ECE 5984: Power Distribution System Analysis

Lecture 11: DistFlow and LinDistFlow

Reference: see publications list at the end
Instructor: V. Kekatos

WVirginiaTech

Invent the Future



Outline

1. Branch flow model (BFM)

2. DistFlow model

3. DistFlow model for power flow

4. DistFlow model for optimal power flow

5. LinDistFlow model for approximate analysis



Branch-bus incidence matrix

* Single-phase and radial feeder represented by tree graph
G=W,E) with  N|]=N+1and||]=L=N

lines

N =10and || =L=N=9

breadth-first
(vs. depth-first)
numbering

buses |

* Branch-bus incidence matrix

reduced branch-bus
incidence matrix

* The line feeding bus 7 is indexed as line n-th




Branch-bus incidence matrix (cont’d)

e Branch-bus incidence matrix A

A1N+1 :0:>
ag+Aly =0

]-N = —A_lao

reduced branch-bus incidence matrix




Branch flow model (BFM)

St :p’ﬂ'n—l_qun Sn = Pn +an

Line n feeding bus n from its parent bus 7,

e Branch flow equations on x(s) = (S,I,V,so)

Vﬂ'n _Vn :ann
S,=V_1TI*

Tn=n

S, — zn|In|2 + 8, = Z Sk

k: n—k

* Boundary conditions?

* Given s, solve 2L+N+1 equations in 2L+N+1 complex unknowns [3]

* Equivalent with typical bus injection model (BIM); a.k.a. power flow equations



Branch flow model squared

Introduce squared voltage and current magnitudes

Uy = |Vn\2 and /¢, = |In\2

Rearrange power injection equations
Z Pk:pn+Pn_Tn£n

Sn — Zn‘ln|2 + Sy, = Z Sk ‘ k: n—k

k: n—k

Ohm'’s law squared (multiply both sides by complex conjugate)

Vi =Vs, —z2pl, =

V. -V, =2z,1 ViViy = Ve, — 2ndn) (Vr, — 2ndn)” =
Tn n nin ‘ vn:’vﬂn—QRe[Z:V I*]+|Zn‘2€n:

Tn'n

Vp = Up, — 2rn Py — 22,Qy + (12 4+ 224,

Definition of complex power flow squared

P2+ Q?

Sy =V, I* ‘ l, .



Relaxed branch flow model

* Relaxed BFM on y(s) := (S, £, v, po, qo)

Z Pk:pn+Pn—rn£n

s [

k: n—k
Z Qr = qn + Qn — by, vp = |Vo|* and ¢, = |I,|?
k: n—k
Un = Ur, — 27 Po — 220, Qn + (12 + 220, current and voltage phases
P2 4+ 2 have been dropped!
gn — n n
Urr

n

* Boundary conditions?

* Current mags. can be eliminated; equations remain nonlinear
* Given s, solve 2(L+N+1) equations in 3L+N+2 real unknowns [1]-[2]

* Inradial grids, we get 4N+2 equations in 4N+2 real unknowns

* Unique solution for practical networks with vo ~ 1 and small {(7,,z,)}



Recovering phases

n Un

S7Tn S’I'L |

* After the relaxed branch flow equations have been solved [3]

* Recover voltage phases

Vi, = Vi = 2,1, =
Vi =V =21 =
Vo VE=wv, — 2.8, =
O, — O0n = L(vg, — 225n) linear system can be inverted
only when L=N

S\
* Recover current phasors I, = (V—>

n



Linearized distribution flow (LinDistFlow)

* Approximate model to overcome the complexity of quadratic equations [1]-[2]

* Derived from forward DistFlow model upon dropping terms related to losses

Uﬂ-n Un
Sn,
—_
S, Sn I_)
DistFlow (forward form) LinDistFlow
2. Pe=pnt Buraly S Pez=pa+ Py
k: n—k k: n—k
Z Qr = Gn + Qn — Tty ‘ Z Qr ~ q, + Qn
k: n—k k: n—k
Un = Vg, — 2r, P, — zann + (T% + x%)ﬁn Up = Up, — 2r, P, — 23771@71
, P21+ Q?
L, = xn
Un

n

[Voltage drop and line power flows are approximately linearly related to power injections




Comparison to Lecture 3
* Drop in squared voltage magnitudes from LDF v, —wv, ~2r, P, + 22,Q,

* Drop in voltage magnitudes from chapter 3 Vi | = |Va| =~ Re{znln}

* How are these two approximations related?

 Consider first-order Taylor series expansion around [Vo| =1 (in per unit wlog)

Un = |Val? = [VoI? + 21Vo| (Vi = Vo)
VU, — U = 2(|Vr, | — Vi
:14_2("/”‘_1):2“/”‘_1 ‘ n (’ ‘ ‘ D

TP+ 2,Qn = Re{2,5,, } = Re{z, 1,V } ~ Re{z,1,}

* Equivalent useful approximation |V, |— |V,,|~r, P, + 2,Qn
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LDF in compact form

* Express LDF in matrix-vector notation

Z Pk ~ Pn + Pn D, = dg(r)7 D, = dg(X)
k: n—k \

Z QkZQn“‘Qn p:AT]?)
k: n—k q=A"Q

e

v =191+ 2FD,F'p+2FD,F'q
=vol + 2Rp + 2Xq

AV + vpag = 2D, P + 2DxQ

* Matrices (R, X) are symmetric positive definite and have positive entries

DISTRIBUTION LINE RESISTANCE-TO-REACTANCE RATIOS

e Both matrices are almost [ Feeder | Qmin | @max | mean | std [ median |

equally important IEEE 34bus | 1.00 | 1.88 | 141 | 029 | 137
IEEE 37-bus | 148 | 270 | 272 | 045 | 1.93
IEEE 123-bus | 042 | 202 | 074 | 038 | 097




IEEE 13-bus feeder —_—

7
4 2 1 3 ¢
* Assume transposed lines; average diagonal and off- : . -
diagonal entries; take positive-sequence impedance
10 7 5 9
v =19l + 2Rp + 2Xq : ! i
g N M

10.11 40.06

40.055
10.1

40.09
+0.045

0.08 0.04

0.035

0.07
0.03

0.06 0.025

0.02
0.05

0.015

2 4 6 8 10 12

* To find entry R,,, connect buses n and m to the substation, and add the
resistances of the common lines, e.g., Rio,12 =101 + 715
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Southern California Edison 47-bus feeder

38 37 19

¢ —®

VY&

XX
XX

oo

0.019
0.018
10017
0.016
Matrix X 0.015
0.014
0.013

0.012

0.011
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IEEE 123-bus feeder

116

20 40 60 80 100 120

Matrix X
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LDF approximation error

* Express DistFlow in matrix-vector notation

Z Pk:pn"i_Pn_rnEn

k: n—k ' . T
Z QRZQn"FQn_mngn p_A P—i_Dre
a=A'"Q+D,¢

k: n—k

Uy = U, — 21y Py — 22,Q + (12 + 22) Av + vpap = 2D, P +2D,Q — (D2 +D2) £

4

* LDF gives an over-estimator for squared voltage magnitudes

v=v+FD,[-I-2F'|D,£+FD, [-I-2F'| D, £< ¥

<0

* LDF gives an under-estimator for line flows P=F p-F'D£>P

* Approximation accuracy depends on loading conditions
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Linearized power flow models

Recall linearized or so-termed DC power flow model in transmission systems p = B0

It has been derived under three approximations:
1. Voltage magnitudes close to unity |V,,| =1+¢€, with ¢, ~0
2. Voltage angle differences across lines close to zero 6, =6, —6,, ~0

3. Ignoring line resistances and shunt elements

Repeat the same analysis for a meshed grid without the third assumption [6]

Consider voltages  V,, = (1 +¢€,)e’% and V,,, = (1 + €,,)e? x —

Consider power flow from bus nn to m:  Spm = Vo(Vyy = Vi )Unm = f(X)Ynm

f(x) = |Vn|2 — Vol | Vin| (oS Oy + j Sin Oy,
= (1+ en)2 — (1 + €,)(1 + €)(cos Opam + 7800

First-order Taylor’s series expansion  f(x) ~ f(0) 4+ (V4 f(0))' (x — 0)

Observe that f(0) =0
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Linearized power flow models (cont’d)
¢ Compute gradient of f(x) = (1+€n)> — (14 €n)(1 + €m) (oS Onpm + j Sinbry)
2(14+€,) — (1 + €)(cos O + 7 sinbp,)

+1
va<X> — _(1 + en)(COS Onm ‘I'jSin Hnm) ] ‘ fo(O) = |: —1 :|

—(14+ €)1 4 ) (—sin b, + j cosOnm)
* Linearization f(x)~0+[+1 —1 —jllen €m Onm] '

* Therefore, power flow on line (1n,m) can be linearized as

nm = nm\€n — +bnm9 _em

P = D,Aec+D,Af
Q = DyAe — D,Af

* Stacking line power flows

* Converting to power injections D= AP =Ge+ B6 G — ATDg A

compare to ‘DC’ model for q=A"Q=Be-Go B:=A'D,A
transmission grids
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Linearized power flow models (cont’d)

Solve equations wrt voltage magnitudes and angles

e=(G+BG'B) 'p+(B+GB'G)"

q
o= (B+GB'G) 'p- (G+BG 'B) 'q

Formula is general; holds even for meshed grids

For radial grids (square and invertible A), equations simplify to

e = Rp + Xq
0 =Xp—Rq

* Compare to LDF; linear approximation for voltage angles too

* Linearization conducted at flat voltage profile

Another reference state can be used; but (R,X,B,G) will depend on that state
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Power flow via convex relaxation
* Instead of the BF solver, solve the PF problem as a minimization [3]-[4]
N
min Z Tnln
n=1

over P,Q,v., £, pg,qo
S.t. Z Py =p, + P, —rp4,

k: n—k
Z QkZQn+Qn_xn£n
k: n—k
Vp = U, — 21y Py — 20,Qp + (72 + 22)4,
2 2 2 2
0, = M ‘ M </,
(s Ur,

n

* Non-convex constraint relaxed to second-order cone constraints (SOC)

2P,
2Qn <tln+vr,
gn - UTrn 2

* It can be solved efficiently as a second-order cone program (SOCP)

* Oftentimes, the relaxation is exact: SOC are satisfied with equality



Optimal power flow via convex relaxation

* OPF has to be solved to perform any meaningful grid optimization task
1. power loss minimization

voltage regulation

conservation voltage reduction

demand response

electric vehicle charging

A i

optimal coordination of energy storage

* Power injections s become control variables rather than fixed (inelastic load)

* Optimally control devices while satisfying the PF equations and network constraints
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Optimal power flow via convex relaxation

* Solving OPF in single-phase radial grids through via an SOCP [3]

N N N
min E roly + E cnpy + g O U,
n=1 n=1 n=1

over

S.t.

P7 Q7V7£7p07QOas

S Po=pu+P—rabs

k: n—k

Z Qr = gn + Qn — Tuly

k: n—k

P+ Q;

=<y,
NG

~

Vp = U, — 20 Py — 22,Qpn + (12 + 22)4,,

relaxed BFM equations /

/ p =p?—p° injecti(%

q=q° — q° constraints
p? <py <Dy, Vn
¢ <q) <7, Vn
(p?)" + (a)° <53, Vn )

\©

* Oftentimes, the relaxation is exact: SOCs are satisfied with equality
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Exactness under load over-satisfaction

Theorem ([3]): If power injections are unbounded below, the relaxation is exact

* Assume problem has been solved, but SOC for line 7 is inexact P> + Q2 < {yvy,,

r /
Uy = Ur, v

Zn€
S =8, — 2=
S 2

injections can be reduced
p Zn€ ;o Zn€ .
Stn = ST T o~ Sn = Sn T 5 without bound

 Given current solution (S,s,v,¥£,5s0), construct another point (S’,s',v’, €, s()
by changing only the quantities related to line n as shown above

* Show that new point is feasible; satisfies SOC with equality; and yields lower cost!

Z P.=p, + P, —r,t,
k: n—k
S Q=i+ Qo
k: n—k
Vp = Ux, — 2r, P, —22,Q" + (r2 4+ 22)¢,
(Ph)? + (@)

U

0 =

n
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Exactness of SOCP convex relaxation

* Exactness of SOCP relaxation for OPF in radial grids has been studied extensively [6]

e Different sets of sufficient conditions have been derived:

= no reverse power flows

» jdentical r/x ratios for all lines

* 1/x increase downstream and there are no reverse active power flows

= 1/x decrease downstream and there are no reverse reactive power flows

* If the SOCP is exact, the minimizer is unique

* To make BFM exact for meshed grids, add phase shifters to implement angle
differences [3]

* Otherwise, one can use a semidefinite program relaxation based on the bus injection
model (BIM) [4]

* How do these schemes extend to multiphase grids? [7]
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Multiphase branch flow model

Vi,
on from scalars to vectors
2 and matrices
Sr,

Va, = Vo =251, Vi, — Vp = Zpi,
Sn = Va1, ) S, - vr.iZ  matrix variable?
Sn_znun’2—|—8n: Z Sk: dg(S — 7 ln —I—Sn— Z dg Sk

k: n—k k: n—k

e Power received atnoden dg (Vn ) = dg [(an — Znin)iff ]

e Actual power sent from parent bus o, = dg(S,)
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Relaxed multiphase BFM

‘Square’ (multiply by conjugate transpose) the voltage drop equation

_ : H H s sH7H cHpH .

Define ‘squared’ voltages and currents V,, = vnvf L, =i,i,

Express ‘squared’ voltage drop as [ V., =V, +Z,L,Z; - S, 2] - 7,8,/ }

Linear equation; but complexity is hidden under ‘squared” variables (V,,,L,,S,)

H

Tn

25



Relaxed multiphase BFM (cont’d)

Vr

n

n

relax
In single-phase grids Sy =Vu I* - 1S,1? = vy, U ‘ 1Sp1? < vp Uy

H
Relaxation can be also written [ Qgﬂf ?” ] = [ ‘;ﬁ” ] [ ‘?” ] > 0 and yzﬁ

In multi-phase grids, the relaxation becomes

H
Vﬂ'n Sn _ V'/Tn V7rn
(% &J[e e e

Semidefinite program (SDP) constraint captures all quadratic relationships
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OPF with multiphase BFM

min losses and/or CVR and/or generation cost
over {Sy,Sn, Vi, Ln}n

/ \ /p _ o f injectic%
st.(dg(Sn — ZnLn) +s, = Y dg(Sk) q=q' o constraints
k: n—k
g9 < pd < p9 V.
Vn — an + ZnLnZnH T SnZnH T ZnS'rI;I Bn@ B pn,¢ = i " (b
V. S, @ S Gy STy V00
[ S; L, |~ " | Pho)” + (@00 ST V9
K relaxed BFM equations /
(v <dg(V,) <7, ¥
v < dg(Vn) <3, Vn network
_ dg(Ly) < 0, n  constraints

* Relaxation is exact (constraint satisfied with equality) under practical conditions



Linear approximation for multiphase grids

* Ignore losses to get approximate power conservation

dg<Sn_w+Sn: Z dg<sk) ‘ [Un‘}_sn: Z O'k:}

k: n—k k: n—k

* Voltage drop requires approximating the full matrix S,,

V,=V. + Wf —8,z% —7,8"

* Assuming approximately balanced voltages (and currents)

1

Ve oo, iy, ~ 1o a=|a" |, a=e?/3

Vr
«

Power flow matrix can be approximated as S, = aa' dg(o,,)

| d(V,) = d5(Va,) — d(eada(o)EE) — de(Zode(o) )




Inter-phase coupling

* Simplify approximate voltage drop using the property

dg (Adg(x)B) = (A ®B')x, ® : entry-wise (Hadamard) product

* Approximate voltage drop

[Vﬂn — v, ~ 2Re {Zna;} . where Z,=7Z,0a a’ }

0.530 +- 1.112; 0.127 + 0.4047 0.126 + 0.423i ,
Z. = | 0.127+0.404i 0.545 +1.043i 0.133 + 0.374i HW2-Exercise 1
0.126 4 0.423i 0.133 + 0.3747 0.542 + 1.056i

\ ) 0.530 + 1.1122 0.286 — 0.312: —0.430 — 0.103¢

Z, = | —0.413 -0.092: 0.545+ 1.0429: 0.258 — 0.303%
0.304 —0.3217 —0.391 — 0.072:  0.542 + 1.056¢

* How do complex injections affect voltage drops?
~ =+
sign [Im {Zn}] = | —

I+
+ |

sign [Re {Zn}] =

+ 1+
L+ +
+ + |

See Section IV of [8] for an analysis of these patterns 29



References

[1] M. Baran and F. Wu, ‘Optimal sizing of capacitors on a radial distribution system,” IEEE Trans.
on Power Delivery, Vol. 4, No. 1, Jan. 1989.

[2] M. Baran and F. Wu, ‘Network reconfiguration in distribution systems for loss reduction and
load balancing,” IEEE Trans. on Power Delivery, Vol. 4, No. 2, Apr. 1989.

[3] M. Farivar and S. Low, ‘Branch flow model: Relaxations and convexification - Part I,” IEEE
Trans. on Power Systems, Vol. 28, No. 3, Aug. 2013.

[4] S. Low, ‘“Convex relaxation of optimal power flow —Part I: Formulations and equivalence,” IEEE
Trans. on Control of Network Systems, Vol. 1, No. 1, March 2014.

[5] S. Low, “Convex relaxation of optimal power flow — Part II: Exactness,” IEEE Trans. on Control of
Network Systems, Vol. 1, No. 2, June 2014.

[6] D. Deka, S. Backhaus, and M. Chertkov, “Structure learning in power distribution networks,”
IEEE Trans. on Control of Network Systems, early access, 2018.

[7] L. Gan and S. Low, “Convex relaxations and linear approximation for optimal power flow in
multiphase radial networks,” in proc. Power System Computation Conf., Feb. 2015, Wroclaw, Poland.

[8] V. Kekatos, L. Zhang, G. B. Giannakis, and R. Baldick, "Voltage Regulation Algorithms for
Multiphase Power Distribution Grids," IEEE Trans. on Power Systems, Vol. 31, No. 5, Sep. 2016.

30



