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Abstract— Three new adaptive equalization algorithms for
wireless systems operating over frequency selective MIMO chan-
nels are proposed. The problem of the MIMO DFE design is
formulated as a set of linear equations with multiple right-hand
sides (RHS) evolving in time. By applying an adaptive modified
conjugate gradient algorithm, originally proposed for a single
linear system, to the problem at hand, we arrive at an equalizer
of performance identical to RLS, numerically robust, but of
higher computational cost. To reduce its complexity, two updating
strategies of the equalizer filters are derived based on Galerkin
projection in time and space respectively. The two alternative
schemes exhibit a complexity lower than RLS while offering
slightly inferior convergence properties.

I. INTRODUCTION

Equalization of wireless MIMO frequency selective channel
is a challenging task mainly due to the fact that the respective
MIMO equalizers should cope with intersymbol, as well as
interstream interference. When the channel is static and has
already been estimated by the receiver, a MIMO DFE can be
designed according to methods such as those in [1].

However, when the channel impulse response changes
within a burst (a case arising in relatively long bursts and/or
fast varying conditions), the above techniques fail to equalize
the channel and efficient adaptive methods are required. To
our knowledge, the only adaptive MIMO DFE designs are
those proposed in [2] and [3], where the respective equalizers
are updated using the recursive least squares (RLS) algorithm.
The main problems in adaptive MIMO equalization are the
increased size of the equalizer and the colored noise appearing
due to interstream interference.

In the SISO case, adaptive algorithms based on the conju-
gate gradient (CG) method have already been proposed in [4],
[5], [6]. These algorithms are numerically stable and exhibit
convergence properties comparable to RLS in an equal or
lower computational cost. In this work, first, we extend the
adaptive modified CG (MCG) proposed in [4] to the MIMO
case. Although the performance of this algorithm (MIMO-
MCGQG) is identical to that of the MIMO RLS algorithm of [2],
its computational complexity is increased. To reduce the com-
plexity, an approximation of the MCG update has been derived
based on the idea of Galerkin projections [7]. By exploiting
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the structure of the MIMO DFE problem, projections can be
performed either in time, or in space. Hence, two alternative
schemes are derived having convergence properties close to
MIMO-MCG at a computational cost lower than MIMO RLS.
Moreover, these schemes provide a flexible framework in
MIMO adaptive equalization design to trade efficiency for
performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a MIMO communication system operating
over a frequency selective wireless channel. The system em-
ploys M transmit and N receive antennas, with M <N, while
spatial multiplexing is assumed. The signal transmitted across
the M antennas at time k can be described by the vector

s(k) = [ si(k) su(k) " (1)

where s;(k), i = 1,..., M, are i.i.d. symbols of unit variance.
By employing a discrete-time complex baseband model, the
signal received at the n-th antenna can be expressed as

1 M L
an(k) = SN hi(Dsilk = 1) +na(k) ()

VM i=1 1=0

where hy,; () forl =0, ..., L, is the sampled impulse response
between transmitter ¢ and receiver n, (L + 1) is the channel
length, and 7,,(k), n = 1,..., N, are white Gaussian complex
noise samples of variance Ny/2 per dimension. The samples
received at time k can be assembled in the vector

x(k) = [ 1(k) an(k) 7. 3)

The intersymbol and interstream interference involved in the
system described by (2) can be mitigated through a MIMO
Decision Feedback Equalizer (DFE) [2]. The proposed equal-
izer architecture is a structure of M/ MISO DFEs operating in
parallel. The ¢-th MISO DEFE is designated to extract the i-th
stream s;(k), and it consists of a feedforward and a feedback
filter of temporal span Ky and K, taps, respectively. The input
of the feedforward filters f;(k), for ¢ = 1,..., M, can be
described by the VK x 1 vector

T

(k) |". @

Similarly, if d;(k) denotes the output of the i-th DFE, and
d;(k) = f{d;(k)} is the corresponding decision device output,

x(k) = [ x"(k— Ky +1)
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then the input of the feedback filters, b;(k) fori =1,..., M,
can be expressed by the M K, x 1 vector

d(k) = [ d7(k - ) dA"k-1)]"  ®

where the d(k) is defined as

d(k) = [ di(k) dar(k) ]

By using the above definitions, the output of the i-th DFE
can be compactly expressed as
di(k) = wi(k)y(k), (©)
wi(k) = [£(k) bI(k) ]
y(k) = [xT(k) dT(k) ", i=1,...,M.

Notice that all the MISO DFEs have a common input, y(k),
of dimension K = NK; + MK,

The MIMO DFE may be found by using a least squares (LS)
approach. Provided that all previous decisions are correct, each
equalizer w; (k) can be computed as the minimizing argument
of the cost function

T

VRN pefwha ) )

with respect to w. Matrix ®(k) stands for the K x K
exponentially time-averaged input data autocorrelation matrix,
and z;(k) for the crosscorrelation vector, which are defined as

®(k) = A(k—1)+y(k)y" (k) (8)
z;(k) Azi(k — 1) +y(k)d; (k) )

where ) is a forgetting factor (0 < A < 1).
Equivalently, the minimizers of (7) can be derived as the
solution of a set of linear equations with multiple RHS, i.e.,

B(k)W (k) = Z(k) (10)
where the K x M matrices W (k) and Z(k) are defined as
W(k) = [ wi(k) wr (k) |,
Z(k) = [ zi(k) zu (k) .

III. CONJUGATE GRADIENT AND GALERKIN PROJECTIONS

J(w, ®(k),2i(k)) =

Before presenting the proposed CG-based algorithms, it is
necessary to make a brief introduction into the use of CG
methods for solving single and multiple linear systems.

A. Solution of a Single Linear System

The conjugate gradient (CG) method is an iterative Krylov
subspace method for solving linear systems of the form

dw = z.

(1)

where ® is a K x K Hermitian positive definite matrix [8].
The CG method minimizes the quadratic function J(w, ®, z)
defined in (7) by iteratively updating the parameters’ vector
as

w(k) = w(k — 1) + a(k)p(k).

The search direction vectors p(k) for k > 1 are designed to be
®-orthogonal to each other, i.e. p (k)®p(l) = 0 for k # 1.

(12)

Moreover, the step sizes, «(k), are selected as the minimizing
arguments of J(w(k), ®,z) with respect to a(k).

To obtain the ®-orthogonal direction vectors, the Gram-
Schmidt conjugation process should be applied on a set of
orthogonal vectors. The CG method selects the successive
negative gradients (or residuals) of the cost function, i.e.,

oJ(w(k), @,z

to be the basis vectors. By using the properties of the gradients,
the direction vectors can be updated as

p(k+1) = g(k) + B(k)p(k),

and (k) are chosen to ensure the ®-orthogonality among the
direction vectors [8]. Finally, it can be shown that the CG
method converges in at most K iterations [8].

=z — dw(k), (13)

(14)

B. Solution of Multiple Linear Systems

Conjugate gradient optimization methods may also be em-
ployed for solving multiple linear systems of the form ®,w; =
z; for ¢ = 1,..., M. A straightforward approach is to treat
each system independently and apply to it the CG method
presented in subsection III-A. However, more sophisticated
methods have been proposed in the literature, and can be
organized in two groups: the block-Krylov subspace solvers
[9], and those using projections [7].

Block-Krylov subspace solvers apply only in the case of
a linear system with multiple RHS, ie. ®; = & for all
i. They generalize the idea of the CG method and en-
force ®-orthogonality of direction vectors not only across
a single system, but among the other systems as well, that
is p(k)®p;(l) = 0 for all systems i,j, and iterations
k,l. Hence, by adding more constraints in the optimization
problem, these algorithms achieve faster convergence at the
expense of increased complexity, since two matrix inversions
are required per iteration.

In this work, our main goal is to derive a computationally
efficient algorithm for updating the MIMO DFE filters. At the
same time, note that the order of the linear systems in (10),
K, is much smaller than the time needed for the statistics of
the problem (8)-(9) to converge to their steady state values.
Thus, convergence in fewer than K iterations is not an issue
in the MIMO DEFE case. For these two reasons, we choose
not to follow a block-Krylov subspace approach, but emphasis
has been given on the projection methods which are presented
briefly below.

According to the projection methods, one of the linear
systems is selected as the ‘seed’ system. Let the j-th one,
®,w; = z;, be the seed system. This system is solved by
using the conventional CG method of subsection III-A until it
converges to its solution. During these iterations, the rest of
the systems do not perform any CG iteration, but rather they
use the search direction of the seed system, pj(k), to update
their solution as

wi(k) = wi(k — 1) + a;(k)p;(k), i #j (15)
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where the step size «;(k) is again selected as the minimizing
argument of J(w;(k), ®;,z;),

ij("f)gz(/€ —1)

p (k)®ip;(k)’
and the gradient is defined according to (13) as g;(k) = z; —
®,w; (k). Upon convergence of the seed system, a new system
is selected as the seed system and the whole procedure is
repeated until all systems have been solved.

By using the update of (15), it can be shown [7] that the
solution of a non-seed system at the k-th iteration, w;(k) is
restricted to lie in the subspace where the respective seed
system’s solution, w;(k), lies. The solution of a system is
eventually refined when it is, in turn, selected as the seed sys-
tem. This method, known as the Galerkin projection method,
has been utilized to reduce the computational cost of multiple
linear system solvers by exploiting possible relations among
the linear system parameters ®; and z; [7].

a;(k) = (16)

IV. ALGORITHM DERIVATION

When the system parameters are known a-priori and kept
static, then the CG methods of the previous section can be
employed. However, the solution of MIMO DFE in (10) can
be adaptively updated and track any variations in the input data
autocorrelation matrix and the corresponding crosscorrelation
vectors. Adaptive CG algorithms for single-input single-output
(SISO) systems have already been proposed in [4], [5], [6],
where either a single, or multiple CG iterations are performed
per sample time k. In [4], the former approach has been
followed, and by properly modifying the original CG method
an adaptive algorithm (modified CG, MCG) of performance
comparable to RLS was derived. In this section, we extend this
algorithm to the MIMO case, and apply the idea of Galerkin
projections to reduce its complexity.

A. Adaptive MIMO Modified Conjugate Gradient

By generalizing the adaptive MCG algorithm of [4] to the
MIMO case, the solution of (10) can be time updated as

W(k) = W(k — 1) + P(k)A(k) 17)

where the columns of P (k) are the search directions for each
of the M systems, and A(k) is a M x M diagonal matrix
having as i-th diagonal element, «;(k), the step size of the
corresponding system. If e(k) = s(k) — WH(k — 1)y(k) is
the a-priori estimation error, then the gradients of the systems
can be derived by (17), (8), and (9) as

G(k) = Z(k)—®(k)W(k)
— T(k) — ®(k)P(k)A(K) (18)
where T'(k) is defined as
T(k) = AG(k — 1) + y(k)e (k). (19)

The step sizes «; (k) are selected as the minimizing arguments
of J(w;(k), ®(k),z:(k)), ie.,

G0 I N

(20)

TABLE I
SUMMARY OF MIMO-MCG

Initialization: G(O) = W(O) = 0xxM, B(O) =0
P(1) = y(1)s™ (1), and ®(0) = 6Ix where & is a small
positive constant.

1) Update matrix ®(k) (8).

2) Update matrix T(k) (19).

3) Compute the step sizes by using (20).

4) Update the equalizer filters from (17).

5) Update the gradients (18).

6) Compute the 3;(k) for i = 1,..., M, from (22).

7) Update the search directions as in (21).

and t;(k) is the i-th column of T(k). Then, the search
directions for the next update are computed as

P(k+1) = G(k) + P(k)B(k) Q1)

where B(k) is again a M x M diagonal matrix. By employing
the Polak-Ribiere method [4], the diagonal elements of B(k)
can be computed as

(gi(k) — gi(k — 1))H gi(k)
gl(k—Dgi(k—1)

for k > 2, and g;(k) is the i-th column of the gradient matrix
G (k). The proposed algorithm, called hereafter MIMO-MCG,
is summarized in Table I.

Following standard practice in DFE design, a decision delay
should be inserted between equalizer decisions and transmitted
symbols. As in [1], we consider a decision delay parameter
A common for all streams, and set it to A = Ky — 1. Hence,
the decision d;(k) corresponds to symbol s;(k — A).

The MIMO-MCG can be viewed as the application of the
SISO-MCG algorithm of [4] to each of the linear systems of
(10) independently. By using the rationale of [4], it can be
shown that the MIMO-MCG converges to the solution of the
system at steady state. As it will be shown by simulations, the
performance of MIMO-MCG in terms of mean square error
(MSE) is identical to that of the RLS algorithm. To reduce
the complexity, we incorporate Galerkin projections into the
MCG algorithm as explained next.

B. Galerkin Projection-Based MIMO-MCG

Recall that the problem at hand in (10) can be considered as
a set of multiple linear equations evolving in time. According
to MIMO-MCG, all linear systems ®(k)w;(k) = z;(k), i =
1,..., M, at the k-th time instant, are updated by the MCG
algorithm. By utilizing the idea of Galerkin projections, an
approximate solution can be obtained by MCG updating just
a single system at each time instant k, while the others are
updated through Galerkin projections. A round-robin policy is
engaged for the selection of the system to be MCG-updated.
Hence, the equalizer w; is updated by the MCG method only
when i = mod(k, M) + 1.

Then, one has to specify how the Galerkin projections of
(15) should be performed. Due to the space-time nature of the
problem, there are two choices, which are explained below.
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TABLE II
SUMMARY OF MIMO-MCG-TP AND MIMO-MCG-SP

Select seed system as j = mod(k, M) + 1.
A. MCG Update
1) Update matrix ®(k) by using (8).
2) t;(k) = Agj(k — 1) + y(k)e; (k).
3) Compute the step size aj(k) from (20).
4 wi(k) = wi(k—1) +a;(k)p; (k).
5) g;i(k) = t;(k) — a;(k)®(k)p; (k).
6) Compute the §;(k) from (22).
7) pi(k+ M) = g;(k) + B;(k)p;(k).
Fori=1,...,M, i # mod(k, M) + 1,
B1. Time Project
D ti(k) = Agi(k — 1) + y(k)ei (k).
2) Update the matrix-vector product
®(k)pi(l) = A@(k — 1)pi(1) + y (k)y™ (k)pi ().
3) Compute a;(k) from (24).
4) Update the equalizer filter according to (23).
5) gi(k) = ti(k) — (k)@ (k)pi (D).
or B2. Space Project
1) ti(k) = Agi(k — 1) + y(k)ei ().
2) Compute «; (k) from (26).
3) Update the equalizer filter according to (26).
4) gi(k) = ti(k) — a;(k)®(k)p; (k).
End

1) Time Projection Scheme (MIMO-MCG-TP): According
to the Time Projection scheme (MIMO-MCG-TP), each stream
is treated separately. The ¢-th stream is updated by the MCG
algorithm only at the I-th time instant where i = mod(l, M)+
1, and ®(I)w;(l) = z;(l) is considered as the seed system.
Hence, during the intermediate time instants, the equalizer
w; (k) is updated by using the direction p;(l) as

wi(k) = wi(k—1)+a;(k)pi(l),
pi(l) = pi([(k—1i)/M])

for i # mod(k, M) + 1. The corresponding step size can be
found similarly to (16) and (20) as

ol — PO

i ()@ (k)pi(l)
Notice that the matrix-vector product in the denominator
of (24) can be efficiently computed by utilizing the rank-1
updates of ®(k) (8) for k=1+1,...,1+ M — 1.

2) Space Projection Scheme (MIMO-MCG-SP): In the
Space Projection scheme (MIMO-MCG-SP), the adaptations
of the equalizer filters are performed jointly. Similarly to the
TP scheme, at the k-th time instant, the j-th system is selected
as the seed system, where j = mod(k, M) + 1. After the
seed system has been MCG-updated, the non-seed systems
are updated according to Galerkin projections as

(23)

(24)

B p; (k)ti(k)
)= ek () 20

Note that the denominator in (26) has already been computed
during the MCG update of the j-th equalizer (seed system),
and thus the complexity of SP is even smaller than TP scheme.

TABLE III
COMPARISON OF COMPLEXITIES

Algorithm Complex Multiply-Add Operations
MIMO-RLS SK2+IMK+O(K)
MIMO-MCG (2M + 3) K24+17TM K+O(K)
MIMO-MCG-TP TK2+15MK+O(K)
MIMO-MCG-SP TK2+11MK+O(K)

The two schemes described above are presented in Table II,
where the initialization can be performed as in Table I. Since
only a single system is MCG-updated at each time instant,
while the non-seed systems are updated according to efficient
Galerkin projections, both schemes have a computational
complexity of O(K? + MK). Note that the complexities
of the proposed MCG schemes can be further reduced, by
extending the idea of computing efficiently Toeplitz matrix
- vector products, followed in [6], to the MIMO case. The
complexities, in numbers of complex multiply-add operations
per symbol period for all the proposed algorithms, as well as
the MIMO-RLS of [2] implemented in a square-root fashion
to avoid numerical instability [3], are presented in Table III.

Comparing the two projection alternatives, one should
notice that in both schemes each system is MCG-updated
every M time instants. However, during the rest of the time,
TP scheme utilizes a single direction, i.e., p;(l) to update
its solution, while SP utilizes the (M — 1) quite different
directions determined by the rest of the systems. Thus, when
space projections are performed, the solution has much more
degrees of freedom to move into the K-dimensional space
and converges faster to its solution. Several combinations of
the three algorithms proposed in this section can be performed,
and space and/or time projections can substitute some MCG
updates to trade convergence for computational complexity.

V. PERFORMANCE EVALUATION

The performance of the proposed equalizers was evaluated
through computer simulations. We considered a system trans-
mitting uncoded QPSK symbols of duration T5=0.25pusec
over a wireless channel modelled according to the UMTS
Vehicular Channel Model A [10]. This channel model consists
of six independent, Rayleigh faded paths, with a power delay
profile described in [10]. All transmitter-receiver links were
considered independent. The SNR was defined as the expected
SNR per bit (over the ensemble of channel realizations) on
each receive antenna. The feedforward and feedback filters had
a temporal span of K =20, and K};=10 taps, respectively.

Initially, to study the convergence of the equalizers, the
Doppler effect was ignored and the channel was kept static
for an interval of 40967s. An M =N=3 antenna configuration
operating at SNR=16dB was simulated, while the system
was constantly in training mode. Six different MIMO DFE
algorithms were tested: (1) the MIMO-RLS of [2] imple-
mented in a square root RLS fashion to avoid numerical
instability [3], (2) the MIMO-MCG, (3) the MIMO-MCG-TP,
(4) the MIMO-MCG-SP, (5) a scheme that executes only one
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Fig. 1. Convergence of adaptive equalizers for a 3x3 static MIMO channel
at SNR=16dB (A=0.9989).

MCG update every M iterations and does not perform any
projection (MIMO-MCG-NOP), and (6) a MIMO normalized
LMS (MIMO-NLMS) algorithm. In Fig. 1, the MSE, averaged
over all streams and over 1000 independent runs, is plotted.
By setting the parameter \ of the MCG algorithms equal to the
forgetting factor of the RLS and adjusting accordingly the step
size of the NLMS, all the equalizers were tuned to converge at
the same steady state error. As it is shown, the MIMO-MCG
curve coincides with that of MIMO-RLS, while MIMO-MCG-
TP and MIMO-MCG-SP lie very close to it. The SP scheme
is better than the TP as it was expected, while the MIMO-
MCG-NOP and MIMO-NLMS exhibit very slow convergence.
Note that the projections can offer significant improvement in
performance at a limited additional cost.

Error propagation effects in decision-directed mode and the
impact of MCG updates frequency were studied by simulating
a system that operates over a 6x6 static channel. A training
period of 5127 was employed. In Fig. 2 the error curves of
the proposed MCG equalizers, as well as the MIMO-RLS are
plotted. As it can be seen, all equalizers are robust to error
propagation effects. Moreover, by performing the MCG update
less frequently (every M=6 iterations instead of 3 in Fig. 1),
a slight degradation in performance can be observed. Finally,
the tracking performance of the algorithms was studied by
simulating a system that operates over a 4x4 slow fading
channel. A normalized Doppler frequency fpTs=1.1 107>
was simulated by using the Jakes method. As illustrated in
Fig. 3, all the proposed equalizers successfully track channel
variations.

VI. CONCLUSIONS

Three adaptive algorithms for updating a MIMO DFE have
been developed. By extending the algorithm of [4], we derived
an adaptive CG MIMO DFE. To reduce its complexity, we
employed the idea of Galerkin projections, and two schemes
of convergence close to RLS have been proposed. As shown
by simulations, all the new equalizers can be successfully
employed in practical MIMO wideband systems. The numer-
ical stability of the MCG schemes as compared to the RLS
algorithm and the impact of using a more sophisticated policy

R (1)‘MIMO—R‘LS
- - - (2) MIMO-MCG
(
(

3) MIMO-MCG-TP/| |
4) MIMO-MCG-SP

MSE (dB)

0 500 1000 1500 2000 2500 3000 3500 4000

Fig. 2. Convergence of adaptive equalizers for a 6 x6 static MIMO channel
at SNR=16dB (A=0.9994).

0 : : : : : : :
- - - (1) MIMO-RLS
(2) MIMO-MCG
(3) MIMO-MCG-TP
(4) MIMO-MCG-SP

MSE (dB)

4 i i

2000

3000

4000

1 i i i
0 500 1000 1500 2500 3500

Fig. 3. Convergence of adaptive equalizers for a 4x4 slow fading MIMO
system at SNR=16dB (A=0.998).

for choosing the system to be updated by MCG, are some of
the issues that are currently being investigated.
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