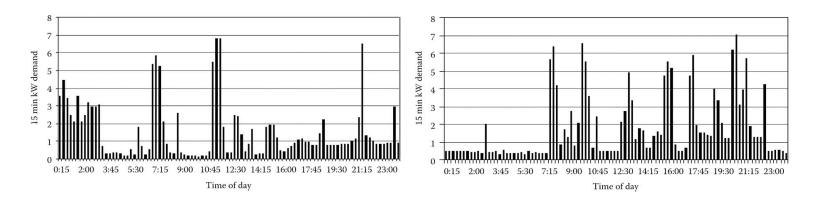
ECE 5984: Power Distribution System Analysis

Lecture 2: Load Allocation across a Feeder

Reference: Textbook, Chapter 2

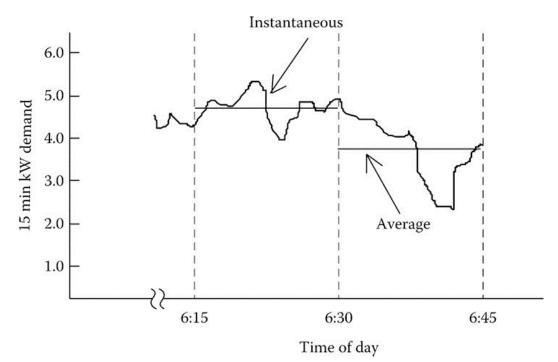

Instructor: V. Kekatos

Motivation for allocating load

Facts

- In transmission systems, load forecasting is pretty accurate (law of large numbers)
- In distribution systems, load exhibits higher variability

Problem

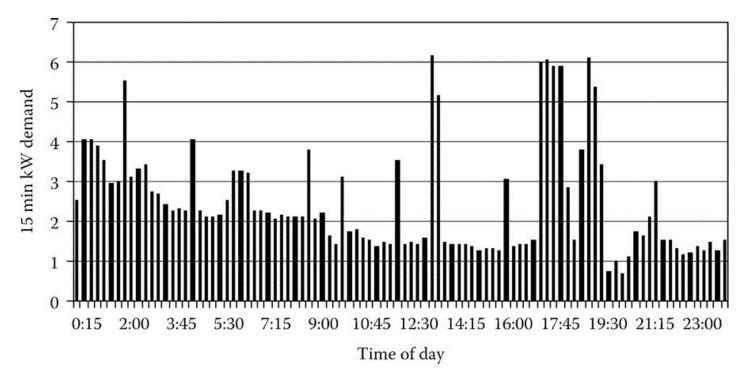

• Study variations of individual and aggregate loads, in particular their max values

Why?

To size equipment (transformers) and study voltage drops

Individual customer load

• Demand: load (kW, kVA, kVAR, A) averaged over a time period (e.g., 15 min)



example: the 15-min demand ending at 6:30 pm is 4.75 kW

- Individual loads vary significantly; interested in the maximum
- Characterize variability for transformer sizing; load allocation; voltage drops

Average and maximum demand

Collect demands across time for customer n: $\{d_{n,t}\}_{t=1}^T$

Average demand

$$\tilde{d}_n := \frac{1}{T} \sum_{t=1}^{T} d_{n,t} \qquad \text{example} : \ \tilde{d}_1 = 2.46 \text{ kW}$$

How to calculate monthly energy consumption?

$$\bar{d}_n := \max_t \{d_{n,t}\}$$

Maximum demand $\bar{d}_n := \max_{t} \{d_{n,t}\}$ example: $\bar{d}_1 = 6.19$ kW at 13:15

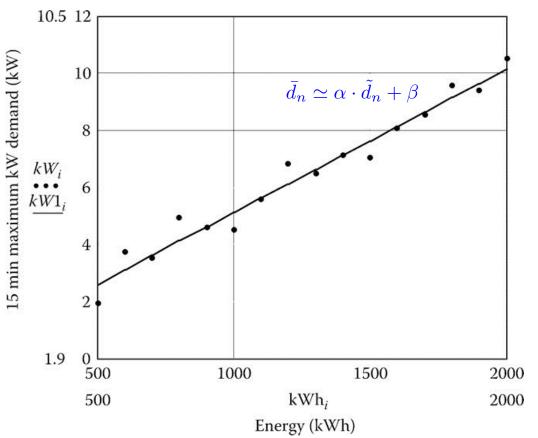
Load factor and demand factor

• Load factor
$$\mathrm{LF}_n := \frac{\tilde{d}_n}{\bar{d}_n} \leq 1$$

example:
$$LF_1 = \frac{\tilde{d}_1}{\bar{d}_1} = \frac{2.46 \text{ kW}}{6.19 \text{ kW}} = 0.40$$

LF=1 is ideal for better utilization of facilities

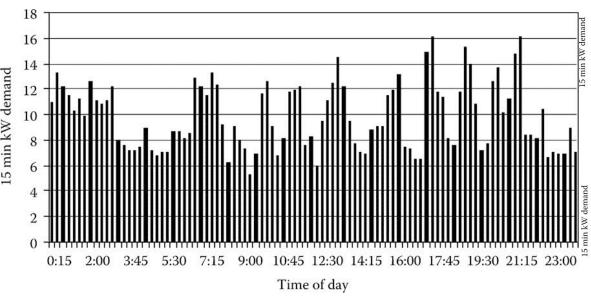
Demand factor


Demand factor :=
$$\frac{\text{maximum customer demand}}{\text{sum of device ratings}} = \frac{6.19 \text{ kW}}{35 \text{ kW}} = 0.18 \le 1$$

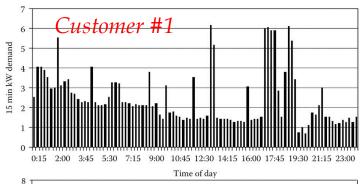
percentage of electrical devices that are on when maximum demand occurs

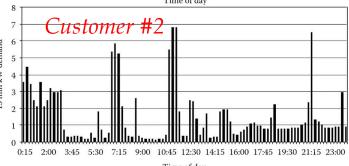
Characterized load for one customer. How about aggregated load in a distribution transformer serving 5-50 customers?

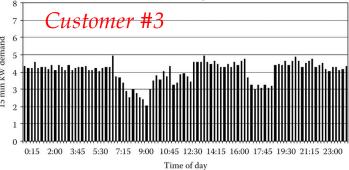
Load surveys

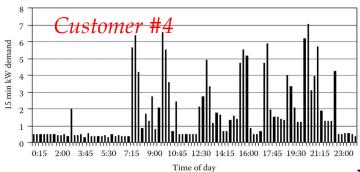

- We are metering energy monthly (billing); but do not know user maximum
- Interested in maxima to determine transformer ratings

such studies are now much easier with smart meter data

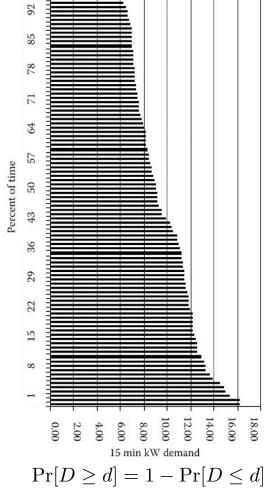

• Install meters over selected customers and use linear regression to find a linear transformation between monthly energy consumption and maximum demand


Load at distribution transformer




Diversified demand: sum of customer demands

$$\mathbf{d} = \sum_{n=1}^{N} \mathbf{d}_n$$



7

Load duration curve

= 1 - CDF(d)

- Sort diversified demand to evaluate transformer stress
- Each bar corresponds to 15min/24h=1.04%
- *Example*: 22% of the time, the transformer serves more than 12 kW

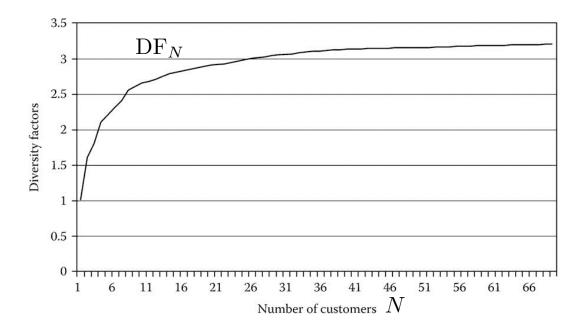
Maximum demand for load aggregations

Maximum diversified demand (max of sum)

$$\bar{d} := \max_{t} \{d_t\} = \max_{t} \left\{ \sum_{n=1}^{N} d_{n,t} \right\}$$
 example: $\bar{d} = 16.16$ kW at 17:30

• *Maximum non-coincident diversified demand* (sum of max)

$$\hat{d} := \sum_{n=1}^{N} \bar{d_n} = \sum_{n=1}^{N} \max_{t} \{d_{n,t}\}$$
 example: $\hat{d} = 6.18 + 6.82 + 4.93 + 7.05 = 24.98 \text{ kW}$


Per-customer maxima do not necessarily occur at the same time ...

• Diversity factor DF :=
$$\frac{\hat{d}}{\bar{d}} \ge 1$$
 example : DF = $\frac{\hat{d}}{\bar{d}} = 1.55$ [why?]

Why do we care about the max non-coincident diversified demand?

Diversity factors

- Maximum diversified demand is hard to measure
- We usually know max demand per customer (metered or inferred from bill)
- How to translate from $\hat{d} \rightarrow \bar{d}$?
- Calculate diversity factors DF experimentally
 - record \bar{d} at specific network locations
 - record $\{\bar{d}_n\}$ for all customers downstream these locations

Recap

1. For each customer, either directly meter max demand d_n , or use linear regression from customer's total demand (monthly bills) \bar{d}_n

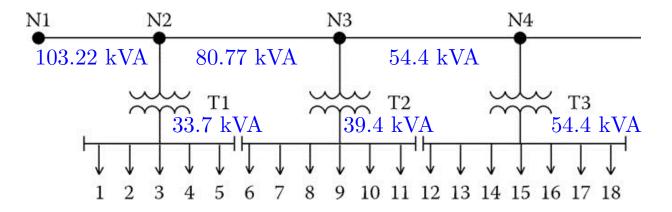
2. Sum per-customer maxima to find

$$\hat{d}^N = \sum_{n=1}^N \bar{d}_n$$

3. Use experimentally estimated DF_N to find max diversified demand

$$\bar{d}^N = \frac{\hat{d}^N}{\mathrm{DF}_N}$$

We will next see three methods to allocate loads and calculate voltage drops


1) Load allocation using diversity factors

Example 2.1: Analyze a single-phase lateral

Given:

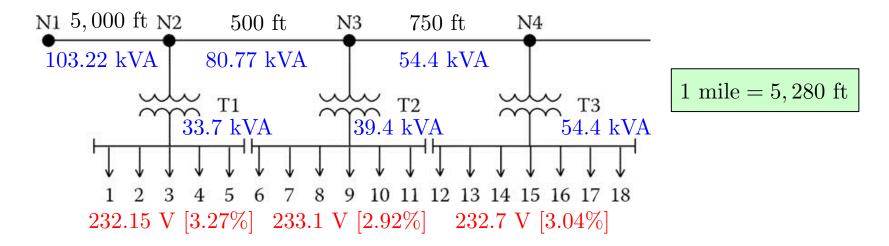
- a) monthly energy usage per customer; assume 0.9 PF lagging
- b) load survey shows that $\bar{d}_n = 0.2 + 0.008 \cdot \text{monthly energy bill [kWh]}$
- c) diversity factors (see graph two slides earlier)

Wanted: max diversified demand for each transformer and line segment

	Customer	#1	#2	#3	#4	#5
\tilde{d}_n	kWh	1523	1645	1984	1590	1456
\bar{d}_n	kW	12.4	13.4	16.1	12.9	11.9

Transformer ratings:

T1: 25 kVA


T2: 37.5 kVA

T3: 50 kVA

KCL load does not apply with max aggregated (real or apparent) powers!

Voltage drop using diversity factors

Example: Find voltage at each transformer assuming V_{N1} =2.4 kV

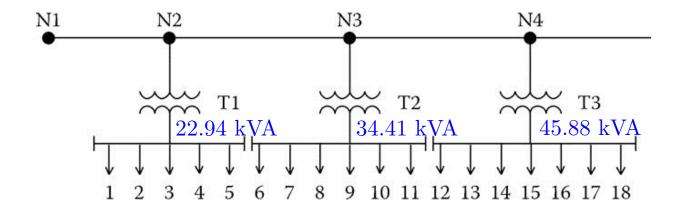
$$z_{\rm line} = 0.3 + j0.6 \ \Omega/{\rm mile}$$

T1: 25 kVA, 2400 - 240 V, $Z = 1.8 \angle 40^{\circ}\%$

 $T2: 37.5 \text{ kVA}, 2400 - 240 \text{ V}, Z = 1.9 \angle 45^{\circ}\%$

 $T3:50 \text{ kVA}, 2400 - 240 \text{ V}, Z = 2.0 \angle 50^{\circ}\%$

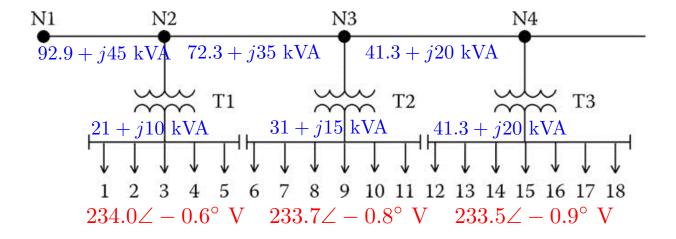
2) Transformer load management


- The method of diversity factors requires knowing
 - *d1)* DF_N 's for different N
 - d2) customer maxima; and
 - *d3*) customer assignment to transformers
- *Transformer load management* is a simpler but less accurate method
 - relies on the fact that transformers are metered in greater detail
- Training stage
 - Collect historical data from transformers
 - Fit a linear regression model matching monthly energy served to peak demand
- Operational stage
 - Knowing *d*3) and customer bills, find total energy to be served
 - Using the trained model, predict max demand

3) Allocation factors

Distribute maximum feeder demand on transformers based on their rating

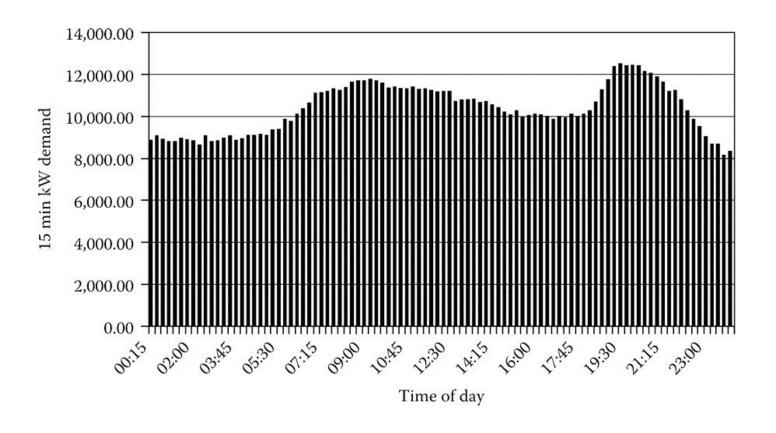
$$ar{d}_{\mathrm{T}_k} = ar{d}_{\mathrm{feeder}} imes rac{\mathrm{kVA}_{T_k}}{\sum_m \mathrm{kVA}_{T_m}}$$
 allocation factor


Example: Re-allocate load assuming maximum demand at feeder is 92.9 kW

Easier to implement, but good only for voltage drop calculations; since it assumes load has been allocated to XFMs properly

Voltage drop using allocation factors

Example: Find XFM voltages using allocation factors



- Due to *linearity* of allocation factors, KCL now holds for line segments
- Results obtained are similar; this method may be less conservative
- Note small voltage angles

Does this method yield the actual voltages assuming demands are correct?

Feeder load

- Smoother demand curve
- Define statistics similar to transformers (maximum diversified demand)

Summary

- Allocate load to size transformer and study voltage drops
- Method 1: diversity factors $\tilde{d}_n \stackrel{\text{linear}}{\longrightarrow} \bar{d}_n \longrightarrow \hat{d}_{T_k} = \sum_{n \in T_k} \bar{d}_n \stackrel{DF_N}{\longrightarrow} \bar{d}_{T_k}$
- *Method* 2: transformer load management $\tilde{d}_n \longrightarrow \sum_{n \in T_k} \tilde{d}_n \stackrel{\text{linear}}{\underset{\text{regression}}{\longrightarrow}} \bar{d}_{T_k}$
- *Method 3*: allocation factors $\bar{d}_{T_k} = \frac{\text{kVA}_{T_k}}{\sum_{m} \text{kVA}_{T_m}} \bar{d}_{\text{feeder}}$
- Requirements for every method
- M3 features linearity in flows; none of the methods considers losses