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Abstract— In this paper, the problem of estimating the multi-
path channel parameters of a new user entering the uplink of an
asynchronous Direct Sequence - Code Division Multiple Access
(DS-CDMA) system is addressed. The problem is described via
a least squares (LS) cost function, which is non-linear with
respect to the time delays and linear with respect to the gains
of the multipath channel. This cost function is proved to be
approximately decoupled in terms of the path delays, and thus
an iterative procedure of one-dimensional searches turns out to
be adequate for time delays estimation. The resulting method
is computationally efficient and performs well even for a small
number of training symbols. Simulation results show that the
proposed technique offers a better estimation accuracy compared
to existing related methods, and is robust to multiple access
interference.

I. INTRODUCTION

In this paper, we propose a new method for the estimation
of multipath channel parameters in the uplink of a DS-CDMA
system. Accurate channel estimates are highly desirable at
the base station (BS), where advanced signal processing can
be employed to mitigate multiple access interference (MAI)
and multipath fading. Between the conventional tapped-delay-
line (TDL) channel model and the parametric model, where
channel impulse response (CIR) is characterized by the gains
and delays of dominant paths, the parametric one is more
effective, since fewer parameters are adequate for accurate
channel representation. Our focus is on the uplink of a DS-
CDMA system, which is usually asynchronous and hence
estimation methods robust to MAI are required.

To combat MAI interference and multipath fading, joint
multiuser detection and parametric channel estimation ap-
proaches have been developed [1], [2]. The increased com-
plexity of these algorithms renders them impractical, and the
channel estimation problem is usually treated separately from
the detection one. Blind subspace-based channel estimation
methods have been proposed in [3], [4], however they re-
quire long observation intervals, which limit their tracking
capability in rapidly varying channels. Maximum Likelihood
(ML) optimization has been also adopted for multipath channel
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parameter estimation. ML-based methods make use of training
signals and model MAI as colored noise. In [5] and [6] channel
estimates from MAI users are exploited during the estimation
of a new user, but specific PN sequences are required. The only
method that uses relatively few training symbols and does not
require specific signals to be employed, is the one proposed in
[7]. This method follows a ML-based approach and employs a
deflation scheme originating from the SAGE (space-alternating
generalized expectation-maximization) algorithm [8]: the op-
timization is performed with respect to a single path, and after
this path has been estimated its contribution is subtracted from
the received data. The deflation scheme applies similarly to the
rest of the paths.

In this paper, the problem of channel parameters’ estimation
is described via a non-linear least squares (LS) cost function
that is proven to be approximately decoupled with respect
to the delay parameters. This allows for the development
of an efficient search method for the estimation of the time
delays. The new method constitutes an interesting alternative
interpretation of the channel parameters’ estimation problem.
Moreover, simulations results show that the proposed method
exhibits a lower mean squared estimation error than the
method of [7], at the expense of a negligible increase of the
computational complexity.

The outline of this paper is as follows. In Section II,
the signal model is defined and the estimation problem is
formulated. In Section III, the LS cost function is derived and
the proposed algorithm is developed. Simulation results are
presented in Section IV, and the paper is concluded in V.

II. PROBLEM FORMULATION

Let us consider the reverse link of a DS-CDMA system
accommodating K simultaneously active users. If T is the
symbol period, {bk(i)} the transmitted symbols, and pk(t)
the spreading waveform of kth user, then the baseband signal
transmitted by this user can be expressed as

sk(t) =
∑

i

bk(i)pk(t − iT ) (1)

Let N be the spreading factor, Tc = T/N the chip period,
{ck(n), n = 0, . . . , N − 1} the chip sequence, and g(t) the
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chip pulse. Then, the spreading waveform pk(t) is given by

pk(t) =
N−1∑
n=0

ck(n)g(t − nTc) (2)

The signal sk(t) of each user is transmitted over a multipath
channel with P discrete paths having impulse response

hk(t) =
P∑

p=1

ak,pδ(t − τk,p) (3)

where ak,p and τk,p are the gain and the delay of the pth path,
respectively and δ(·) is the Dirac function. The received signal
is the superposition of the signals from all users, i.e.

x(t) =
K∑

k=1

P∑
p=1

ak,psk(t − τk,p) + w(t) (4)

contaminated by additive, white, Gaussian noise w(t) of power
spectral density N0. The received signal is oversampled by a
factor of Q samples per chip period, while a raised cosine
function is used as the chip pulse.

The delay spread of the physical channel hk(t), usually
encountered in the applications of interest, is restricted to a few
chip periods [9]. Also, taking into account the asynchronous
access of the kth user to the channel, the first delay τk,1 could
appear anywhere in the interval [0, NTc) of the BS timing.
Thus, a time support of two symbols can be adequate for the
total CIR, which is the convolution of the physical channel,
hk(t), with the chip sequence {ck(n)}.

Our goal is the estimation of the physical channel param-
eters for one user assuming that the parameters of all other
(K − 1) users have already been estimated. To this end and
using the formulation presented above, the samples collected
at the BS receiver over a period of M symbols can be written
in vector form as

x =
K∑

k=1

Sk(τ k)ak + w (5)

where ak, τ k are the vectors of delays and gains of user k, w
is the MQN×1 noise vector and Sk(τ k) is expressed as

Sk(τ k) =
(
BH

k ⊗ IQN

) (
CH

k ⊗ IQ

)
G(τ k) (6)

Bk is a 2 × M data matrix with Hankel structure, Ck is a
2N × 2N convolution matrix with its first row containing the
chip sequence as

[
cT

k 0T
N

]
, ck= [ck(0), . . . , ck(N − 1)]T

and G(τ k) is a 2QN×P matrix whose columns contain the
oversampled delayed chip pulses denoted in vector form as
g(τk,p), p=1, . . . , P . Note that each column of G(τ k) is a
function of a single delay parameter only. Symbol ⊗ stands
for the Kronecker product and IQ is the Q×Q identity matrix.

Let us consider that a new user, called hereafter the desired
user, is entering the system. Then, (5) can be rewritten as

x = S(τ )a + η (7)

where the user index has been dropped for simplicity and η
comprises MAI and thermal noise.

We assume that the spreading sequences of all the users
are known at the BS, while the desired user is in training
mode and has been synchronized to the BS. Although the
channel parameters of the interfering users have already been
estimated, their symbol sequences have not been detected yet.
Hence, MAI can be treated as a stochastic random process [7].
Specifically, MAI vector η can be modelled as a zero mean
Gaussian vector with covariance matrix Rη=E[ηηH ].

III. DERIVATION OF THE NEW ALGORITHM

A. The New Cost Function

As can been seen from (7), the data available for the
estimation of channel parameters are contaminated by colored
noise η with covariance matrix Rη. After prewhitening of the
noise, the required channel parameters, i.e. τ and a, may be
estimated by minimizing the least squares (LS) cost function

J(τ ,a) =
∥∥∥R−1/2

η x − R−1/2
η S(τ )a

∥∥∥2

(8)

where R−1/2
η is a square root factor of R−1

η . This cost function
is linear with respect to the path gains and nonlinear with
respect to the delays. Since the two sets of parameters are
independent, the optimization problem can be split up with
respect to each set, as

τ opt=arg max
τ

∥∥∥∥R−1/2
η S(τ )

(
R−1/2

η S(τ )
)†

R−1/2
η x

∥∥∥∥
2

(9)

aopt=
(
R−1/2

η S(τ )
)†

R−1/2
η x (10)

where symbol † denotes the pseudoinverse of a matrix.
It is apparent that the most difficult part of the above

optimization procedure is the maximization in (9). Commonly,
such a nonlinear problem is treated either by performing a
costly multidimensional search, or by applying an iterative
Newton type method, which could be trapped in a local
maximum. In the following, we show that the estimation of
each delay parameter τp can be performed separately leading
to a much more efficient estimation algorithm. We begin by
rewriting the cost function in (9) as

F (τ ) = yH(τ )D(τ )y(τ ) , where (11)

y(τ )=SH(τ )R−1
η x and D(τ )=

(
SH(τ )R−1

η S(τ )
)−1

It is readily seen from (6) that each column of S(τ ) depends
on a single delay parameter. The same property holds for the
elements of vector y(τ ) as well. Based on this observation,
we deduce that the cost function F (τ ) would be decoupled
with respect to the delay parameters, if matrix D(τ ) were
diagonal and each element [D(τ )]i,i were associated only to
the corresponding delay parameter τi. Even though matrix
D(τ ) is not exactly diagonal, we show that it is strongly
diagonally dominant.

To this end, we invoke a proposition proved in [10]. Ac-
cording to that proposition: Let a matrix A∈Cn×n and rA the



mean ratio of its off-diagonal and diagonal elements1. If this
matrix is pre/post multiplied by a unitary matrix Q∈Cn×m and
m�n, then the resulting matrix B=QHAQ has smaller mean
ratio compared to A, upper bounded by m

n rA. Consequently,
if matrix A has diagonal elements of much higher amplitude
than the off-diagonal ones, and m�n, then matrix B is
strongly diagonally dominant. It is easily shown, using Taylor
series expansion, that the same holds for its B−1. To apply
the aforementioned proposition in our problem, e.g. for matrix
D(τ ) in (11), three conditions should be satisfied:

1) P � MQN , which always holds true.
2) Matrix R−1

η =E[ηηH ] should have a ‘heavy’ diagonal.
3) Matrix S(τ ) should possess a unitary structure.

Concerning the second condition, we firstly observe that
due to the i.i.d. property of the symbol sequences, the cross-
user terms inside the expectation operator are equal to zero,
and MAI covariance matrix can be expressed as (assuming the
desired user is user 1)

Rη =
K∑

k=2

E
[
(Sk(τ k)ak)(Sk(τ k)ak)H

]
+

N0

2
IMQN (12)

From (5) and (6) the overall CIR of user k, can be written as

qk =
(
CT

k ⊗ IQ

)
G(τ k)ak =

[
q(1)

k

q(2)
k

]
(13)

In the last equation, qk is partitioned into two QN×1 blocks
corresponding to one symbol period each. Hence, according
to (6), the contribution of user k can be simplified as

Sk(τ k)ak =




b∗k(1)q(1)
k + b∗k(2)q(2)

k
...

b∗k(M − 1)q(1)
k + b∗k(M)q(2)

k


 (14)

The covariance matrix in (12) can be partitioned simi-
larly to (14) into blocks of dimension QN×QN , namely
{R(i,j)

η ; i, j = 1 . . . M}. Since each of these blocks depends
only on two consecutive symbols for each user, the blocks
lying in other than the main and the sub/super diagonals will
vanish, resulting in a block tridiagonal form for Rη. The non-
zero blocks of Rη can be expressed as follows

R(i,i)
η =

K∑
k=2

(
q(1)

k q(1)
k

H
+ q(2)

k q(2)
k

H
)

+
N0

2
IQN (15)

R(i,i+1)
η =

K∑
k=2

q(2)
k q(1)

k

H
, and R(i,i−1)

η =
(
R(i,i+1)

η

)H

(16)

Due to the orthogonality of the spreading codes, vectors q(j)
k

can be considered approximately orthogonal. Moreover, we
may assume that the elements of these vectors are of the same
order, which is quite reasonable according to (13). Thus, it is
easily verified that the elements of the off-diagonal blocks are

1The mean ratio rA of a matrix A is defined as E
[∑

j �=i |ai,j |/|ai,i|
]

where the expectation is applied over the rows of the matrix.

negligible compared to the main diagonal block of Rη. Hence,
the MAI covariance matrix Rη can be approximated as a block
diagonal matrix (15). Note that such an approximation has
already been adopted intuitively in the relevant literature [7].
Moving a step further, by applying the matrix inversion lemma
to (15), it can be showed that the inverse MAI covariance
matrix can be also approximated by a diagonal matrix.

As far as the third condition is concerned, starting from (6)
and after some algebra, we get

SH(τ )S(τ )=GT (τ ) (C ⊗ IQ)
(
BBH ⊗ IQN

) (
CH ⊗ IQ

)
G(τ )

The term BBH is the sample covariance matrix of the
information symbols, and can be approximated asymptotically
by I2. Moreover, the term CCH tends to the covariance matrix
of a PN sequence, and thus can be approximated by I2N .
Hence, SH(τ )S(τ ) reduces to

SH(τ )S(τ ) � GT (τ )G(τ ) (17)

Recall that the columns of G(τ ) contain delayed versions of
a raised cosine pulse shaping filter. The inner product of two
columns of G(τ ), i.e. g(τi) and g(τj), depends on the delay
difference ∆τ=|τi−τj |. If ∆τ = 0 the inner product takes its
maximum value, whereas it decays rapidly as ∆τ increases.
Even for ∆τ as small as a chip period, the inner product is one
order of magnitude smaller than its maximum. Accordingly,
S(τ ) has a structure very similar to a unitary matrix and thus
the proposition can be applied to our problem.

B. Decomposed Form of the Cost Function

Next we consider a modification of the cost function (9) in
order to derive an efficient estimation algorithm. To this end,
matrix S(τ ) in (7) is partitioned as

S(τ ) =
[

SP−1 sP

]
(18)

where SP−1 corresponds to the first (P −1) columns of S(τ )
and sP is its last column. We define also matrix Φ(τ )

Φ(τ ) ≡ R−1/2
η S(τ ) =

[
ΦP−1 φP

]
(19)

which is partitioned similarly to S(τ ). Hence, matrix D(τ )
in (11) can now be partitioned as

D(τ ) =
[

ΦH
P−1ΦP−1 ΦH

P−1φP

φH
P ΦP−1 φH

P φP

]−1

(20)

By expressing vector y(τ ) as y(τ )=
[
ΦH

P−1 φH
P

]
R−1/2

η x,

and using the matrix inversion lemma for D−1(τ ), the cost
function (11) can be written as

F (τ )=FP−1 + FP |P−1, where (21)

FP−1≡xHR−1
η SP−1

(
SH

P−1R
−1
η SP−1

)−1
SH

P−1R
−1
η x

FP |P−1≡∥∥∥sH
P R−1

η (IP−1 − SP−1

(
SH

P−1R
−1
η SP−1

)−1
SH

P−1R
−1
η )x

∥∥∥2

sH
P R−1

η

(
IP−1 − SP−1(SH

P−1R
−1
η SP−1)−1SH

P−1R
−1
η

)
sP



Notice that the cost function consists of two non-negative
terms. The first term, FP−1 depends only on the first (P − 1)
delays, and it is actually the initial cost function (11) of
reduced order. The Pth path delay appears only in the second
term. Provided that the cost function (11) is almost decoupled
with respect to the delays, each path can be estimated sepa-
rately. Let us now assume that (P−1) path delays have already
been acquired and their estimates τ̂P−1 are accurate enough.
Then according to (21), the estimation of the last delay τP

is reduced to the maximization of the second term FP |P−1,
while keeping the rest of the delays fixed. Some interesting
comments on the cost function should be made here:

1) The form of the cost function in (21) holds true for any
permutation on the path indices, or equivalently for any
permutation on the columns of S(τ ). This implies that
if any (P−1) delays have been estimated, the remaining
delay can be estimated through FP |P−1.

2) The term FP |P−1 can be further decomposed through
the same procedure we applied to F (τ ). It can be shown
that F (τ ) can be finally decomposed in P terms as

F (τ )=F1 +
P∑

i=2

Fi|i−1 (22)

Due to the above order-recursive structure of F (τ ),
we conclude that in case only (i − 1) path delays have
been estimated, the estimation of the ith delay can be
achieved using the corresponding Fi|i−1 term of (22).

C. The New Algorithm

Having analysed the cost function, we present the new
algorithm which is called hereafter Decoupled Parametric Es-
timation (DPE). DPE is organized in steps and cycles. At each
step, one delay parameter is estimated using the information of
already acquired delays. A cycle consists of P steps and at the
end of a cycle all delays have been estimated. During the first
cycle and while searching for τi, the optimization is performed
based on the Fi|i−1 term of (22). During the next cycles, DPE
uses the estimates of all other (P−1) delays (either obtained in
a previous, or the current cycle) for the estimation of a single
delay. The maximization now is performed using FP |P−1 term
with the delays properly ordered. Concerning the number of
cycles, simulations show that two cycles are adequate for the
method to converge. After all cycles have been completed,
path gains are extracted through (10).

In any cycle, the maximization of the corresponding cost
function is performed by a line search. Since the desired user
has been synchronized with the BS and the delay spread of
the physical channel is restricted to some chip periods, it is
sufficient to scan the delay range [0,NTc/4) with a linear step
size δ. Obviously, the value of δ affects the estimation accuracy
of the maximization procedure. In any case, the estimates
obtained through line search over the grid are not optimum.
A further refinement of the estimates can be achieved running
some Gauss-Newton iterations or an interpolation method.

Among all methods proposed so far for the estimation
of channel parameters in a CDMA system, the one that is

more relevant to DPE is the method presented in [7]. The
algorithm presented there (Whitening Sliding Correlator with
Cancellation, called hereafter WSCC) stems from a ML cost
function, while the subtraction of each estimated path from
the received data comes as a natural application of the SAGE
algorithm. On the other hand, our method depends on a
nonlinear LS cost function, which is proven to be almost
decoupled with respect to the delay parameters. The deflation
procedure (i.e. extracting the contribution of already resolved
paths) is encapsulated naturally in the cost function, yielding
better estimation results. As will be shown by simulation, DPE
exhibits a lower estimation error, at the expense of a slight
increase in computational complexity compared to WSCC.

More specifically, the computational complexity of both
algorithms per step is O((MQN)2). The extra computa-
tional cost of DPE is related to the computation of ma-
trix R−1

η (Ii−1 − Si−1

(
SH

i−1R
−1
η Si−1)−1SH

i−1R
−1
η

)
at the

beginning of each step. This computation can be performed
recursively with O((MQN)2) operations, and thus the extra
cost can be considered insignificant.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the
new algorithm through computer simulations. Most of the
system parameters used in the simulations were in agreement
with the UMTS specifications for FDD (Frequency Division
Duplexing) [9]. Specifically, the scrambling codes were of
length N=256, the modulation used was BPSK, the chip pulse
was a raised cosine function with roll-off equal to 0.22, the
oversampling factor Q was equal to 2, and the pilot signal
consisted of 5 symbols.

The multipath channel consisted of four paths. The path
gains were random variables following a zero mean Gaus-
sian distribution with variances [0,−1,−9,−10]dB. The
path delays of the desired user were fixed to the values
[0, 1.19, 2.72, 4.18] Tc (ITU - Vehicular Channel Model A).
Considering the asynchronous nature of the system, the delays
of the interfering users were modelled as random variables.
The first delay of kth user, τk,1, followed a uniform distribu-
tion in the interval [0, NTc), while the remaining three delays
were uniformly distributed in the interval [τk,1, τk,1 + 10Tc].

The estimation accuracy of the proposed algorithm was
evaluated in terms of the Normalized Mean Squared chan-
nel estimation Error (NMSE) between actual and estimated
total CIR, NMSE=E

[
‖htot − ĥtot‖2/‖htot‖2

]
. The results

presented in this section were obtained through 1000 Monte
Carlo simulation runs. Comparisons are made with the WSCC
algorithm. The asymptotic CRB is also presented. Notice here
that the parameter estimates τ̂ , â, were obtained by running
the basic versions of the two algorithms, i.e. without any fur-
ther refinement by Gauss-Newton iterations or interpolation.
The step size used for both algorithms was set to δ=0.125Tc,
and two estimation cycles were performed.

In Fig. 1, the NMSE versus Eb/N0 is presented for a pilot
signal of M=5. Eb is defined as the received bit energy for
the desired user. There were K=64 active users and the Signal
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Fig. 1. NMSE vs SNR for M=5 training symbols, K=64 users, and SIR=0dB.
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Fig. 2. Normalized amplitude of the diagonal block elements of R−1
η for

M=5 training symbols, K=64 users, SNR=20dB, and SIR=0dB.

to Interference Ratio (SIR), was set to 0dB. It can be seen
that the two algorithms at the low SNR region (below 15dB)
exhibit similar behaviour. But in the medium to high SNR
region DPE outperforms WSCC. Specifically, near 20dB, each
cycle of DPE has a 2dB gain in NMSE compared to the
corresponding cycle of WSCC. Moreover, the first cycle of
DPE attains the same NMSE as the second cycle of WSCC.
The gain in estimation error is higher for increasing SNR.

It is clear that the decoupling of the delay parameters is
based on the strong diagonal dominance property of matrix
R−1

η . To verify our theoretical analysis, we plot in Fig. 2 the
normalized amplitude of the elements of the main diagonal
block of R−1

η by properly projecting a 3-D mesh plot on two
dimensions. As can be seen, its off-diagonal elements are at
least one order of magnitude smaller than the diagonal ones.

Finally, we investigated the robustness of the two algorithms
to the near-far-problem. The system accommodated K=16
users having a SIR ranging from -10 to 10dB. As shown
in Fig. 3 both algorithms are robust to MAI, since their
accuracy remained almost constant for all tested SIR values.
DPE algorithm exhibits again superior performance.
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Fig. 3. NMSE vs SIR for M=5 training symbols, K=16 users, and SNR=20dB

V. CONCLUSIONS

A new method for estimating the multipath channel param-
eters of a single user in the uplink of a DS-CDMA system has
been proposed. The new method is based on a LS approach.
An approximate decoupling of the non-linear cost function
with respect to the delay parameters leads to an iterative
procedure of one-dimensional optimizations. At each step of
the algorithm, a single delay is estimated while the rest are
kept fixed. Additional cycles of the algorithm allow for further
improvement of the estimates. The suggested method does
not require any specific form of pilot signal and performs
well for a short training interval. Simulation results have
shown its robustness to MAI, as well as its higher estimation
accuracy compared to an existing method, at the expense of
an insignificant increase in computational complexity.
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