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From Sparse Signals to Sparse Residuals for
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Abstract—One of the key challenges in sensor networks is the
extraction of information by fusing data from a multitude of
distinct, but possibly unreliable sensors. Recovering information
from the maximum number of dependable sensors while speci-
fying the unreliable ones is critical for robust sensing. This sensing
task is formulated here as that of finding the maximum number of
feasible subsystems of linear equations and proved to be NP-hard.
Useful links are established with compressive sampling, which
aims at recovering vectors that are sparse. In contrast, the signals
here are not sparse, but give rise to sparse residuals. Capitalizing
on this form of sparsity, four sensing schemes with complementary
strengths are developed. The first scheme is a convex relaxation
of the original problem expressed as a second-order cone pro-
gram (SOCP). It is shown that when the involved sensing matrices
are Gaussian and the reliable measurements are sufficiently many,
the SOCP can recover the optimal solution with overwhelming
probability. The second scheme is obtained by replacing the
initial objective function with a concave one. The third and fourth
schemes are tailored for noisy sensor data. The noisy case is cast
as a combinatorial problem that is subsequently surrogated by a
(weighted) SOCP. Interestingly, the derived cost functions fall into
the framework of robust multivariate linear regression, while an
efficient block-coordinate descent algorithm is developed for their
minimization. The robust sensing capabilities of all schemes are
verified by simulated tests.

Index Terms—Compressive sampling, convex relaxation, coordi-
nate descent, multivariate regression, robust methods, sensor net-
works.

I. INTRODUCTION

R ECENT advances in sensor technology have made it fea-
sible to deploy a network of inexpensive sensors for car-

rying out synergistically even sophisticated inference tasks. In
applications such as environmental monitoring, surveillance of
critical infrastructure, agriculture, or medical imaging, the typ-
ical concept of operation involves a large and possibly heteroge-
neous set of sensors locally observing the signal of interest and
transmitting their measurements to a higher-layer agent (fusion
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center). This so-termed layered sensing apparatus entails three
operational conditions:

c1) Each node’s measurement vector comprising either a
collection of scalar observations across time, or a snap-
shot of different sensor readings, is typically assumed
to be linearly related to the unknown variable(s). Such
a linear model can arise when the sensing system is
viewed as a linear filter with known impulse response.
Even when the underlying model is nonlinear, the ob-
servations are approximately modeled as adhering to a
(multivariate) linear regression;

c2) Either because readings are costly to sense and transmit,
due to delay or stationarity constraints, or simply be-
cause dimensionality reduction is invoked to cope with
the “curse of dimensionality,” the linear model is often-
times underdetermined, i.e., the dimension of the un-
known vector is larger than that of each sensor’s vector
observation; and

c3) Not all sensors are reliable because failures in the
sensing devices, fades of the sensor-agent communica-
tion link, physical obstruction of the scene of interest
and (un)intentional interference, all can severely deteri-
orate the consistency and reliability of sensor data.

Conditions c1)–c3) suggest that the fusion center should not
simply aggregate all sensor measurements, but instead iden-
tify and discard unreliable sensors before estimating the un-
known vector based on reliable sensor data. This task is hence-
forth referred to as robust sensing (RS) and provides context
of the present paper. Discerning the unreliable sensors not only
promises higher estimation accuracy, but also enables corrective
actions to re-establish a sensor’s reliability, by e.g., remotely di-
recting the sensor to the area of interest, or, increasing its sen-
sitivity. Even though the related problem of outlier detection in
sensor networks has been studied extensively (see, e.g., [33] for
a recent survey), the RS setup and the approaches described here
have not been considered before.

The first contribution of this work is to formulate the RS
task as an optimization problem based on the sensor data and
show it to be NP-hard (Section II). The second one consists of
two (sub)-optimum RS solvers (Section III). The first solver is
expressed as a second-order cone program (SOCP) through a
convex relaxation of the original NP-hard problem. The idea
of convex relaxation has been employed in the emerging area
of compressive sampling (CS) [8], [9], [28]. CS asserts that a
sparse vector (i.e., one having many zero entries) can be re-
covered with overwhelming probability as the vector with min-
imum -norm satisfying an underdetermined system of linear
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equations; a setup known as basis pursuit (BP) [8], [9], [29].
CS has been generalized to block-sparse signals, where the un-
known vector comprises predetermined subsets of variables that
are (non) zero as a group [5], [11], [26], [27]. Block sparsity
emerges also in the RS formulation herein, not in the unknown
vector though, but in the per-sensor residual error vectors. The
relation between recovering block-sparse signals and the devel-
oped RS solver nicely generalizes the equivalence of BP with

-error regression from the scalar to the vector case. As an alter-
native to convex relaxation, the -(pseudo)norm of the wanted
vector can be replaced by a concave approximation to further
promote sparsity [7], [12]. This constitutes the second RS solver,
which surrogates the original objective by a concave function
and minimizes it through a sequence of weighted SOCPs.

The third contribution consists in analyzing the performance
(identifiability) of the convex relaxation approach to recover the
unknown vector and successfully select the reliable sensors in
the noise-free case (Section IV). The analysis hinges on a set
of necessary and sufficient conditions on the involved matrix
range space, which appear also in the context of [27]. Here
a lower bound expressed in closed form is established on the
probability of success when the design matrix is drawn from
the Gaussian ensemble; see also [24]. It is shown that whenever
there is sufficient majority of reliable sensors and quantifiably
enough per-sensor measurements, the solution of the SOCP is
exact with overwhelming probability.

In real-world applications, sensor readings are contami-
nated by additive noise due to quantization, communication
noise and/or unmodeled dynamics. Besides identifiability, the
aforementioned schemes are thus appropriate only for the high
signal-to-noise ratio (SNR) regime. When the sparse vector
in CS is observed in noise, its recovery is based on methods
such as the Lasso [28], or the group Lasso for vectors that are
block-sparse [32]. Different from CS, the approach here views
the unreliable sensors as outliers, thus placing the sensing in
the presence of noise (RSN) task under a robust multivariate
linear regression framework [2], [4]. The fourth contribution of
this work (Section V) is initially formulating RSN as a combi-
natorial optimization problem that is subsequently surrogated
by a convex approximation. Interestingly, the novel cost func-
tion turns out to be a block version of Huber’s function [17].
The resultant optimization problem is transformed to a group
Lasso-type SOCP and a computationally attractive block-co-
ordinate descent algorithm is developed. An alternative RSN
solver is also offered after replacing the previously derived
convex problem with a nonconvex one. The simulated tests
presented in Section VI corroborate the proposed schemes and
the paper is concluded in Section VII.

Notation: Lowercase (upper-case) boldface letters are re-
served for column vectors (matrices) and calligraphic letters
for sets; denotes transposition; stands for the
multivariate Gaussian probability density with mean and co-
variance matrix , while denotes the expectation operator.

The notation for stands for
the -norm in and the -(pseudo)norm which
equals the number of nonzero entries of .

Fig. 1. A wireless sensor network linked with a fusion center. (Un)reliable sen-
sors are color coded as (red) green.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider an agent, e.g., an unmanned aerial vehicle, col-
lecting data vectors of size and corresponding

regression matrices from sensors. The goal is
to find an unknown vector , possibly satisfying the linear
subsystems of equations for some .
This goal is challenging since the unknown vector satisfies
only an unknown subset of sensors. The RS problem can be
compactly stated as follows.

Problem Statement 1 (Robust Sensing (RS)): Given
vector-matrix pairs, , where and

, find a vector that maximizes the number
of feasible linear subsystems .

Vector could model a scene (lexicographically ordered
image) of interest viewed by multiple and possibly heteroge-
neous, e.g., Infrared, SAR, or, Lidar imaging systems. Matrices

may capture variable fields of view, different perspectives
and resolutions in some (e.g., wavelet) domain, or, calibra-
tion parameters of the respective sensors. Alternatively, in
an environmental monitoring application, could represent
the unknown parameters of a chemical/biological compound
diffusion field described by the Green’s function captured
by the matrices and measured by a wireless sensor
network deployed over a region of interest. In such sensing
applications, a sensor may reckoned unreliable or irrelevant
due to obstruction, fading propagation effects, device failures,
jamming, or, even because it collects data corresponding to an
irrelevant ; see Fig. 1.

The RS task is different for over- and underdetermined linear
subsystems. Assume that all ’s are full rank, i.e.,

for all .1 Then, suppose that the th linear sub-
system is overdetermined . This subsystem is either
infeasible and can be ignored, or, it admits a unique solution

. In the latter case, it can be easily checked whether satis-
fies any other subsystem. The solution together with the total

1This is without loss of generality (w.l.o.g.), because every sensor with
������ � � ����� ��� will be either infeasible, or, it can be transformed
to an underdetermined subsystem with full row rank.
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number of subsystems it satisfies are retained and the method
proceeds similarly with all other overdetermined subsystems.
However, checking the underdetermined subsystems
is more challenging, since each one of them admits infinitely
many solutions. Recognizing that overdetermined subsystems
can be easily handled, this paper focuses on the RS task when

for all . Note that underdeterminacy may arise natu-
rally because of stringent power, bandwidth, delay, or station-
arity constraints. Given that the ’s ( ’s) can be padded with
zero entries (rows) to match the dimension , it will be
henceforth assumed w.l.o.g. for all .

Before proceeding, it is useful to introduce some parameters.
The set of all subsystem indexes is denoted by ,
whereas the pair denotes a partition of into the subset

and its complement . Consider
now the matrix constructed by concatenating the
matrices and likewise for the vector . The aggre-
gate regression matrix and data vector are defined as

and , respectively.
Upon introducing an auxiliary vector , the RS problem

can be rigorously posed as

(P0)

If the th subsystem is deemed feasible, then ; otherwise,
is strictly positive and the cost increases. In a nutshell,

(P0) minimizes the number of infeasible linear subsystems and
hence solves RS. Note also that the constraints are satisfied as
equalities at the optimum. Thus, if the optimum is given, the
optimum is readily available. This implies that the solution
pair is identified solely by , which will be henceforth
called the solution of (P0).

Even though the constraints in (P0) are convex, the problem is
nonconvex. A greedy approach to solving it would be to assume
there are feasible subsystems and let range from down to
1. For each value of , one can check feasibility of the linear
systems for each of the subsets having
cardinality , until a feasible subset is found. But this
approach incurs combinatorial complexity and can be computa-
tionally feasible only for small-size problems. In fact, it is not
difficult to establish the following result.

Proposition 1: The RS problem is NP-hard.

Proof: Consider first the following problem of maximizing
the number of consistent linear equations (MCLE): “Given a
system of linear equations , where and

, find a vector satisfying as many equations
as possible.” The MCLE problem is known to be NP-hard [3,
Th. 1]. Consider an instance of the MCLE problem. Choose an
integer and define the instance of RS with parameters

selected as and for
and ; and 0 for their remaining en-

tries. Solving an MCLE problem is hence equivalent to solving
an instance of an RS. This simple reduction of MCLE to RS es-
tablishes the proposition.

In search of sub-optimum yet computationally affordable
solvers of (P0), one could adopt the least-squares (LS) ap-
proach, which amounts to

(1)

Alternatively, one could consider minimizing the -norm of the
error, namely

(2)

Unfortunately, both approaches handle separately every linear
equation and thus ignore the underlying per-sensor linear sub-
system. In addition, they cannot reliably identify the unreliable
sensors.

III. RS SOLVERS

A. A Convex Relaxation Solver

It is known that if the infinity norm satisfies
, then the -norm is the convex envelope

(the largest convex underapproximant) of ; see e.g., [6, p.
119]. This property is used also in CS [29] and prompts one to
relax the NP-hard problem (P0) to

(3)

Note though that here does not have to be sparse. The problem
in (3) is an SOCP and can be efficiently solved by several ex-
isting algorithms [6]. Invoking the implicit constraint and
the definition of the -norm , the problem (3)
is equivalent to

(P1)

which is still an SOCP, albeit unconstrained.
The cost in (P1) is the sum of the -norms of the residual vec-

tors associated with the linear subsystems, which is continuous,
but not differentiable. In the optimization circles, (P1) is known
as the minimization of the sum of (Euclidean) norms problem
[6, Sec. 6.4]. It emerges also when solving problems related to
Steiner trees, optimal location and image restoration model con-
straints; see, e.g., [20, Sec. 2.2] and references therein. Algorith-
mically, (P1) is tackled either by generic SOCP solvers, or, by
interior-point algorithms customized to its specific form [20].

Having relaxed the RS problem (P0) to its closest convex ap-
proximation (P1) which is tractable, it is of interest to reflect
on various links and interpretations that (P1) can afford, post-
poning its performance analysis to Section IV.

Remark 1 ((P1) Versus LS): Clearly, the LS problem in (1)
can be rewritten as
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which is again a convex approximation of (P0), though, as men-
tioned earlier, not the closest one.

Remark 2 ((P1) Versus Block-sparse Signal Reconstruc-
tion): To establish this connection, assume that
is nonempty. Let denote the residual error
vectors and . Upon defining matrix such
that its null space is spanned by , i.e., and

, the problem (P1) can be rendered equivalent to

(4a)

(4b)

which emerges when reconstructing a block-sparse vector sat-
isfying the underdetermined system in (4b) [5], [11], [26], [27].
To establish the equivalence, write (P1) as
subject to . Premultiplying both sides of the last
equality by , one arrives at (4). The same equality couples
the minimizers of the two problems: if solves (4) and is
the pseudo-inverse of , then solves (P1). The op-
timization in (4) relies on the prior information that is block
sparse. For the RS problem, the vector of interest is not (block)
sparse; but the residual error vector is block sparse.

Remark 3 ((P1) Versus -error Regression): In the degen-
erate case , where every subsystem reduces to a single
equation, (P1) reduces to the -error minimization problem
(2), which is known to be robust to outliers [22, Ch. 4], [6],
[8]. Under the conditions stated in Remark 2, the unconstrained

-error regression problem is equivalent to the constrained op-
timization (cf. (4))

(5)

The problem in (5) is widely known in the CS literature as basis
pursuit (BP); for a thorough treatment on this pair of problems
see also [8].

B. A Concave Surrogate for RS

Instead of substituting the cost of (P0) by its closest
convex approximation, namely , letting the surrogate func-
tion be nonconvex can yield tighter approximations. For ex-
ample, the -norm of a vector was surrogated in [7]
by the logarithm of the geometric mean of its elements, or, by

. In rank minimization problems, apart from the
nuclear norm relaxation, minimizing the logarithm of the de-
terminant of the unknown matrix has been proposed as an al-
ternative surrogate; see [12, Sec. 5.2]. Building on this line of
thought, consider surrogating (P0) by

(P2)

where is a sufficiently small constant preventing the cost
from tending to . The cost in (6) is concave, but since it is
smooth w.r.t. , iterative linearization may be utilized to
obtain a local minimum [7], [12]. Specifically, let de-

note a tentative solution at the th iteration. Due to the concavity
of the logarithm, the first-order approximation of
around yields

(6)

Thinking along the majorization-minimization approach [18],
one can instead of minimizing the original cost on the left-hand
side, minimize the majorizing cost on the right-hand side of (6)
and iterate. Specifically, the minimization in (P2) can be itera-
tively driven to a local minimum [12] as

for , or equivalently,

(7)

The iterative scheme can be terminated as soon as the relative
error becomes smaller than some

chosen equal to say . The cost in (7) has the form of
a weighted version of (P1), where each of the error norms is
weighted by . When the
residual error of a subsystem is small, then the error of this
system is weighted more during the minimization of the next
iteration. A good initialization point for the iteration in (7) is
the solution of (P1) that is equivalent to one iteration of (7) with
all weights chosen equal. The simulated tests in Section VI will
indicate that (7) can provide higher probability of identifying
reliable sensors than (P1).

IV. UNIQUENESS AND IDENTIFIABILITY

Let denote the minimum cost of (P0). Then, there exists at
least one unknown such that for an
unknown subset of sensors with . The sensors in

will be referred to as reliable or consistent with respect to
(w.r.t.) . Also, let denote the number of consistent
sensors over the total number of sensors; and the
ratio of the size of the unknown vector over the total number
of measurements.

Whether (P0) has a unique minimizer and hence an under-
lying can be uniquely recovered by (P0), is considered next.
The first thing to note at the outset is that when the consis-
tent sensors w.r.t. are outnumbered by the unreliable ones,
uniquely recovering is not guaranteed. This is because with

, there may exist an and an with
and such that ; thus,

and are both minimizers of (P0). It is henceforth assumed
that or . Under this assumption, uniqueness
of the (P0) minimizer is further characterized in the following
lemma.

Lemma 1: Let vector be a minimizer of (P0) satisfying
out of the subsystems. This minimizer is unique if

and only if

(8)
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for every with cardinality .

Proof: Vector is not the unique minimizer of (P0) if
and only if there exists at least one such that

for an with . Given that
, the two subsets cannot be disjoint; hence, they must have a

nonempty intersection with cardinality
. The subsystems belonging to are satisfied by both

solutions; that is, , which is equivalent
to the existence of a nonzero such that
or . Multiple minimizers of (P0) can thus be
avoided if and only if . Note that whenever

for every with , it holds for
every of larger cardinality as well.

Lemma 1 reveals two interesting points on uniquely recov-
ering by (P0). First, the reliable sensors should not only out-
number the unreliable ones, i.e., ; condition (8) implies
additionally that , or . Second, because

, the inequality implies or ,
requiring the total number of equations to be at least equal to
the number of unknowns.

Uniqueness of the (P0) minimizer is also implied by the con-
ditions stated in the next lemma. These conditions will be used
in the next subsection.

Lemma 2: If for any nonzero and any parti-
tion of with it holds that

(9)

where is the th block subvector of , then (8) is
satisfied.

Proof: Arguing by contradiction, suppose that (9) holds,
whereas (8) does not hold; or, in other words there exists an

with and . Consequently,
there exists a nonzero vector such that .
Next, partition into three collectively exhaustive and mutually
exclusive subsets , and , with .
Define also for which by the definition of .

Consider first (9) with and , to get

Apply (9) again for and , to arrive at

which clearly contradicts the previous inequality and completes
the proof.

Having introduced the convex relaxation (P1) of (P0), the next
critical question is whether the solution of the former coincides
with the solution of the latter. Even though the NP-hardness of
(P0) forejudges that this cannot hold in general, the ensuing re-
sults show that for random Gaussian matrices and under rea-
sonable assumptions on the problem dimensions, equivalence of
(P1) and (P0) occurs with probability exponentially decaying in

. The analysis starts by characterizing this equivalence using a
set of necessary and sufficient conditions.

A. Necessary and Sufficient Conditions

The conditions under which the convex optimization problem
(P1) yields the same solution as the NP-hard problem (P0) are
provided in the following theorem. Using the equivalence be-
tween (P1) and (4) under the conditions of Remark 2, this the-
orem is related to [27, Th. 2], which in turn, generalizes results
from [10] to the block-sparse signal case.

Theorem 1 (Range Space Conditions): Every mini-
mizing (P0) by satisfying out of the subsystems is the
unique minimizer of (P1) if and only if

(10)

for any nonzero and for any partition of
with .

Proof: See the Appendix.
In words, Theorem 1 asserts that for every nonzero

, the sum of the smallest compo-
nents should be larger than the sum of the remaining
components. It is worth mentioning that the range space condi-
tions are impossible to check in practice; but they are useful in
establishing identifiability, as it will be the case for the proba-
bilistic characterization of the (P0)–(P1) equivalence when
is random (cf. Section IV-C).

Another set of (P0)–(P1) equivalence conditions can be de-
rived from the block restricted isometry properties of matrix
as defined in Remark 2; see [5], [11]. However, these conditions
are only sufficient.

Remark 4: Conditions (10) do not depend on , but only on
. Thus, whenever satisfies (10), any matrix

for any nonsingular satisfies (10) as well.
Remark 5: Sufficiency of the conditions in (10) remains valid

even if some additional constraints of the generic form
are present in the original problem (P0). In certain applica-

tions for instance, the unknown may be non-negative so that
; or, there may be a priori information of the form

, dictating the unknown vector to lie
in a ball of radius around a known center . Even
though the extra constraints generally reduce the feasible sets of
(P0) and (P1), the conditions remain sufficient. Hence, the prob-
abilistic bound to be developed in Section IV-B remains valid
even when extra constraints are imposed.

B. Probability Bound

As commented earlier, the conditions in Lemma 2 are practi-
cally infeasible to check for a given sensing matrix . However,
similar to CS [8], it will be possible to prove that the conditions
in (9) hold with overwhelming probability [8], i.e., probability
decaying exponentially in when and are fixed, assuming

has i.i.d. Gaussian entries. The main result, summarized in
Theorem 2, is based on the following lemma.

Lemma 3 (Deviation Inequality): Consider
and a Lipschitz continuous function with Lipschitz
constant . Then for any , it holds that

(11)
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This deviation inequality is a special case of more general
concentration results [19, Sec. 1.1]. It provides exponentially
decreasing bounds on the tail distribution for any sufficiently
smooth function of a multivariate Gaussian , thus gener-
alizing the Chernoff bound to nonlinear functions.

Capitalizing on Lemma 3, the next theorem extends the re-
sults of [27, Th. 4] and its refined version [26, Th. 3]. Focusing
on the Gaussian case and following a different line of proof, neat
closed-form expressions will emerge not only for the values of
and , for which the probabilistic bound is valid, but also for the
bound itself. The proof is based partly on the methodology of
[25], where the minimum nuclear norm relaxation of the rank
minimization problem is analyzed under linear constraints on
the unknown matrix. In contrast, related probabilistic analysis in
[11] and [5] is based on a generalization of the restricted isom-
etry property of that serves only as a sufficient condition for
the exactness of the convex relaxation; see also [8].

Theorem 2: Let vector be a minimizer of (P0) satisfying
out of the subsystems and assume that the entries of

are independently drawn from . If

(12)

then whenever , the vector is
the unique minimizer of (P1) with probability exceeding

, where and

.

Proof: To lower bound the probability of success for the
(P1) problem, it suffices to upper bound the probability that the
conditions in (10) fail, an event denoted by . Let be all
the subsets of having cardinality . Moreover, let

denote the event of having the conditions in (10) failing for
the partition

(13)

for . The probability of failure can be expressed as
. The events are not independent,

but can be bounded as

(14)
where inequality comes from the union bound; is due to
the symmetry of the distribution of which implies that all the

’s are equiprobable; and is the standard upper bound of
the binomial coefficient . Based on (14), the goal
now is to upper bound the probability . For notational
simplicity, the partition corresponding to will be denoted by

instead of .
Given that , there exists a nonzero

such that for . To render the in-

equality in (13) scale-invariant, one can study only the cases for
which ; hence, is equal to

which is also equal to for

(15)

due to the fact that if there exists a unit -norm satisfying
, then the minimum value of

(15) should be nonpositive. The function possesses con-
venient properties which facilitate the application of Lemma 3.
Specifically, it is shown in the Appendix that is Lipschitz
continuous with constant (cf. Lemma 4); and the ex-
pected value of the function is lower bounded (cf. Lemma 5),
that is . Hence,
for every , Lemma 3 implies that

(16)
Upon focusing on and ignoring the term, whenever

so that and setting in (16), yields the bound

(17)

where .
Substituting the bound (17) into (14), it follows that

(18)

For every , choose and de-
fine for any . Then,

whenever , the bound in (18) is non-
trivial.

Remark 6: As a sanity test, the condition posed by
Theorem 2 coincides with that in [26, Th. 3] after the appropriate
mapping of dimensions. However, in Theorem 2, both the values
of over which the bound holds, as well as the bound itself are
explicitly defined.

Remark 7: As expected, the condition is clearly
stronger than the condition implied by the uniqueness
of the (P0) solution in Lemma 1.

V. ROBUSTNESS TO NOISE

In a more realistic sensing scenario, the acquired measure-
ments are corrupted by additive noise. If denotes the un-
known subset of reliable sensors, the pertinent model is

(19)
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where stands for zero-mean noise assumed independent
across sensors. Vector models ambient noise, finite pre-
cision, analog-to-digital conversion and quantization effects,
communication noise, or even, the inadequacy of linear regres-
sion to fully capture the measured data .

In this noisy case, the unknown does not exactly satisfy
the linear subsystems in . In an attempt to exploit the link be-
tween (P1) and (4) when noise is present, one may be tempted to
apply the group-Lasso regularization, which was originally pro-
posed for recovering block-sparse vectors in a linear regression
setup [32]. However, this approach is not applicable because
is not block sparse when noise is present. In fact, solvers of the
noise-free setups (P1) and (P2) are useful for analyzing unique-
ness and identifiability issues. In addition, (P1) and (P2) solvers
are practically suitable for high-SNR sensing applications. This
motivates the ensuing framework which is suitable for RS in the
presence of noise. Without additional prior information on the
model describing the unreliable sensors, the noisy counterpart
of the RS problem can be stated as follows.

Problem Statement 2 (Robust Sensing in Noise (RSN)):
Given where and , for
which an unknown subset of known cardinality follows
the model in (19), estimate the unknown by minimizing the
least-squares error over any with .

The aforementioned problem statement lends itself naturally
to the following optimization problem:

(20)

The function of defined by the inner minimization is the point-
wise minimum over finitely many convex functions and as such,
it is nonconvex. Solving (20) incurs combinatorial complexity
since one has to solve all the LS problems before solving
the outer minimization.

An optimization problem related to that in (20) is the fol-
lowing:

(21a)

(21b)

Functional amounts to the LS cost for residuals smaller
than the threshold and ignores sensors attaining larger resid-
uals. In the scalar case (cf. ), problem (21) has been con-
sidered in [6, Sec. 6.1.2]. Problems (20) and (21) are related as
follows: suppose that for a specific the solution of (21) is
for which there are residuals satisfying the upper branch of
(21b). Then it can be readily shown that is a solution of (20)
for . Unfortunately though, is nonconvex as well.
The problem in (21) can be surrogated by replacing by its
closest convex approximation, which is pursued in the next sub-
section by establishing a neat link between the RSN problem at
hand and robust estimation methods [17, Ch. 7], [22, Ch. 4].

A. RSN and Robust Linear Multivariate Regression

Building on Remark 3 of Section III-A, the unreliable sensors
can be viewed as giving rise to outlier-corrupted equations in
a linear regression setting. Robust linear regression has been
extensively studied over the past decades [17], [22]. When

, the RSN problem can be solved by Huber’s M-estimator

(22a)

(22b)

is the Huber function for . The problem in (22) is convex
and can be cast as an SOCP [6, p. 190], [15], [21]. Regarding
the cutoff parameter , when the outliers’ distribution is known
a priori, its value is available in closed form so that Huber’s
M-estimator is asymptotically optimal; see [17, Sec. 4.5]. Al-
ternatively, assuming that the noise is standard Gaussian, is
usually set to such that the estimator in (22) is 95%
asymptotically efficient at the normal distribution [22, p. 26]. To
render Huber’s M-estimator invariant to any noise variance ,
one has to multiply by in (22b). If is unknown, a robust
estimate of it is commonly used instead [22, Sec. 4.4].

The case , which is of interest here falls under the realm
of robust multivariate linear regression [2], [4]. The novel ap-
proach to tackle it will be to postulate a model accommodating
inconsistent sensors, approximate the meaningful cost of (21)
by a convex one and solve it using an efficient globally conver-
gent algorithm.

Consider modeling the unreliable sensors using the auxiliary
outlier vectors . Vector if the th sensor
is reliable; and deterministically, otherwise. Model (19)
can now be extended to incorporate the unreliable sensors as

(23)

Since some ’s are zero, the aggregate outlier vector
is block sparse. Hence, using the aggregate model

, the novel RSN solver amounts to

(P3)

where is an appropriately chosen tuning parameter.
Among the two optimization variables of (P3), only the outlier
vector is block sparse. For , (P3) reduces to the cost
proposed in [15] and shown to be equivalent to (22). Even when
the initial matrix of interest is tall, (P3) always entails the fat
matrix . The second part is a regular-
ization term, reminiscent of the group Lasso penalty function
[32], which is known to promote block sparsity in the vector.
The latter will be explicitly accounted for in the forthcoming
analysis.
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B. Solving (P3)

To better understand (P3) and develop an efficient solver,
it is prudent to explore the form of its minimizer(s). Let

denote a minimizer of (P3) and define the as-
sociated residual vector . Given , the vectors

in (P3) can be found separately as the minimizers of

(24)

Although is not everywhere differentiable, its subdiffer-
ential can be defined [6]. For , where is dif-

ferentiable, the subdifferential is simply .

Otherwise, by definition and after using (34), can be
shown to be the set . Compactly,

.
(25)

Vector is a minimizer of (24) if and only if .
Based on (25), two cases are considered.

First, if , the condition yields

(26)

which means that is a positively scaled version of .
Considering the -norm in both sides of (26), it follows that

. Plugging back into (26), yields

. Since , this holds if and only

if .
Second, for the minimizer to be , there should be

a for which and , or equivalently,
. The latter proves that (P3) indeed admits a block-

sparse minimizer .
Substituting into (24), yields , when

; and , otherwise. Having
minimized (P3) over the ’s, the minimizer can now be
found as

(27a)

(27b)

where is a vector-generalized Huber function. It is now
evident that (P3) is equivalent to (27), which rather surprisingly
turns out to be a generalization of Huber’s M-estimator (22) to
the vector case. The sensors capable of achieving a lower
value and are more likely to be reliable, appear in (27) under the
conventional LS criterion. But the sensors having ,

contribute to the cost and are deemed
“less important” in specifying . For the latter set of sensors,

holds too. Thus, (P3) not only estimates the unknown
vector , but also reveals the sensors most likely to be unreliable
in the presence of noise.

Regarding the cutoff parameter in (P3) and (27b), it is worth
noting that when , the costs of (27) and (P3) tend to the

cost of (P1). Consequently, for the data of all sensors
are declared to contain outliers; and according to the previous
analysis, for all . This suggests that
the solution of (P1) does not provide zero residuals anymore.
On the other hand, as , the same costs reduce to the LS
criterion and all sensors are classified as reliable, or for
all .

A heuristic rule of thumb for practically selecting is setting
it to , where is the equivalent parameter for the scalar
case and has been selected according to the techniques men-
tioned after (22). If the number of reliable sensors is roughly
known (e.g., based on prior operation of the network), an al-
ternative approach is solving (P3) for a grid of values and
selecting the one identifying the prescribed number of outliers.
Note that solving (P3) for several values of can be efficiently
performed either through the group-LARS algorithm [32], or,
by using the block coordinate descent algorithm of the next sub-
section with what is called “warm startup” [14]. The latter ini-
tializes the tentative solutions of (P3) for a grid value of with
the solution derived for the previous grid value of . The com-
putational efficiency of such an approach has been numerically
verified for the Lasso problem [14], [28].

Remark 8: In Problem Statement 2, the noise term was as-
sumed to be independent across sensors. Specifications such as
the geographical distribution of sensors may impose correlation
across different sensor readings. In this case, if the covariance
matrix of the aggregate noise vector is
known, a standard preprocessing step is to prewhiten the data
as and . Prewhitening “spreads”
the influence of unreliable sensors across the entries of . As
a result, the LS and -error regression estimators and even the
robust Huber M-estimator are not applicable; see also [15] for
similar observations in the scalar case . On the con-
trary, given that remains block sparse, the (P3) estimator can
successfully handle a colored noise setup by simply modifying

its cost to .

C. A Block Coordinate Descent Algorithm

As mentioned earlier, (P3) is convex. It can be cast as an
SOCP and solved by standard, interior point-based solvers. An
alternative solver of (P3) exploiting the problem structure and
offering computational advantages is block coordinate descent,
which has been successfully applied to related optimization
problems [13], [31]. The core idea behind this solver is to
partition the optimization variable into blocks and minimize
iteratively the cost w.r.t. one block variable while keeping the
rest fixed.

To apply block coordinate descent to the RSN problem at
hand, consider minimizing the cost separately w.r.t. and .
Each iteration involves two steps: In the first step, the objective
is minimized w.r.t. , while keeping fixed, whereas in the
second step the roles are interchanged. Specifically, let
and denote the tentative solutions at the th iteration.
During the first step of the th iteration, fix and find

as the minimizer of the resultant quadratic; that is,

(28)
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In the second step, fix and find the ’s as the mini-
mizers of the per-sensor optimization problems

(29)

where for . As per (24), the
solutions of (29) are provided neatly in closed form2 as

.
(30)

The solution in (30) does not require , but only . Com-
bining (28) and (29), it follows that

(31)

where and .
Summarizing, the iterations entail: (a) updating the residuals

based on (31); and (b) applying the thresholding rule in (30).
As matrix and vector can be computed offline, the
most computationally demanding operation is the matrix-vector
product in step (a). Since , this product would better
be implemented as in opera-
tions. The developed algorithm has overall complexity
per iteration. The presence of zero blocks in can be further
exploited to save computations. Numerical simulations demon-
strate that the overall complexity of this block-coordinate ap-
proach is much lower than the complexity of the interior point-
based algorithms.

Due to the specific form of (P3), convergence of the block
coordinate descent iteration follows readily from the results of
[30]. The algorithm can be initialized at , so that
is the conventional LS solution. It is terminated when the rel-
ative error becomes smaller than a predefined
threshold, e.g., . Upon termination, the output is the
solution vector , which reveals the sensors affected by outliers,
whereas the solution can be obtained directly from (28).

D. A Nonconvex Surrogate for RSN

In the context of robust linear regression, Huber’s M-esti-
mator is just one choice from the class of robust estimators
defined as the minimizers of (22) for appropriately chosen
functions. It has been argued that estimators corresponding
to nonconvex functions, such as the bi-square (Tukey’s),
or Hampel’s estimators, yield improved robustness-efficiency
trade-offs in practice [22, p. 99]. Similarly in the multivariate
case, convex M-estimators [4] are practically replaced by
nonconvex M- or S-estimators appropriately initialized [2].

Alternatively, it is of interest to explore a nonconvex surrogate
of (P3) paralleling that of Subsection Section III-B. Recall that
the RSN solver in (P3) seeks and based on fewer observa-
tions than unknowns, but taking advantage of ’s block sparsity.
To further promote block sparsity in , the terms in (P3)

2This is not the case for the colored noise scenario discussed in Remark 8,
where the vectors �� � can then be jointly found by any group Lasso algorithm
instead [32].

can be replaced by for a small positive , to end
up with the nonconvex problem

(P4)

Following the majorization-minimization rationale presented in
Section III-B, (P4) can be driven to a stationary point [18] using
the iterations

(32)

The optimization per iteration of (32) is a weighted version of
(P3) and thus can be efficiently solved using the steps (28) and
(30) after replacing in (30) with for all at the
th iteration. The iterations can be initialized with the (P3) solu-

tion which corresponds to setting all weights to unity. The sim-
ulations of Section VI will demonstrate that the (P4) solver out-
performs that of (P3) in terms of the mean-square error (MSE)
even after a single iteration. Note that as with (32), single-it-
eration methods based on nonconvex surrogates of the (group)
Lasso cost function have been proposed with well documented
properties [23], [34].

VI. SIMULATED TESTS

A. Checking the Weak Bound

Among the results of Section IV, the one that can be numeri-
cally validated is the weak bound of (17). This bound is termed
weak because it refers to the occurrence of a single event ,
namely, to a single partition with . According to
this bound, if and are kept fixed and as long as ,
the probability is arbitrarily small for large .

To validate this result, the entries of are drawn indepen-
dently from and the unknown vector is modeled as

. Given that is invariant to the per-
mutations of the subsystems, the partition with

is simply selected. The output of the consistent sub-
systems is ; whereas for the inconsistent ones

is simulated with . Notice that
due to the selected normalization, the observation vectors have
equal variance, i.e., for all . For several

pairs, ten values of are selected uniformly over the in-
terval that correspond to ten values of . And for every

, the number of consistent subsystems is chosen such that
. For each pair , the prob-

ability of (P1) identifying uniquely the (P0) solution is empir-
ically evaluated through 100 Monte Carlo runs. For each ex-
periment, the solution of (P1) is deemed successful whenever
satisfies .

The results are depicted in Fig. 2. Every pair
corresponds to a circle whose face intensity indicates the prob-
ability of recovery as explained in the caption. The east and
south-east parts of Fig. 2(a)–(e) are not as crowded, since for
close to 1, the integer becomes small, which implies that there



3364 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 7, JULY 2011

Fig. 2. Empirical probability of success for (P1) and the weak bound of (17) (solid black line). Empty circles correspond to quadruplets ����� �� �� with perfect
empirical recovery and solid black circles to problem setups having failed in all experiments: (a) � � ��, � � �� (b) � � ��,� � �� (c) � � ��, and � � ��
(d) � � ��, � � �.

are not many choices for an integer . The condition

for highly probable recovery in the weak sense, ,
is also shown as a black solid curve. According to the weak
bound (17), the circles above this curve correspond to dimen-
sion setups with high probability of success for large . The
empirically evaluated probabilities validate the result even for
moderate values of .

B. Test Cases for RS

The RS solvers developed are numerically compared in this
subsection. The setup involves a network of sensors
collecting observation vectors of size and an unknown
vector of size . Quantities , and , all follow the
model of the previous experiment and the number of consistent
sensors ranges from 8 to 16. The comparison includes i) the LS
solution of (1); ii) the -error regression solution of (2); iii) the
(P1) solver; and iv) the (P2) solver obtained after one iteration
of (7). In addition, a genie-aided LS (GA-LS) solver knowing a
priori the reliable sensors, ,
is implemented to serve as a benchmark. The parameter in (7)
is set to , whereas the simulation results were insensitive
to the range of values from to .

The sensor detection probability is empirically estimated
through 1000 Monte Carlo experiments. An estimate is
considered to have successfully classified the sensors whenever
the residual is smaller than or equal to
for and larger than for . As evidenced by
Table I, the LS solution fails to identify the reliable subset. In
contrast, the novel (P1) scheme shows a clear advantage over
the -error regression solution, while the empirical detection
probability further improves for the (P2) method, even after a
single iteration.

C. Test Cases for RSN

To evaluate the developed RSN solvers, the unknown vector
was fixed at , while the reliable sensors followed the
model , with and
known . A plausible figure of merit in this scenario is the MSE,

, which was empirically estimated by averaging
over 1000 Monte Carlo experiments.

Comparisons included i) the LS estimator; ii) the GA-LS es-
timator; iii) the -error estimator of (2); iv) the conventional
(scalar) Huber’s M-estimator of (P3); v) the (P1) solver; vi) the
one-iteration solution of (P2); vii) the (P3) solver; and viii) the
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TABLE I
EMPIRICAL PROBABILITY OF SUCCESSFUL SENSOR CLASSIFICATION (%) FOR

THE RS TASK WITH ����� �� � ���� �� ���

one-iteration solution of (P4). The value of parameters in (P2)
and (P4) turned out to be not critical and were set to . The
cutoff parameter for the Huber’s M-estimator was selected as

, whereas in both (P3) and (P4) was set to .
It is worth noting that the average number of iterations for the
block-coordinate descent algorithm of Section V-C was between
16 (for SNR 10 dB) and 30 (for SNR 25 dB), while its ex-
ecution time was 1000 times lower than that of a standard SOCP
solver.

In Fig. 3(a), the MSE achieved by each method is plotted
versus the number of consistent sensors for SNR 10 dB.
The curves show that the block-sparsity ignorant LS, and
Huber’s estimators are generally outperformed by the novel
schemes. The (P1) and (P2) solvers, originally designed for
the RS task, still exhibit reasonable performance that worsens
as . The (P3) estimator shows a slight improvement; but
its solution serves as a good initialization point for the one-it-
eration estimates of (P4). Note that the derived RSN solvers
combine robustness with efficiency in the absence of outliers.

To test the effect of correlated sensor measurements, the
following experiment was performed. The reliable sensors
were modeled again as , the unreliable
ones as where , while

and is a symmetric Toeplitz matrix
with first column . The two RSN
solvers were modified according to Remark 8. Fig. 3(b) shows
the MSE curves obtained at SNR dB. In this correlated
noise setup, the superiority of RSN solvers is even more promi-
nent.

Correctly classifying the sensors as reliable/unreliable is crit-
ical. Once a method has completed this classification task, the
estimation of can be performed based solely on the sensors
classified as reliable. Assuming successful classification, the
MSE performance of GA-LS can be attained. The probability
of correct sensor classification was evaluated in another simu-
lation setup that differs from the previous ones in the following
ways: problem dimensions were ; the
reliable sensors followed the linear white Gaussian model at
SNR 5 dB; had entries independently drawn from the
zero mean Laplacian distribution with variance ; and

and parameters were set to and , respectively. The
solvers i)–iii) and iv)–v) do not provide a classification mech-
anism, hence, a sensor was deemed reliable when its residual

-norm was smaller than . The Huber’s estimator iv) can
identify outlying scalar measurements and a sensor was consid-
ered correctly classified when all its measurements were cor-
rectly classified. For (P3) and (P4), the identification followed

Fig. 3. MSE performance for RSN with ����� �� � ������ ���. (a) White
noise. (b) Colored noise.

TABLE II
EMPIRICAL PROBABILITY OF SUCCESSFUL SENSOR CLASSIFICATION (%) FOR

THE RSN TASK WITH ����� �� � �	��	� 
��

naturally from the vectors. The results are listed in Table II.
The majority of methods fail to identify the reliable sensors and
yield an empirical probability close to , which is the
ratio of unreliable sensors. The improvement offered by Huber’s
estimator is marginal, while (P3) and in particular (P4) outper-
form all others.
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VII. CONCLUSION

Contemporary approaches to compressive sampling and
variable selection in linear regression problems exploit (block)
sparsity present in the signal of interest. The fresh perspective
offered in this work broadens the scope of sparsity-exploiting
algorithms to settings where model mismatch induced by unre-
liable sensors or outliers gives rise to (block) sparse residuals,
even when the signal of interest is not sparse. This perspective
links compressive sampling and sparse linear regression with
two important problems: i) finding the maximum number of
feasible subsystems of linear equations and ii) robust multi-
variate linear regression. Capitalizing on these links, robust
sensing algorithms were developed to reveal unreliable sensors
and recover the signal of interest based on reliable sensors. In
the absence of noise, necessary and sufficient conditions were
provided for exact recovery (identifiability). Their probabilistic
characterization showed that they hold with overwhelming
probability when the regression matrix is Gaussian distributed.
In the presence of noise, the RS task was reformulated to a
combinatorial problem that was subsequently surrogated by
(non)convex costs. The two subsystem-aware robust estimators
derived can be solved by an efficient block coordinate descent
algorithm. The simulated tests demonstrated that all proposed
schemes succeed in the task for which they have been designed
for.

APPENDIX

Proof of Theorem 1: The sufficiency of the conditions in
(10) is shown first. Recall from Lemma 2 that the conditions in
(10) imply that is the unique minimizer of (P0). Let denote
the set of reliable w.r.t. sensors with for which

. Vector is the unique minimizer of (P1) too if
and only if the vector for any nonzero yields a
strictly larger (P1) cost than does. Indeed, letting ,
the cost attained by is

where equality uses that , inequality stems
from the reverse triangle inequality and inequality is due to
the assumed conditions of the theorem and again the fact that

.
Necessity is shown by proving the contrapositive. Specifi-

cally, it must be shown that if there exists a and
an partition of with for which

, then there exists an that attains a minimum (P0)

cost of , but is not the unique minimizer of (P1). Suppose that
and for an partition with

. Vector obviously minimizes (P0), whereas
does not since . Assume and

. It is easy to check that the (P0)
costs attained by and are respectively and

. Hence, it has been shown that attains a (P1)
cost not greater than that of , i.e., is not the unique mini-
mizer of (P1). This concludes the proof.

Lemma 4 (Lipschitz Continuity of ): The function
defined in (15) is Lipschitz continuous with Lipschitz con-

stant at most .

Proof: Let and be the
minimizing arguments of and , respectively. The
difference is equal to

where inequality holds because is by definition the mini-
mizer of ; follows from the reverse triangle inequality
applied on each subset; holds trivially for ; and

.
Now, define the function appearing in the right-hand side of

the last inequality as

(33)

so that . Since
, it holds that . Given

that , if is Lipschitz continuous with constant at
most , i.e., , where is the Frobenius
norm of , then is also Lipschitz continuous and its
constant is at most . Thus, it suffices to show that is
Lipschitz continuous and its constant is upper bounded by .

To proceed, recall first that the -norm of a vector
can be written as [6, p. 637]

(34)

Using (34), can alternatively be expressed as

(35)

which is a supremum over infinitely many linear functions of
and as such it is convex. Recall that if a function
is convex with a subgradient for which is
finite, then is Lipschitz with constant .
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This claim can be proved by the definitions of the subgradient
and the Lipschitz constant. Thus, it suffices to find a subgradient
of and upper bound its norm.

If and are the maximizers of , then a sub-

gradient is given by the matrix

with and for . The norm of
this subgradient is

The bound is independent of and the proof is complete.

Lemma 5 (Expected Value Lower Bound): For the
random matrix with entries drawn inde-
pendently from , it holds that with

.

Proof: Consider rewriting using (34) as

(36)
Next, introduce auxiliary random vectors , ,

for and having their entries drawn
independently from and define the functionals

(37a)

for (37b)

and (38)

Consider now the triplets and . By using
the i.i.d. property of the random variables appearing in the func-
tionals, it holds that

while the difference of the two expectations above is
. By exploiting

the properties of vectors , and in (38), it follows that

(39a)

(39b)

To proceed, the following lemma is needed [16, Cor. 10].

Lemma 6 [16]: Let and be two zero-mean
Gaussian processes indexed by for ,

and , which satisfy the following condi-
tions:

c1) for all .

c2) For any two triplets and ,
if and and

in all other cases.
Under c1) and c2), it holds that

(40)

Even though the indexes are denumerable, by using
the compactness argument of [25, Pr.1,], the comparison in
(40) extends to minimizations/maximizations over compact
sets as well. Mapping the variables of Lemma 6
to , it can be verified that the
conditions of the lemma are met (cf. (39)) and upon using (40)
deduce that

Given that , the previous inequality
is equivalent to

where comes from (36) and the fact that the in (37a) is
zero mean. Thus, it has been established that

Using the definition of and exploiting the separa-
bility of the optimization, as well as the properties in (38), one
arrives at

(41)

Recall that if , then is chi-distributed with
degrees of freedom and mean value

(42)

where denotes the Beta function. Applying (42) three
times in (41) yields

Using the standard approximation [1,

Formulas 6.1.46 and 6.2.2] and for fixed and , it also
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holds that . Thus, the bound can

be compactly expressed as ,
which concludes the proof.
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