ECE 5984: Power Distribution System Analysis

Lecture 13: Distribution Grid Optimization under Uncertainty

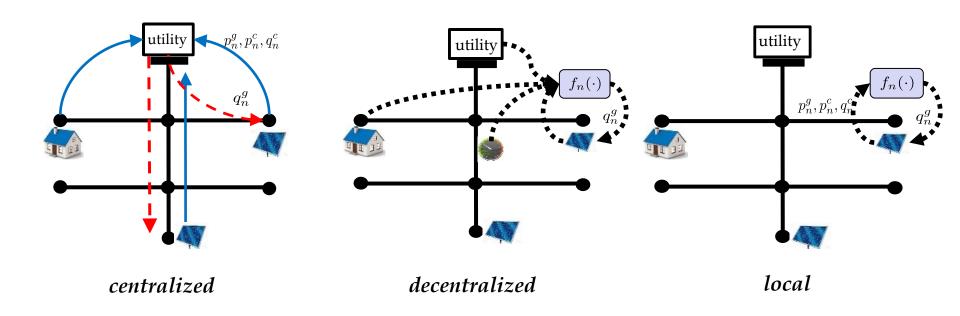
Reference: see publications list at the end *S. Taheri, M. Jalali, and V. Kekatos*

Outline

- 1) Local, centralized, and decentralized inverter control
- 2) LDF-OPF deterministic formulation
- 3) Robust optimization
- 4) Chance-constrained optimization
- 5) Scenario-based optimization
- 6) Multi-parametric programming
- 7) Polytopic approximation of quadratic constraints

Reactive power control schemes

Categorized based on required communication



- ✓ high cyber requirements
- ✓ optimal
- ✓ decisions may be obsolete due to delays
- ✓ moderate computations
- √ high communication

- ✓ no cyber requirements
- ✓ suboptimal

Deterministic OPF under LDF

- Lecture 11 posed inverter control as SOCP/SDP under AC grid model
- To ease computations, consider OPF under LDF model

$$\begin{array}{ll} \min\limits_{\mathbf{p},\mathbf{q}} f(\mathbf{p},\mathbf{q}) \\ \text{s.t. } \underline{\mathbf{v}} \leq \mathbf{R}\mathbf{p} + \mathbf{X}\mathbf{q} + v_0 \mathbf{1} \leq \bar{\mathbf{v}} & \text{voltage limits} \\ \underline{\mathbf{q}} \leq \mathbf{q} \leq \bar{\mathbf{q}} & \text{resource constraints} \\ \underline{\mathbf{p}} \leq \mathbf{p} \leq \bar{\mathbf{p}} & \text{(DER inverters)} \end{array}$$

Depending on cost, we may get linear program (LP) or quadratic program (QP)

$$f_v(\mathbf{p}, \mathbf{q}) = \|\mathbf{v} - v_0 \mathbf{1}\|_2^2 \simeq \|\mathbf{R}\mathbf{p} + \mathbf{X}\mathbf{q}\|_2^2 \text{ or } f_\ell(\mathbf{p}, \mathbf{q}) \simeq \mathbf{p}^\top \mathbf{R}\mathbf{p} + \mathbf{q}^\top \mathbf{X}\mathbf{q}$$

$$voltage \ deviations \qquad ohmic \ losses \ on \ lines$$

- Other objectives/constraints can be envisioned (EVs, batteries, TCLs)
- Previous setup assumes grid conditions are *fixed (deterministic) and known*
- What if we are trying to
 - control inverter **q** while solar **p** changes?
 - control inverters (p,q) while load (p,q) is uncertain?
 - design an inverter rule q=Dp for random solar p?

Optimization under uncertainty

• Consider a *parameterized* convex optimization problem [6]

$$\min_{\mathbf{x}} \ \mathbf{c}^{\top} \mathbf{x}$$

s.to $g(\mathbf{x}, \boldsymbol{\theta}) \le 0$

- Having a *single constraint* is wlog (point-wise max of all)
- Robust optimization: satisfy constraint for all values within an uncertainty range

$$g(\mathbf{x}, \boldsymbol{\theta}) \leq 0$$
 for all $\boldsymbol{\theta} \in \boldsymbol{\Theta}$ need uncertainty range

Chance-constrained optimization: satisfy constraint with some (high) probability

$$\Pr \{ \boldsymbol{\theta} \in \boldsymbol{\Theta} : g(\mathbf{x}, \boldsymbol{\theta}) \leq 0 \} \geq \alpha$$
 for say $\alpha = 0.95$ or 0.99 need pdf for uncertain parameters and being able to integrate over

Scenario-based optimization: we only have some scenarios for uncertain variables

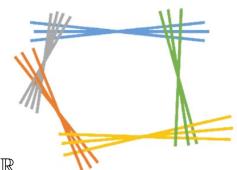
$$\min_{\mathbf{x}} \mathbf{c}^{\top} \mathbf{x}$$
 need scenarios
s.to $g(\mathbf{x}, \boldsymbol{\theta}_s) \leq 0$ $s = 1, \dots, S$ (forecasts or historical data)

enforcing constraint for all scenarios may be too conservative or impossible (infeasible)

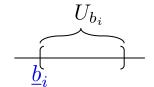
Robust linear programming

• Linear program involving uncertainties in constraints

$$\min_{\mathbf{x}} \ \mathbf{c}^{\top} \mathbf{x}$$
s.to $\mathbf{a}_{i}^{\top} \mathbf{x} \leq b_{i}$ for all $\mathbf{a}_{i} \in U_{\mathbf{a}_{i}}, b_{i} \in U_{b_{i}} \ i = 1, \dots, M$



- Given uncertainty sets for problem parameters $U_{\mathbf{a}_i} \subseteq \mathbb{R}^N, U_{b_i} \subseteq \mathbb{R}$
- Solve LP for worst-case of $(\mathbf{a}_i, b_i)'s$



- Replace b_i with the *smallest* value over $U_{b_i}:\underline{b}_i$
- Replace $\mathbf{a}_i^{\top}\mathbf{x}$ with the *largest* value over $U_{\mathbf{a}_i}: \max_{\mathbf{a}_i \in U_{\mathbf{a}_i}} \mathbf{a}_i^{\top}\mathbf{x}$
- Worst-case formulation [2]

Uncertainty sets

- *Polytopic* uncertainty set $U_{\mathbf{a}_i} = {\{\mathbf{a}_i | \mathbf{D}_i \mathbf{a}_i \leq \mathbf{d}_i\}}$
 - use duality to replace the internal maximization [2]

$$egin{aligned} \min_{\mathbf{x}, \{oldsymbol{\lambda}_i\}_{i=1}^M} & \mathbf{c}^{ op} \mathbf{x} \\ & ext{s.to} & oldsymbol{\lambda}_i^{ op} \mathbf{d}_i \leq \underline{b}_i, & i = 1, \dots, M \\ & \mathbf{D}_i^{ op} oldsymbol{\lambda}_i = \mathbf{x}, & i = 1, \dots, M \\ & oldsymbol{\lambda}_i \geq \mathbf{0}, & i = 1, \dots, M \end{aligned}$$

- worst-case formulation remains a linear program (LP)
- *Ellipsoidal* uncertainty set $U_{\mathbf{a}_i} = \{\bar{\mathbf{a}}_i + \mathbf{P}_i \mathbf{u} | \|\mathbf{u}\|_2 \le 1\}$
 - internal maximization has explicit solution [2] $\max_{\mathbf{a}_i \in U_{\mathbf{a}_i}} \mathbf{a}_i^\top \mathbf{x} = \bar{\mathbf{a}}_i^\top + \|\mathbf{P}_i^\top \mathbf{x}\|_2$

worst-case formulation becomes a second-order cone program (SOCP)

Voltage regulation using chance constraints

- Suppose need to design linear inverter control rules q = Dp for some (diagonal) D
- Solar injections can be modeled as random variables, e.g., $\mathbf{p} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then reactive power injections are also Gaussian $\mathbf{q} \sim \mathcal{N}(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}\boldsymbol{\Sigma}\mathbf{D})$
- Stochastic optimization deals with costs and objectives that use random variables

Average ohmic losses expressed as quadratic function of D

$$\mathbb{E}[\mathbf{p}^{\top}\mathbf{R}\mathbf{p}] = \operatorname{Trace}\left(\mathbf{R}\mathbb{E}[\mathbf{p}\mathbf{p}^{\top}]\right) = \operatorname{Trace}(\mathbf{R}\boldsymbol{\Sigma}) + \boldsymbol{\mu}^{\top}\mathbf{R}\boldsymbol{\mu} = \operatorname{constant}$$
$$\mathbb{E}[\mathbf{q}^{\top}\mathbf{R}\mathbf{q}] = \operatorname{Trace}\left(\mathbf{R}\mathbb{E}[\mathbf{q}\mathbf{q}^{\top}]\right) = \operatorname{Trace}(\mathbf{R}\mathbf{D}\boldsymbol{\Sigma}\mathbf{D}) + \boldsymbol{\mu}^{\top}\mathbf{D}\mathbf{R}\mathbf{D}\boldsymbol{\mu}$$

Chance constraints

- Chance constraints under Gaussian pdf yield second-order conic constraints [4]
- Constraint $v_n \leq \overline{v}_n$ under statistical model $\mathbf{p} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $\mathbf{q} \sim \mathcal{N}(\mathbf{D}\boldsymbol{\mu}, \mathbf{D}\boldsymbol{\Sigma}\mathbf{D})$

$$\mathbf{v} = \mathbf{R}\mathbf{p} + \mathbf{X}\mathbf{q} + v_0 \mathbf{1}$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{r}_n^{\top}\mathbf{p} + \mathbf{x}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{v}_n^{\top}\mathbf{p} + \mathbf{v}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{v}_n^{\top}\mathbf{p} + \mathbf{v}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{v}_n^{\top}\mathbf{p} + \mathbf{v}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

$$\mathbf{v}_n = \mathbf{v}_n^{\top}\mathbf{p} + \mathbf{v}_n^{\top}\mathbf{q} + v_0 \sim \mathcal{N}(\mu_n, \sigma_n^2)$$

• Reformulate chance (probability) constraint as CDF of standard Gaussian

$$\Pr\left(v_n \leq \overline{v}_n\right) = \Pr\left(\frac{v_n - \mu_n}{\sigma_n} \leq \frac{\overline{v}_n - \mu_n}{\sigma_n}\right) = \Phi\left(\frac{\overline{v}_n - \mu_n}{\sigma_n}\right) \geq \alpha_i \iff \frac{\overline{v}_n - \mu_n}{\sigma_n} \geq \Phi^{-1}(\alpha_i) = \text{const.}$$

$$\sim \mathcal{N}(0, 1)$$

$$\Phi^{-1}(\alpha_i)\sigma_n + \mu_n \leq \bar{v}_n \iff \Phi^{-1}(\alpha_i)\|\mathbf{\Sigma}^{1/2}\left(\mathbf{r}_n + \mathbf{D}\mathbf{x}_n\right)\|_2 + \left(\mathbf{r}_n + \mathbf{D}\mathbf{x}_n\right)^{\top}\boldsymbol{\mu} + v_0 \leq \bar{v}_n$$

$$second\text{-order cone (SOC) constraint}$$

- Problem has been reformulated to an SOCP
- If **p** follows a *log-concave pdf* (more general family of pdf's than Gaussian), the feasible set is still *convex* but not intersection of SOCs [5]

Scenario-based optimization

• Suppose you solve scenario-based optimization over $\mathbf{x} \in \mathbb{R}^N$

$$\min_{\mathbf{x}} \quad \mathbf{c}^{\top} \mathbf{x}$$

s.to $g(\mathbf{x}, \boldsymbol{\theta}_s) \le 0$ $s = 1, \dots, S$

- How many scenarios are needed to ensure $Pr\{g(\mathbf{x}, \boldsymbol{\theta}) \leq 0\} \geq \alpha$?
- If you sample *S* scenarios with [6]

$$S \ge \left\lceil \frac{2}{1-\alpha} \ln \frac{1}{1-\beta} + 2N + \frac{2N}{1-\alpha} \ln \frac{2}{1-\alpha} \right\rceil \quad \text{for some } \beta \in (0,1)$$

then with probability β

- either problem is infeasible
- or problem is feasible (and found solution satisfies original chance constraint)
- Holds for constraint function g that is convex in \mathbf{x} and any dependence on θ

Multi-parametric programming

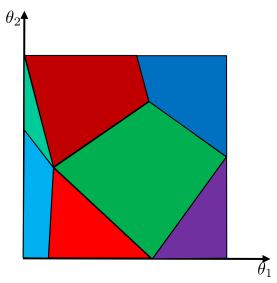
• Multiparametric quadratic (MPQP) program over $\theta \in \Theta$

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{\top} \mathbf{H} \mathbf{x} + (\mathbf{C}\boldsymbol{\theta} + \mathbf{d})^{\top} \mathbf{x}$$

s.to $\mathbf{A} \mathbf{x} \leq \mathbf{E}\boldsymbol{\theta} + \mathbf{b}$: $\boldsymbol{\lambda}$

- Need to solve it for all (or many) $\theta \in \Theta$
- Space Θ can be partitioned into *critical regions* $\Theta_k's$ [7]
- Each region Θ_k :

i) is described by a *polytope*
$$\Theta_k := \{ \theta : \mathbf{N}_k \theta + \mathbf{t}_k \leq \mathbf{0} \}$$



- *ii)* same constraints become *active*
- iii) optimal primal/dual solutions $\mathbf{x}^* = \mathbf{L}_k \boldsymbol{\theta} + \mathbf{r}_k$ and $\boldsymbol{\lambda}^* = \mathbf{M}_k \boldsymbol{\theta} + \mathbf{s}_k$
- Once Θ_k is identified, easily solve the QP's related to *all* $\theta \in \Theta_k$!

Polytopic approximation of quadratic constraints

- Most of previous schemes assumed constraints are linear in (x, θ)
- If optimizing p+jq (solar curtailment), need to enforce kVA inverter ratings

$$|s| = |p + jq| = \sqrt{p^2 + q^2} \le \overline{s}$$

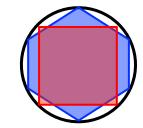
• Bound magnitude of s as $\cos\left(\frac{\phi}{2}\right)|s| \leq f(s) \leq |s|$ $f(s) = \max_{k=1,\dots,K}|\cos(k\phi)p + \sin(k\phi)q|, \quad \phi = \frac{\pi}{K}$

• Outer approximation (relaxation) as intersection of linear inequalities

$$-\overline{s} \le \cos(k\phi)p + \sin(k\phi)q \le \overline{s}, \quad \phi = \frac{\pi}{K}, \ k = 1, ..., K$$
 $K = 3$

$$K = 2$$

with relative accuracy of $1 - \cos\left(\frac{\pi}{2K}\right)$



• Inner approximation (restriction) as
$$\frac{f(s)}{\cos(\phi/2)} \leq \overline{s}$$

References

- [1] R. A. Jabr, "Linear Decision Rules for Control of Reactive Power by Distributed Photovoltaic Generators," *IEEE Trans. on Power Systems*, vol. 33, no. 2, pp. 2165-2174, March 2018.
- [2] A. Ben-Tal and L. El-Ghaoui., 'Robust Optimization', Princeton University Press, 2009
- [3] K. S. Ayyagari, N. Gatsis and A. F. Taha, "Chance constrained optimization of distributed energy resources via affine policies," *IEEE Global Conference on Signal and Information Processing (GlobalSIP)*, Montreal, Canada, Nov. 2017.
- [4] S. Boyd and L. Vandenberghe, *Convex Optimization*. New York, NY, USA: Cambridge University Press, 2004.
- [5] P. Li, B. Jin, D. Wang and B. Zhang, "Distribution System Voltage Control Under Uncertainties Using Tractable Chance Constraints" *IEEE Trans. on Power Systems*, Vol. 34, No. 6, Nov. 2019.
- [6] G. Calafiore and M. Campi, 'The Scenario Approach to Robust Control Design,' *IEEE Trans. on Automatic Control*, Vol. 51, No. 5, May 2006.
- [7] S. Taheri, M. Jalali, V. Kekatos, and L. Tong, "Fast Probabilistic Hosting Capacity Analysis for Active Distribution Systems," *IEEE Trans. on Smart Grid*, (Early Access) 2020.