidth:	2.0 volts	
PT Ratio:	20	
Primary CT Rating:	50	
Compensator:	Ph-A	
R - Setting:	0.4	
X - Setting:	0.4	
Voltage Level:	120	

Regulator ID:	1	
Line Segment:	150 - 149	
Location:	150	
Phases:	A-B-C	
Connection:	3-Ph, Wye	
Monitoring Phase:	Α	
Bandwidth:	2.0 volts	
PT Ratio:	20	
Primary CT Rating:	700	
Compensator:	Ph-A	
R - Setting:	3	
X - Setting:	7.5	
Voltage Level:	120	

Regulator ID:	4		
Line Segment:	160 - 67		
Location:	160		
Phases:	A-B-C		
Connection:	3-Ph, LG		
Monitoring Phase:	A-B-C		
Bandwidth:	2		
PT Ratio:	20		
Primary CT Rating:	300		
Compensator:	Ph-A	Ph-B	Ph-C
R - Setting:	0.6	1.4	0.2
X - Setting:	1.3	2.6	1.4
Voltage Level:	124	124	124

Summary

- Voltage regulation is challenging in distribution systems
- Voltage control mechanisms
 - OLTC
 - in-line voltage regulators
 - capacitors
 - (smart inverters)
- Control of SVR can be performed based on
 - local readings
 - remote readings
 - LDC circuit
 - centrally computed voltage setpoints
- Derived ABCD models for single- and three-phase SVRs