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Outline

1) Local, centralized, and decentralized inverter control
2) LDF-OPF deterministic formulation

3) Robust optimization

4) Chance-constrained optimization

5) Scenario-based optimization

6) Multi-parametric programming

7) Polytopic approximation of quadratic constraints



Reactive power control schemes

* Categorized based on required communication
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v' high cyber requirements v' moderate computations v" no cyber requirements
v optimal v" high communication v' suboptimal

v' decisions may be
obsolete due to delays



Deterministic OPF under LDF

* Lecture 11 posed inverter control as SOCP/SDP under AC grid model

* To ease computations, consider ‘b f(p.q)
OPF under LDF model st. v<Rp+Xq+vl<v voltage limits
q <q<gq resource constraints
p<p<p } (DER inverters)

* Depending on cost, we may get linear program (LP) or quadratic program (QP)

fo(pyd) = ||v—voll3 ~ |Rp + Xq|3 or fe(p,q)~p Rp+q'Xq

voltage deviations ohmic losses on lines

* Other objectives/constraints can be envisioned (EVs, batteries, TCLs)

* Previous setup assumes grid conditions are fixed (deterministic) and known

* What if we are trying to
- control inverter q while solar p changes?
- control inverters (p,q) while load (p,q) is uncertain?

- design an inverter rule q=Dp for random solar p?



Optimization under uncertainty

Consider a parameterized convex optimization problem [6]

min c¢'x

X

s.to ¢g(x,0) <0
Having a single constraint is wlog (point-wise max of all)

Robust optimization: satisty constraint for all values within an uncertainty range

g9(x,0) <0 for all 0 € ® need uncertainty range

Chance-constrained optimization: satisfy constraint with some (high) probability

Pr{f €®:g(x,0) <0} >a forsay a=0.95or 0.99 need pdf for uncertain parameters
and being able to integrate over

Scenario-based optimization: we only have some scenarios for uncertain variables

. T .
min ¢ X need scenarios

X

sto g(x,0,)<0 s=1,...,8 (forecasts or historical data)

enforcing constraint for all scenarios may be too conservative or impossible (infeasible)



Robust linear programming

* Linear program involving uncertainties in constraints

min c'x

X

s.to a;.rxg b; forall a; €Uy, b, €U, 1 =1,...,. M
 Given uncertainty sets for problem parameters Ua, C RN, U, CR

* Solve LP for worst-case of (a;,b;)’s Up,

K2

/_/\

( )
* Replace b; with the smallest value over Uy, : b; 7 ]

=1

* Replace a; x with the largest value over U,, : max a, X

* Worst-case formulation [2]
min c¢'x
X
s.to max a;rxgbi 1=1,....M

a; € Uai




Uncertainty sets

* Polytopic uncertainty set Ua, = {a;|D;a; < d;}

— use duality to replace the internal maximization [2]

-

/min c'x
X,{Ai 7]§\i1

sto A, d; < b,
D;r)\z = X,
Ai 2 07

1=1,...,.M
r=1,..., M
1=1,...,M

— worst-case formulation remains a linear program (LP)

* Ellipsoidal uncertainty

— internal maximization has explicit solution [2]

set Uai = {5.@' + PzU.| HU||2 < 1}

max a; x =a; +|[/Pyx]

min c'x

X

s.to a, x + ||P] x|z < b,

i=1,....M

— worst-case formulation becomes a second-order cone program (SOCP)



Voltage regulation using chance constraints

* Suppose need to design linear inverter control rules q = Dp for some (diagonal) D

* Solar injections can be modeled as random variables, e.g., p ~ NV (p, %)

then reactive power injections are also Gaussian q ~ N (Du,DXD)

* Stochastic optimization deals with costs and objectives that use random variables

deterministic OPF (fixed p) stochastic OPF (random p)
. T T .
=q R R
puin f(a)=q Rq+p Rp poin Elf(q)
s.to v=Rp + Xq + vgl s.tov=Rp+ Xq+ vl
v<v<v chance Pr{v, <ov,}>a;, n=1,...,N
constraints { Pr{v, > -v,} >«a;, n=1,...,N

* Average ohmic losses expressed as quadratic function of D

E[p'Rp] = Trace (RE[ppT]) — Trace(RY) + p' Ry = constant
Elq' Rq] = Trace (RE[qq']) = Trace(RDED) + ' DRDp



Chance constraints
* Chance constraints under Gaussian pdf yield second-order conic constraints [4]

e Constraint v, <7, under statistical model p ~ N (u,¥) and q ~ N(Du,DED)

v=Rp+ Xq+ vyl | > Un:rql—p‘i‘XZQ‘i‘UONN(Nmai)
voltage at bus n where p, = (v, + Dxn)T o+ v
and afL = (rp, + Dxn)T Y (r, + Dx,)

* Reformulate chance (probability) constraint as ,
CDF of standard Gaussian

Pr (v, <v,) =Pr (Un_un < Un_””) = Un—Mn) > qp = Un — Hn > & *(a;) = const.

——
~ N(0,1)

O ()0 + pin < Tp = )|V (rn + Dx,) |2 + (rn +Dx,) " gt vo <7,
second-order cone (SOC) constraint

e Problem has been reformulated to an SOCP

* If p follows a log-concave pdf (more general family of pdf’s than Gaussian),
the feasible set is still convex but not intersection of SOCs [5]



Scenario-based optimization

. .. . N
* Suppose you solve scenario-based optimization over x € R

min c'x

X

sto g(x,05) <0 s=1,...,8

* How many scenarios are needed to ensure Pr{g(x,0) < 0} > a?

* If you sample S scenarios with [6]

2 1 2N 2
> 1 2N 1
S_[l—an1—6+ +1_an1_a-‘ for some 3 € (0,1)

then with probability £

— either problem is infeasible

— or problem is feasible (and found solution satisfies original chance constraint)

* Holds for constraint function g that is convex in x and any dependence on 6
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Multi-parametric programming
* Multiparametric quadratic (MPQP) program over 6 € ©
1
min ixTHx +(CO+d) x (QP)

sto Ax<EO-+Db CA

* Need to solve it for all (or many) 0 € ©

e Space © can be partitioned into critical regions O)s [7]

* Eachregion O :

i) is described by a polytope O := {6 : N0 + t;, <0}

i1) same constraints become active

iii) optimal primal/dual solutions X" = L0 +r; and A" = M0 +s;

* Once Oy is identified, easily solve the QP’s related to all 0 € Oy!
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Polytopic approximation of quadratic constraints

Most of previous schemes assumed constraints are linear in (x, 0)

If optimizing p+jg (solar curtailment), need to enforce kVA inverter ratings
s/ =Ip+Jal = VP +¢* <5

Bound magnitude of sas cos (g) 1s| < f(s) < |s]

f(s) = L nax | cos(ko)p + sin(ko)q|, ¢ = —

* Quter approximation (relaxation) as intersection of linear inequalities

—35 < cos(kop)p +sin(kp)g <3, ¢ = %, k=1,....K K —3

7T) K =2

ith relati F1— (—
W1 relative accuracy O COS 2K

f(s)

* Inner approximation (restriction)as ———~-_ <3

cos(¢/2)

* kVA ratings of lines/transformers can be handled similarly
12
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