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Sparse Volterra and Polynomial Regression Models:
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Abstract—Volterra and polynomial regression models play a
major role in nonlinear system identification and inference tasks.
Exciting applications ranging from neuroscience to genome-wide
association analysis build on these models with the additional
requirement of parsimony. This requirement has high interpre-
tative value, but unfortunately cannot be met by least-squares
based or kernel regression methods. To this end, compressed
sampling (CS) approaches, already successful in linear regres-
sion settings, can offer a viable alternative. The viability of CS
for sparse Volterra and polynomial models is the core theme of
this work. A common sparse regression task is initially posed
for the two models. Building on (weighted) Lasso-based schemes,
an adaptive RLS-type algorithm is developed for sparse poly-
nomial regressions. The identifiability of polynomial models is
critically challenged by dimensionality. However, following the
CS principle, when these models are sparse, they could be re-
covered by far fewer measurements. To quantify the sufficient
number of measurements for a given level of sparsity, restricted
isometry properties (RIP) are investigated in commonly met poly-
nomial regression settings, generalizing known results for their
linear counterparts. The merits of the novel (weighted) adap-
tive CS algorithms to sparse polynomial modeling are verified
through synthetic as well as real data tests for genotype-pheno-
type analysis.

Index Terms—Compressive sampling, Lasso, polynomial ker-
nels, restricted isometry properties, Volterra filters.

I. INTRODUCTION

N ONLINEAR systems with memory appear frequently in
science and engineering. Pertinent application areas in-

clude physiological and biological processes [3], power am-
plifiers [2], loudspeakers [31], speech, and image models, to
name a few; see, e.g., [16]. If the nonlinearity is sufficiently
smooth, the Volterra series offers a well-appreciated model
of the output expressed as a polynomial expansion of the
input using Taylor’s theorem [20]. The expansion coefficients
of order are -dimensional sequences of memory
generalizing the one-dimensional impulse response sequence
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encountered with linear systems. However, polynomial expan-
sions of nonlinear mappings go beyond filtering. Polynomial
regression aims at approximating a multivariate nonlinear func-
tion via a polynomial expansion [13]. Apart from its extensive
use for optical character recognition and other classification
tasks [23], (generalized) polynomial regression has recently
emerged as a valuable tool for revealing genotype-phenotype
relationships in genome-wide association (GWA) studies [9],
[18], [27], [28].

Volterra and polynomial regression models are jointly
investigated here. Albeit nonlinear, their input-output (I/O) re-
lationship is linear with respect to the unknown parameters, and
can thus be estimated via linear least-squares (LS) [13], [16].
The major bottleneck is the “curse of dimensionality,” since the
number of regression coefficients grows as . This not
only raises computational and numerical stability challenges,
but also dictates impractically long data records for reliable
estimation. One approach to coping with this dimensionality
issue it to view polynomial modeling as a kernel regression
problem [11], [13], [23].

However, various applications admit sparse polynomial ex-
pansions, where only a few, say out of , expansion coeffi-
cients are nonzero—a fact that cannot be exploited via polyno-
mial kernel regression. The nonlinearity order, the memory size,
and the nonzero coefficients may all be unknown. Nonetheless,
the polynomial expansion in such applications is sparse—an at-
tribute that can be due to either a parsimonious underlying phys-
ical system, or an overparameterized model assumed. Sparsity
in polynomial expansions constitutes the motivation behind this
work. Volterra system identification and polynomial regression
are formulated in Section II. After explaining the link between
the two problems, several motivating applications with inherent
sparse structure are provided.

Section III deals with the estimation of sparse polynomial
expansions. Traditional polynomial filtering approaches either
drop the contribution of expansion terms a fortiori, or adopt the
sparsity-agnostic LS estimator [16]. Alternative estimators rely
on: estimating a frequency-domain equivalent model; modeling
the nonlinear filter as the convolution of two or more linear fil-
ters; transforming the polynomial representation to a more par-
simonious one (e.g., using the Laguerre expansion); or by esti-
mating fewer coefficients and then linearly interpolating the full
model; see [16] and references therein. However, the recent ad-
vances on compressive sampling [6], [8], and the least-absolute
shrinkage and selection operator (Lasso) [25] offer a precious
toolbox for estimating sparse signals. Sparse Volterra channel
estimators are proposed in [15] and [17]. Building on well-es-
tablished (weighted) Lasso estimators [25], [32], and their effi-
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cient coordinate descent implementation [12], the present paper
develops an adaptive RLS-type sparse polynomial estimation al-
gorithm, which generalizes [1] to the nonlinear case, and con-
stitutes the first contribution.

Performance of the (weighted) Lasso estimators has been
analyzed asymptotically in the number of measurements

[10], [32]. With finite samples, identifiability of Lasso-based
estimators and other compressive sampling reconstruction
methods can be assessed via the so-called restricted isometry
properties (RIP) of the involved regression matrix [6], [4]. It
has been shown that certain random matrix ensembles satisfy
desirable properties with high probability when scales at
least as [6]. For Gaussian, Bernoulli, and uniform
Toeplitz matrices appearing in sparse linear filtering, the lower
bound on has been shown to scale as [14], [22].
Section IV-A deals with RIP analysis for Volterra filters, which
is the second contribution of this work. It is shown that for a
uniformly distributed input, the second-order Volterra filtering
matrix satisfies the RIP with high probability when scales
as , which extends the bound from the linear to the
Volterra filtering case.

The third contribution is the RIP analysis for the sparse
polynomial regression setup (Section IV-B). Because there
are no dependencies across rows of the involved regression
matrix, different tools are utilized and the resultant RIP bounds
are stronger than their Volterra filter counterparts. It is proved
that for a uniform input, -sparse linear-quadratic regression
requires a number of measurements that scales as . The
same result holds also for a model oftentimes employed for
GWA analysis.

Applicability of the existing batch sparse estimators and their
developed adaptive counterparts is demonstrated through nu-
merical tests in Section V. Simulations on synthetic and real
GWA data show that sparsity-aware polynomial estimators can
cope with the curse of dimensionality and yield parsimonious
yet accurate models with relatively short data records. The work
is concluded in Section VI.

Notation: Lower-(upper-)case boldface letters are reserved
for column vectors (matrices), and calligraphic letters for sets;

denotes the all-ones vector of length ; denotes trans-
position; stands for the multivariate Gaussian proba-
bility density with mean and covariance matrix ; de-

notes the expectation operator; for
stands for the -norm in , and the -pseudonorm

that equals the number of nonzero entries of .

II. PROBLEM FORMULATION: CONTEXT AND MOTIVATION

Nonlinear system modeling using the Volterra expansion as
well as the more general notion of (multivariate) polynomial
regression are reviewed in this section. For both problems,
the nonlinear I/O dependency is expressed in the standard
(linear with respect to the unknown coefficients) matrix-vector
form. After recognizing the “curse of dimensionality” inherent
to the involved estimation problems, motivating applications
admitting (approximately) sparse polynomial representations
are highlighted.

A. Volterra Filter Model

Consider a nonlinear, discrete-time, and time-invariant I/O re-
lationship , where and de-
note the input and output samples at time . While such non-
linear mappings can have infinite memory, finite-memory trun-
cation is adopted in practice to yield , where

with finite. Under smooth-
ness conditions, this I/O relationship can be approximated by a
Volterra expansion oftentimes truncated to a finite-order as

(1)

where captures unmodeled dynamics and observation
noise, assumed to be zero-mean and independent of as
well as across time; and denotes the output of the

th-order Volterra module given by

(2)

where memory has been considered identical for all modules
without loss of generality. The Volterra expansion in (1), (2) has
been thoroughly studied in its representation power and conver-
gence properties; see, e.g., [16], [20].

The goal here is to estimate for
, and , given the I/O samples

, and upper bounds on the expansion order
and the memory size . Although this problem has been

extensively investigated [16], the sparsity present in the Volterra
representation of many nonlinear systems will be exploited
here to develop efficient estimators.

To this end, (1) will be expressed first in a standard ma-
trix-vector form [16]. Define the vectors

for , where denotes the Kronecker product; and
write the th-order Volterra output as ,
where contains the coefficients of arranged
accordingly. Using the latter, (1) can be rewritten as

(3)

where and
. Stacking (1) for all , one arrives at the

linear model

(4)

where , , and
.

B. Polynomial Regression Model

Generalizing the Volterra filter expansion, polynomial
regression aims at approximating a nonlinear function

of variables through an expan-
sion similar to (1) and (2), where the input vector is now
defined as , and is not neces-
sarily a time index. Again the goal is to estimate
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given . Polynomial regression can be inter-
preted as the th-order Taylor series expansion of ,
and appears in several multilinear estimation and prediction
problems in engineering, natural sciences, and economics [13].

By simply choosing for , the
Volterra filter is a special case of polynomial regression. Since
this extra property has not been exploited in deriving (1)–(4),
these equations carry over to the polynomial regression setup.
For this reason, the same notation will be used henceforth for the
two setups; the ambiguity will be easily resolved by the context.

C. The Curse of Dimensionality

Estimating the unknown coefficients in both the Volterra
system identification and in polynomial regression is criti-
cally challenged by the curse of dimensionality. The Kro-
necker product defining imply that the dimension of

is , and consequently and have dimension
. Note that all possible permutations

of the indexes multiply the same input term
; e.g., and both multiply the

monomial . To obtain a unique representation of
(2), only one of these permutations is retained. After discarding
the redundant coefficients, the dimension of and ’s
is reduced to [16]. Exploiting such redundancies in
modules of all orders eventually shortens and ’s to
dimension

(5)

which still grows fast with increasing and . For notational
brevity, and will denote the shortened versions of the vari-
ables in (4); that is matrix will be .

D. Motivating Applications

Applications are outlined here involving models that admit
(approximately) sparse polynomial representations. When
and are unknown, model order selection can be accomplished
via sparsity-cognizant estimators. Beyond this rather mundane
task, sparsity can arise due to problem specifications, or be
imposed for interpretability purposes.

A special yet widely employed Volterra model is the so-called
linear–nonlinear–linear (LNL) one [16]. It consists of a linear
filter with impulse response , in cascade with
a memoryless nonlinearity , and a second linear filter

. The overall memory is thus . If
is analytic on an open set , it accepts a Taylor series

expansion in . It can be shown
that the th-order redundant Volterra module is given by [16,
Ch. 2]

(6)

for . In (6), there are -tuples
for which there is no such that

for all . For these -tuples, the
corresponding Volterra coefficient is zero. As an example, for
filters of length and for , among the
364 nonredundant Volterra coefficients, the nonzero ones are no
more than 224. When and are not known, the locations of
the zero coefficients cannot be determined a priori. By dropping
the second linear filter in the LNL model, the Wiener model is
obtained. Its Volterra modules follow immediately from (6) and
have the separable form
for every [16]. Likewise, by ignoring the first filter, the LNL
model is transformed to the so-called Hammerstein model in
which for ; and
0 otherwise. The key observation in all three models is that if
at least one of the linear filters is sparse, the resulting Volterra
filter is even sparser.

That is usually the case when modeling the nonlinear be-
havior of loudspeakers and high-power amplifiers (HPA) [2],
[16]. When a small-size (low-cost) loudspeaker is located close
to a microphone (as is the case in cellular phones, teleconfer-
encing, hands-free, or hearing aid systems), the loudspeaker
sound is echoed by the environment before arriving at the
microphone. A nonlinear acoustic echo canceller should adap-
tively identify the impulse response comprising the loudspeaker
and the room, and thereby subtract undesirable echoes from the
microphone signal. The cascade of the loudspeaker, typically
characterized by a short memory LNL or a Wiener model, and
the typically long but (approximately) sparse room impulse
response gives rise to a sparse Volterra filter [31]. Similarly,
HPAs residing at the transmitters of wireless communication
links are usually modeled as LNL structures having only a few
coefficients contributing substantially to the output [2, p. 60].
When the HPA is followed by a multipath wireless channel
represented by a sparse impulse response, the overall system
becomes sparse too [17].

Sparse polynomial expansions are also encountered in
neuroscience and bioinformatics. Volterra filters have been
adopted to model causal relationships in neuronal ensembles
using spike-train data recorded from individual neurons [3],
[24]. Casting the problem as a probit Volterra regression,
conventional model selection techniques have been pursued to
zero blocks of Volterra expansion coefficients, and thus reveal
neuron connections. Furthermore, GWA analysis depends
critically on sparse polynomial regression models [9], [27],
[28]. Through GWA studies, geneticists identify which genes
determine certain phenotypes, e.g., human genetic diseases
or traits in other species. Analysis has revealed that genetic
factors involve multiplicative interactions among genes—a
fact known as epistasis; hence, linear gene-phenotype models
are inadequate. The occurrence of a disease can be posed as a
(logistic) multilinear regression, where apart from single-gene
terms, the output depends on products of two or more genes
as well [9]. To cope with the underdeterminacy of the problem
and detect gene-gene interactions, sparsity-promoting logistic
regression methods have been developed; see, e.g., [27].

Based on these considerations, exploiting sparsity in polyno-
mial representations is well motivated and prompted us to de-
velop the sparsity-aware estimators described in the following
section.
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III. ESTIMATION OF SPARSE POLYNOMIAL EXPANSIONS

One of the attractive properties of Volterra and polynomial
regression models is that the output is a linear function of the
wanted coefficients. This allows one to develop standard esti-
mators for in (4). However, the number of coefficients can
be prohibitively large for reasonable values of and , even
after removing redundancies. Hence, accurately estimating re-
quires a large number of measurements which: i) may be im-
practical and/or violate the stationarity assumption in an adap-
tive system identification setup; ii) entails considerable com-
putational burden; and iii) raises numerical instability issues.
To combat this curse of dimensionality, batch sparsity-aware
methods will be proposed first for polynomial modeling, and
based on them, adaptive algorithms will be developed after-
wards.

A. Batch Estimators

Ignoring in (4), the vector can be recovered by solving
the linear system of equations . Generally, a unique
solution is readily found if ; but when , there
are infinitely many solutions. Capitalizing on the sparsity of ,
one should ideally solve

(7)

Recognizing the NP-hardness of solving (7), compressive sam-
pling suggests solving instead the linear program [6], [8]

(8)

which is also known as basis pursuit and can quantifiably ap-
proximate the solution of (7); see Section IV for more on the re-
lation between (7) and (8). However, modeling errors and mea-
surement noise, motivate a LS estimator

. If and has full column rank, the LS solution is
uniquely found as . If the input is drawn
either from a continuous distribution or from a finite alphabet
of at least values, is invertible almost surely; but
its condition number grows with and [19]. A large con-
dition number translates to numerically ill-posed inversion of

and amplifies noise too. If , the LS solution is
not unique; but one can choose the minimum -norm solution

.
For both over/underdetermined cases, one may resort to the

ridge ( -norm regularized) solution

(9a)

(9b)

for some , where the equality can be readily proved by al-
gebraic manipulations. Calculating, storing in the main memory,
and inverting the matrices in parentheses are the main bottle-
necks in computing via (9). Choosing (9a) versus (9b)
depends on how and compare. Especially for polynomial
(or Volterra) regression, the th entry of , which
is the inner product , can be also expressed as

. This computational alternative is an
instantiation of the so-called kernel trick, and reduces the cost

of computing in (9b) from to
[23], [11]; see also Section III-C.

In any case, neither nor are sparse. To effect spar-
sity, the idea is to adopt as regularization penalty the -norm of
the wanted vector [25]

(10)

where is the th entry of , and for .
Two choices of are commonly adopted:

w1) for , which corresponds to the
conventional Lasso estimator [25]; or

w2) for , which leads to the
weighted Lasso estimator [32].

Asymptotic performance of the Lasso estimator has been an-
alyzed in [10], where it is shown that the weighted Lasso es-
timator exhibits improved asymptotic properties over Lasso at
the price of requiring the ridge regression estimates to evaluate
the ’s [32]. For the practical finite-sample regime, perfor-
mance of the Lasso estimator is analyzed through the RIP of

in Section IV, where rules of thumb are also provided for the
selection of as well (cf. Lemma 1).

Albeit known for linear regression models, the novelty here
is the adoption of (weighted) Lasso for sparse polynomial re-
gressions. Sparse generalized linear regression models, such as

-regularized logistic and probit regressions can be fit as a se-
ries of successive Lasso problems after appropriately redefining
the response and weighting the input [13, Sec. 4.4.1], [27].
Hence, solving and analyzing Lasso for sparse polynomial ex-
pansions is important for generalized polynomial regression as
well. Moreover, in certain applications, Volterra coefficients are
collected in subsets (according to their order or other criteria)
that are effected to be (non)zero as a group [24]. In such appli-
cations, using methods promoting group-sparsity is expected to
improve recoverability [30]. Even though sparsity is manifested
here at the single-coefficient level, extensions toward the afore-
mentioned direction constitutes an interesting future research
topic.

Algorithmically, the convex optimization problem in (10) can
be tackled by any generic second-order cone program (SOCP)
solver, or any other method tailored for the Lasso estimator.
The method of choice here is the coordinate descent scheme
of [12], which is outlined next for completeness. The core idea
is to iteratively minimize (10) w.r.t. one entry of at a time,
while keeping the remaining ones fixed, by solving the scalar
minimization problem

(11)

where is the th column1 of , variables and
denote and , respectively, having the th column (entry) re-
moved, and is the latest value for the optimum . It turns
out that the component-wise minimization of (11) admits the
closed-form solution [12]

(12)

1Recall that ���� stands for the �th row of �.
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Algorithm 1: CCD-(W)L

1: Initialize .

2: Compute matrix .
3: repeat
4: for do

5: Update as .

6: Update using (12).

7: Update as .
8: end for

9: until convergence of .

where , is the th entry of the sample
correlation or Grammian matrix and is the th
entry of . After initializing to any
value (usually zero), the algorithm iterates by simply updating
the entries of via (12). By defining , vector

can be updated as

(13)

with being the th column of . After updating to its new
value (12), has to be updated too as

(14)

It is easy to see that in (13), (14) are not essentially
needed, and one can update only . These iterates constitute the
cyclic coordinate descent (CCD) algorithm for the (weighted)
Lasso problem, and are tabulated as Algorithm 1. CCD-(W)L is
guaranteed to converge to a minimizer of (10) [12]. Apart from
the initial computation of and which incurs complexity

, the complexity of Algorithm 1 as presented here is
per coordinate iteration; see also [12].

B. Recursive Estimators

Unlike batch estimators, their recursive counterparts offer
computational and memory savings, and enable tracking of
slowly time-varying systems. The recursive LS (RLS) algo-
rithm is an efficient implementation of the LS, and the ridge
estimators. It solves sequentially the following problem:

(15)

where denotes the forgetting factor and a small positive con-
stant. For time-invariant systems, is set to 1, while
enables tracking of slow variations. Similar to the batch LS, the
RLS does not exploit the a priori knowledge on the sparsity of

, and suffers from numerical instability especially when the
effective memory of the algorithm, , is comparable to the
dimension of .

To overcome these limitations, the following approach is ad-
vocated for polynomial regression:

(16)

Algorithm 2: CCD-R(W)L

1: Initialize , , .
2: for do
3: Update and via (17a) and (17b).
4: for do

5:

6:

7:
8: end for
9: end for

where can be chosen as
a1) , which corresponds to the

recursive Lasso (RL) problem; or
a2) , leading to the

recursive weighted Lasso (RWL) one.
The sequence cannot be updated recursively, and (16)
calls for a convex optimization solver for each time instant or
measurement . To avoid the computational burden involved,
several methods have been developed for sparse linear models;
see [1] and the references therein. The coordinate descent algo-
rithm of Section III-A can be extended to (16) by first updating

and as

(17a)

(17b)

where is a solution at time . The minimizer
can then be found by performing component-wise minimiza-
tions until convergence in the spirit of the corresponding batch
estimator. However, to speed up computations and leverage the
adaptivity of the solution, we choose to perform a single cycle
of component-wise updates. Thus, is formed by the iterates
of the inner loop in Algorithm 2, where , , , and

are defined as before.
The presented algorithm called hereafter cyclic coordinate

descent for recursive (weighted) Lasso (CCD-R(W)L) is sum-
marized as Algorithm 2; the convergence properties of CCD-RL
have been established in [1] for linear regression, but carry over
directly to the polynomial regression considered here. Its com-
plexity is per measurement which is of the same order as

the RLS. By setting or , the CCD-
R(W)L algorithms approximate the minimizers of the R(W)L
problems.

C. Polynomial Reproducing Kernels

An alternative approach to polynomial modeling is via
kernel regression [23]. In the general setup, kernel regression
approximates a nonlinear function assuming it can be
linearly expanded over a possibly infinite number of basis func-
tions as . When

with denoting a judiciously selected posi-
tive definite kernel, lies in a reproducing kernel Hilbert
space , and kernel regression is formulated as the variational
problem

(18)
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where is an arbitrary cost function, and is
the norm in that penalizes complexity of . It turns
out that there exists a minimizer of (18) expressed as

, while for many mean-
ingful costs the ’s can be computed in using convex
optimization solvers [23].

Polynomial regression can be cast as kernel regression after
setting to be either the homogeneous poly-
nomial kernel , or, one of the inhomogeneous
ones or [11],
[23]. Once the ’s have been estimated, the polynomial coeffi-
cients (cf. (4)) can be found in closed form [11]. Furthermore,
objectives such as the -insensitive cost, yield sparsity in
the -domain, and thus designate the so-called support vectors
among the ’s [23]. Even though kernel regression allevi-
ates complexity concerns, the which can indirectly obtained
cannot be sparse. Thus, sparsity-aware estimation in the primal

-domain (as opposed to the dual -domain) comes with in-
terpretational and modeling advantages.

IV. IDENTIFIABILITY OF SPARSE POLYNOMIAL MODELS

This section focuses on specifying whether the optimization
problems in (8) and (10) are capable of identifying a sparse
polynomial expansion. The asymptotic in behavior of the
(weighted) Lasso estimator has been studied in [10], [32]; prac-
tically though one is more interested in finite-sample recover-
ability guarantees. One of the tools utilized to this end is the
so-called restricted isometry properties (RIP) of the involved
regression matrix . These are defined as [6]:

Definition 1 (Restricted Isometry Properties (RIP)): Ma-
trix possesses the restricted isometry of order ,
denoted as , if for all with

(19)

RIP were initially derived to provide identifiability conditions
of an -sparse vector given noiseless linear measurements

. It has been shown that the -pseudonorm minimiza-
tion in (7) can uniquely recover if and only if . If
additionally , then is the unique minimizer of
the basis pursuit cost in (8) [5].

RIP-based analysis extends to noisy linear observations of an
-sparse vector; that is, for . If , the

constrained version of the Lasso optimization problem

(20)

yields , where

whenever [5]. Furthermore, if ,
the Dantzig selector defined as

(21)

for , satisfies
, where with

probability at least whenever
[7]. Similarly, RIP-based recoverability guarantees can be

derived in the stochastic noise setting for the Lasso estimator
as described in the following lemma.

Lemma 1: Consider the linear model , where
the columns of are of unit -norm, ,
and with . Let denote the minimizer
of the Lasso estimator (10) with for , and

for . If , the bounds

(22)

(23)

(24)

hold with probability at least for

.
Proof: The lemma follows readily by properly adapting

Lemma 4.1 and Theorem 7.2 of [4].
The earlier stated results document and quantify the role of

RIP-based analysis in establishing identifiability in a compres-
sive sampling setup. However, Definition 1 suggests that finding
the RIP of a given matrix is probably a hard combinatorial
problem. Thus, to derive sparse recoverability guarantees one
usually resorts to random matrix ensembles to provide prob-
abilistic bounds on their RIP [6], [22]. In the generic sparse
linear regression setup, it has been shown that when the entries
of are independently Gaussian or Bernoulli, pos-
sesses RIP with probability at least when the

number of measurements is , where is a
universal constant; this bound is known to be optimal [6]. In a
sparse system identification setup where the regression matrix
has a Toeplitz structure, the condition on the number of mea-
surements obtained so far loosens to a scaling of for
a Gaussian, Bernoulli, or uniform input [14], [22]. The quadratic
scaling of w.r.t. in the latter bound versus the linear scaling
in the former can be attributed to the statistical dependencies
among the entries of [22]. Our contribution pertains to char-
acterizing the RIP of the involved regression matrix for both the
Volterra system identification and the multivariate polynomial
regression scenarios.

A. RIP for Volterra System Identification

For the Volterra filtering problem under study, the following
assumptions will be in force:

as1) input is independently drawn from the uniform
distribution, i.e., ; and

as2) expansion is of order (linear-quadratic Volterra
model).

Regarding as1), recall that the Volterra expansion is a Taylor se-
ries approximation of a nonlinear function; thus, it is reasonable
to focus on a bounded input region. Moreover, practically, one
is frequently interested in the behavior of a nonlinear system for
a limited input range. For as2), the nonhomogeneous quadratic
Volterra model is a commonly adopted one. Generalization to
models with is not straightforward and goes beyond the
scope of our RIP analysis. The considered Volterra filter length
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is ; and, for future use, it is easy to check that under
(as1) it holds that and .

To start, recall the definition of the Grammian matrix
and let denote its th entry. As shown in [14,

Sec. III], the matrix possesses RIP if there exist positive
and with such that and

for every with . When these conditions
hold, Geršgorin’s disc theorem guarantees that the eigenvalues
of Grammian matrices formed by any combination of columns
of lie in the interval , and possesses RIP

by definition. In a nutshell, for a regression matrix to have
small ’s, and hence favorable compressed sampling proper-
ties, it suffices that its Grammian matrix has diagonal entries
close to unity and off-diagonal entries close to zero. If the in-
volved regression matrix had unit -norm columns, then the

would be unity by definition and one could merely study
the quantity , defined as the coherence of ; see
also [22, p. 13] for the relation between coherence and the RIP.

In the Volterra filtering problem at hand, the diagonal entries
are not equal to one; but an appropriate normaliza-

tion of the columns of can provide at least
for all . The law of large numbers dictates that given suf-
ficiently enough measurements , the ’s will approach
their mean value. Likewise, it is desirable for the off-diag-
onal entries of to have zero mean, so that they vanish
for large . Such a requirement is not inherently satis-
fied by all ’s with ; e.g., the inner product be-
tween columns of the form and

for some and has
expected value that is strictly positive.

To achieve the desired properties, namely
p1) for all ;
p2) for all and

it will be soon established that instead of studying the RIP of ,
one can equivalently focus on its modified version
defined as

(25)

where corresponds to the constant (intercept or dc)

component, and are two Toeplitz matrices corre-
sponding to the linear and quadratic parts defined as

...
...

...

...
...

...

and is a (non-Toeplitz) matrix related to the
bilinear part given by

...
...

...

Consider now the Grammian of , namely .
Comparing with , the columns of have their -norm
normalized in expectation, and thus satisfies p1). Moreover,
those columns of corresponding to the quadratic part (cf. sub-
matrix ) are shifted by the variance of . One can readily
verify that p2) is then satisfied as well.

The transition from to raises a legitimate question
though: Does the RIP of provide any insight on the com-
pressed sampling guarantees for the original Volterra problem?
In the noiseless scenario, we actually substitute the optimiza-
tion problem in (8) by

(26)

Upon matching the expansions , the following
one-to-one mapping holds

(27a)

(27b)

(27c)

(27d)

for , .
It is now apparent that a sparse solution of (26) translates to a

sparse solution of (8) except for the constant term in (27a). By
deterministically adjusting the weights and the param-
eter in (10), this argument carries over to the Lasso optimiza-
tion problem and answers affirmatively the previously posed
question. Note though that such a modification serves only an-
alytical purposes; practically, there is no need to solve the mod-
ified compressed sampling problems.

Remark 1: Interestingly, transition from the original Volterra
matrix to the modified one resembles the replacement of the
Volterra by the Wiener polynomials for nonlinear system identi-
fication [16]. Wiener polynomials are known to facilitate mean-
square error (MSE)-optimal estimation of Volterra modules for a
white Gaussian input; see, e.g., [16]. Our modification, adjusted
to a uniformly distributed input, facilitates the RIP analysis of
the Volterra regression matrix.

One of the main results of this paper is summarized in the
following theorem (see the Appendix for a proof).

Theorem 1 (RIP in Volterra Filtering): Let
be an input sequence of independent random variables drawn
from , and define . Assume that the
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modified Volterra regression matrix defined in (25)
is formed by such an input for and . Then,
for any and for any , whenever

, the matrix possesses RIP for with

probability exceeding , where .

The theorem asserts that observations suffice
to recover an -sparse nonhomogeneous second-order Volterra
filter of memory probed by a uniformly distributed input.
Since the number of unknowns is , the bound on
scales also as . The bound agrees with the bounds
obtained for the linear filtering setup [14], whereas now the
constants are larger due to the more involved dependencies
among the entries of the associated regression matrix.

B. RIP for Multivariate Polynomial Regression

Consider now the case where describes a sparse linear-
quadratic model

(28)
Given output samples , corresponding to input
data drawn independently from , the
goal is to recover the sparse vector comprising the

’s and ’s. Note that here.
As explained in Section II, the noiseless expansion in (28) can
be written as ; but, contrary to the Volterra filtering
setup, the rows of are now statistically independent. The
last observation differentiates significantly the RIP analysis for
polynomial regression and leads to tighter probabilistic bounds.

Our analysis builds on [22], which deals with finding a
sparse expansion of a function over
a bounded orthonormal set of functions . Consid-
ering a measurable space, e.g., a measurable subset of
endowed with a probability measure , the set of functions

is a bounded orthonormal system if for
all

(29)

where denotes the Kronecker delta function, and for some
constant it holds that

(30)

After sampling at , the involved
regression matrix with entries admits the
following RIP characterization [22, Theorems 4.4 and 8.4].

Theorem 2 (RIP in Bounded Orthonormal Systems [22]):
Let be the matrix associated with a bounded or-
thonormal system with constant in (30). Then, for any

, there exist universal positive constants and ,
such that whenever , the matrix pos-

sesses RIP with probability exceeding .
In the linear-quadratic regression of (28), even though the

basis functions are bounded in ,

they are not orthonormal in the uniform probability measure.
Fortunately, our input transformation trick devised for the
Volterra filtering problem applies to the polynomial regres-
sion as well. The expansion is now over the basis functions

(31)

where the last subset contains all the unique, two-variable
monomials lexicographically ordered. Upon stacking the
function values in and properly defining , the
expansion can be replaced by , where the
entries of are

(32)

Vectors and are related through the one-to-one mapping in
(27); thus, sparsity in one is directly translated to the other. Iden-
tifiability of a sparse can be guaranteed by the RIP analysis of

presented in the next lemma.
Lemma 2 (RIP in Linear-Quadratic Regression): Let

for and independent
random variables uniformly distributed in [ 1, 1], and de-
fine . Assume that the modified
polynomial regression matrix in (32) is generated by this
sequence for . Then, for any , there exist
universal positive constants and , such that whenever

, the matrix possesses RIP with

probability exceeding .

Proof: The inputs are uniformly drawn over
, and it is easy to verify that the basis functions
in (31) form a bounded orthonormal system with

. Hence, Theorem 2 can be straightforwardly applied.
Since for , it follows that .

Lemma 2 assures that an -sparse linear-quadratic -variate
expansion with independent uniformly distributed inputs can be
identified with high probability from a minimum number of ob-
servations that scales as or . Comparing this
to Theorem 1, the bound here scales linearly with . Moreover,
except for the increase in the power of the logarithmic factor,
the bound is close to the one obtained for random Gaussian
and Bernoulli matrices. The improvement over the Volterra RIP
bound is explained by the simpler structural dependence of the
matrix involved.

Another interesting polynomial regression paradigm is when
the nonlinear function admits a sparse polynomial expan-
sion involving inputs, and all products up to of these inputs,
that is

(33)
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This is the typical multilinear regression setup appearing in
GWA studies [9], [27]. Because there are monomials of
order , the vector comprising all the expansion coefficients
has dimension

(34)

where the last inequality provides a rough upper bound. The
goal is again to recover an -sparse given the sample phe-
notypes over the genotype values . Vec-
tors are drawn either from or de-
pending on the assumed genotype model (additive for the first
alphabet; and dominant or recessive for the latter) [27]. Without
loss of generality, consider the ternary alphabet with equal prob-
abilities. Further, suppose for analytical convenience that the en-
tries of are independent. Note that the input has mean zero
and variance 2/3.

The RIP analysis for the model in (33) exploits again The-
orem 2. Since now every single input appears only linearly in
(33), the basis functions are orthogonal
w.r.t. the assumed point mass function. A bounded orthonormal
system can be constructed after scaling as

(35)

while the set is bounded by . Similar to the linear-
quadratic case in (28), the original multilinear expansion
is transformed to , where is defined as in (32) with the
new basis of (35), and is an entry-wise rescaled version of

. Based on these facts, the RIP characterization of follows
readily from the ensuing lemma.2

Lemma 3 (RIP in Multilinear Expansion): Let for
and independent random vari-

ables equiprobably drawn from { 1, 0, 1}, and defined as
in (34). The modified multilinear regression matrix

in (32) and (35) is generated by this sequence. Then, for
any , there exist universal positive constants
and , such that whenever ,

the matrix possesses RIP with probability exceeding

.

Since is often chosen in the order of 2 due to computational
limitations, Lemma 3 guarantees the RIP to hold with high prob-
ability when the number of phenotype samples scales at least
as .

V. SIMULATED TESTS

The RIP analysis performed in the previous section provides
probabilistic bounds on the identifiability of sparse polynomial
representations. In this section, we evaluate the applicability of
sparsity-aware polynomial estimators using synthetic and real
data. The experimental results indicate that sparsity-promoting

2After our conference precursor [15], we became aware of a recent result in
[18], which relates to Lemma 3. The differences are: i) only the � th-order term
in expansion (33) is considered in [18]; and ii) inputs �� ���� adhere to the
binary {�1} alphabet in [18], as opposed to the ternary one in Lemma 3.

Fig. 1. MSE of (a) batch and (b) adaptive Volterra estimators.

recovery methods attain accurate results even when the number
of measurements is less than the RIP-derived bounds, and, in
any case, they outperform the sparsity-agnostic estimators.

A. Batch and Adaptive Volterra Filters

We first focus on the sparse Volterra system identification
setup. The system under study was an LNL one, consisting of a
linear filter with impulse response ,
in cascade with the memoryless nonlinearity

, and the same linear filter. This system is exactly de-
scribed by a Volterra expansion with and , leading
to a total of coefficients collected in the
vector . Out of the 364 coefficients only 48 are nonzero. The
system input was modeled as , while the output
was corrupted by additive noise . First, the
batch estimators of Section III-A were tested, followed by their
sequential counterparts.

In Fig. 1(a), the obtained MSE, , averaged over
100 Monte Carlo runs, is plotted against the number of ob-
servations, , for the following estimators: i) the ridge esti-
mator of (9) with ; ii) the Lasso (CCD-L) estimator with

; and iii) the weighted Lasso (CCD-WL) esti-
mator with . The scaling rules for the two

s follow the results of [1] and [32]. It can be seen that the
sparsity-agnostic ridge estimator is outperformed by the Lasso
estimator for observation intervals shorter than 600. For larger

, where becomes well-conditioned, the former provides
improved estimation accuracy. However, CCD-WL offers the
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TABLE I
EXPERIMENTAL RESULTS FOR SYNTHETIC QTL DATA

lowest MSE for every , and provides reasonably accurate es-
timates even for the underdetermined case .

Performance of the sequential estimator in Section III-B was
assessed in the same setup. Fig. 1(b) illustrates the MSE conver-
gence, averaged over 100 Monte Carlo runs, for the following
three recursive algorithms: i) the conventional RLS of (15); ii)
the cyclic coordinate descent recursive Lasso (CCD-RL); and
iii) its weighted version (CCD-RWL). Since the system was
time-invariant, the forgetting factor was set to . It can
be observed that the conclusions drawn for the batch case carry
over to the recursive algorithms too. Moreover, a comparison
of Fig. 1(a) and (b) indicates that the sparsity-aware iterates of
Table II approximate closely the exact per time instance problem
in (16).

B. Multilinear Regression for GWA Analysis

Here, we test sparse polynomial modeling for studying the
epistatic effects in quantitative trait analysis. In quantitative
genetics, the phenotype is a quantitative trait of an organism,
e.g., the weight or height of barley seeds [26]. Ignoring envi-
ronmental effects, the phenotype is assumed to follow a linear
regression model over the individual’s genotype, including
single-gene (main) and gene-gene (epistatic) effects [9], [28].
The genotype consists of markers which are samples of chro-
mosomes taking usually binary { 1} values. Determining
the so-called quantitative trait loci (QTL) corresponds to de-
tecting the genes and pairs of genes associated with a particular
trait [28]. Since the studied population is much smaller than
the number of regressors , and postulating that only a few
genotype effects determine the trait considered, QTL analysis
falls under the sparse multilinear (for ) model of (33).

1) Synthetic Data: The first QTL paradigm is a synthetic
study detailed in [28]. A population of 600 individuals is
simulated for a chromosome of 1800 cM (centiMorgan) evenly
sampled every 15 cM to yield 121 markers. The true pop-
ulation mean and variance are 5.0 and 10.0, respectively. The
phenotype is assumed to be linearly expressed over the inter-
cept, the main effects, and the 7260 epistatic effects,
leading to a total of 7382 regressors. The QTLs simulated
are 9 single markers and 13 marker pairs. Note that the sim-
ulation accommodates markers i) with main only, ii) epistatic
only, and iii) both main and epistatic effects. Since the intercept
is not regularized, genotype and phenotype data were centered,
i.e., their sample mean was subtracted, and the intercept was de-
termined at the end as the sample mean of the initial I/O data on
the fitted model.

Parameters and for ridge and (w)Lasso estimators, re-
spectively, were tuned through tenfold cross-validation over an
100-point grid [13]; see Table I. The figure of merit for selecting
the parameters was the prediction error (PE) over the unseen

data, i.e., , where and is the

Fig. 2. Regression vector estimates for the synthetic gene data. The main
(epistatic) effects are shown on the diagonal (left diagonal part), while red
(green) bars correspond to positive (negative) entries. (a) True model; (b) Ridge
regression; (c) Lasso; and (d) wLasso.

TABLE II
EXPERIMENTAL RESULTS FOR REAL QTL BARLEY DATA

regression vector estimated given all but the valida-
tion data. The value of attaining the smallest PE was subse-
quently used for determining the weights for the wLasso es-
timator. Having tuned the regularization parameters, the MSE
provided by the three methods was averaged over 100 Monte
Carlo runs on different phenotypic data while keeping the geno-
types fixed. The (w)Lasso estimators were run using the glmnet
software [12]. Each of the three algorithms took less than 1 min
and 1 s for cross-validation and final estimation, respectively.

As can be seen from Table I, Lasso attains the smaller PE.
However, wLasso provides significantly higher estimation accu-
racy at a PE value comparable to Lasso. The number of nonzero
regression coefficients indicated in the fourth column shows that
ridge regression yields an oversaturated model. As shown more
clearly in Fig. 2, where the true and the estimated models are
plotted, the wLasso yields a sparser, closer to the true model,
while avoiding some spurious coefficients found by Lasso.

2) Real Data From a Barley Experiment: The second QTL
experiment entails a real dataset collected by the North Amer-
ican Barley Genome Mapping Project as described in [26], [29],
and outlined shortly next. Aiming at a GWA analysis on barley
height (HGT), the population consists of doubled-
haploid lines of a cross between two barley lines, Harrington
and TR306. The height of each individual was measured under
27 different environments, and the phenotype was taken to be
the sample average. There are 127 markers covering a
1270 cM segment of the genome with an average marker interval
of 10.5 cM. The genotype is binary: 1 ( 1) for the TR306
(Harrington) allele. There is a 5% of missing values which are
modeled as zeros in order to minimize their effect [28]. The
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Fig. 3. Regression vector estimates for the real QTL barley data. The main
(epistatic) effects are shown on the diagonal (left diagonal part), while red
(green) bars correspond to positive (negative) entries. (a) Lasso and (b) wLasso.

TABLE III
QTLS ESTIMATED BY WLASSO FOR THE REAL BARLEY DATA

main and epistatic QTL analysis involves
8129 regressors.

The regularization parameter values were selected through
leave-one-out cross-validation [13]; see Table II. The ridge
estimator fails to handle overfitting and is set to a large value
yielding regression coefficients of insignificant amplitude.
Using the ridge estimates to weight the regression coefficients,
wLasso yields a PE slighty smaller than the one attained by
Lasso; but it reduces the spurious coefficients. As shown in
Fig. 3, wLasso provides a more parsimonious model with fewer
spurious peaks than the Lasso-inferred model. Closer investi-
gation of the wLasso QTLs exceeding in magnitude, shown
in Table III, offers the following interesting observations: i)
epistatic effects are not negligible; ii) there are epistatic effects
related to QTLs with main effects, e.g., the (35,99) pair is
related to marker (101); and iii) there are epistatic effects such
as the (9,33) one involving markers with no main effect.

VI. CONCLUSION

The idea of exploiting sparsity in the representation of
a system, already widely adopted for linear regression and
system identification, has been permeated here to estimate
sparse Volterra and polynomial models. The abundance of
applications allowing for an interpretative parsimonious poly-
nomial expansion and the inability of kernel regression to
yield such an expansion necessitate sparsity-aware polynomial
estimators. This need was successfully met here both from
practical and analytical perspectives. Algorithmically, the
problem was solved via the batch (weighted) Lasso estimators,
where for the weighted one, the weights were efficiently found
through the kernel trick. To further reduce the computational
and memory load and enable tracking, an adaptive sparse
RLS-type algorithm was devised. On the analytical side, RIP
analysis was carried out for the two models. It was shown that

an -sparse linear-quadratic Volterra filter can be recovered with
high probability using measurements in the order of ; a
bound that interestingly generalizes the results from the linear
filtering problem to the Volterra one. For the sparse polyno-
mial expansions considered, the bound improved to ,
which also generalizes the corresponding linear regression
results. The potential of the aforementioned sparse estimation
methods was numerically verified through synthetic and real
data. The developed sparse adaptive algorithms converged fast
to the exact solution, while the (weighted) Lasso estimators
outperformed the LS-based one in all simulated scenarios, as
well as in the GWA study on real barley data. Future research
directions include extending the bounds derived to higher-order
models, and utilizing our adaptive methods to accomplish
epistatic GWA studies on the considerably higher dimensional
human genome.

APPENDIX

Outlining some tools regarding concentration inequalities
precede the proof of Theorem 1.

Lemma 4 (Hoeffding’s Inequality): Given and inde-
pendent random variables bounded as
almost surely, the sum satisfies

(36)

It is essentially a Chernoff-type result on the concentration
of a sum of independent bounded random variables around
its mean. However, the subsequent analysis on the RIP of the
Volterra filter considers sums of structurally dependent random
variables. Useful probability bounds on such sums can be
derived based on the following lemma.

Lemma 5 (Hoeffding’s Inequality With Dependent Sum-
mands [21]): Consider random variables bounded as

almost surely. Assume also they can be partitioned
into collectively exhaustive and mutually exclusive subsets

with respective cardinalities such that
the variables within each subset are independent. Then, for any

the sum satisfies

where .
Note that the sharpness of the bound in Lemma 5 depends

on the number of subsets as well as the minimum of their
cardinalities . One should not only strive for the minimum
number of intra-independent subsets, but also arrange ’s as
uniformly as possible. For example, partitioning with the min-
imum number of subsets may yield that corresponds
to a loose bound.

The partitioning required in Lemma 5 is not always easy to
construct. An interesting way to handle this construction is of-
fered by graph theory as suggested in [21]. The link between
structural dependencies in a set of random variables and
graph theory hinges on their dependency graph . The latter is
defined as the graph having one vertex per , and an edge be-
tween every pair of vertices corresponding to dependent ’s.
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Recall that the degree of a vertex is the number of edges at-
tached to it, and the degree of a graph is the maximum of
the vertex degrees. Finding group-wise statistical independence
among random variables can be seen as a coloring of the depen-
dency graph. The problem of coloring aims at assigning every
vertex of a graph to a color (class) such that there are no adjacent
vertices sharing the same color. Moreover, coloring of a graph
is equitable if the cardinality of every color does not differ by
more than one from the cardinalities of every other color. Thus,
an -equitable coloring of the dependency graph means that
the random variables can be partitioned in intra-independent
subsets whose cardinalities are either or . A key
theorem by Hajnal and Szemeredi guarantees that a graph
has an -equitable coloring for all ; see, e.g.,
[21]. Combining this result with Lemma 5, yields the following
corollary.

Corollary 1 (Hoeffding’s Inequality and Dependency
Graph [14], [21]): Consider random variables
bounded as . Assume also that their dependency
graph has degree . Then, the sum satisfies
for every integer and

Having presented the necessary tools, the proof of Theorem
1 is presented next.

Proof of Theorem 1: Consider a specific realization of and
its Grammian . As guaranteed by the Geršgorin disc theorem,
if and for every with while

for some , then possesses RIP
[14]. Thus, the probability of not satisfying RIP of value ,

, can be upper bounded by

Apparently, the events above are not independent. Since is
symmetric, the union bound can be applied for only its lower
triangular part; thus, is upper bounded by

(37)

Our next goal is to upper bound the probabilities appearing in
(37). Different from the analysis in [14] for the linear case, the
entries of exhibit different statistical properties depending
on the components (constant, linear, quadratic, bilinear) of the
nonlinear system they correspond to. To signify the difference,
we will adopt the notation instead of , where and

can be any of , to indicate that the entry is the
inner product between the th and the th columns of , but also
the th( th) column comes from the part of the system. For
example, the element is the inner product of a column of
with a column of . Recall that satisfies the requirements

and for .
We start with the diagonal entries , where each one of

them can be expressed as for some . Upon rec-

ognizing this quantity as a sum of independent random vari-
ables confined in the interval , Hoeffding’s lemma can
be readily applied. The bound obtained is multiplied by to ac-
count for all ’s; hence

(38)

Similarly, each one of the diagonal entries is equal to
for some , which is a sum of inde-

pendent random variables bounded in . Lemma 4 yields

(39)

Before proceeding with the bilinear diagonal entries, let us
consider first the off-diagonal entries . Each one of them is a
sum of the form for . However,
the summands are not generally independent; every summand
is a two-variable monomial and a single may appear in two
summands. This was handled in [14] after proving that can
always be split into two partial sums, each including indepen-
dent terms. As a clarifying example, the entry can be ex-
pressed as . More-
over, the two partial sums contain and summands.
Applying Lemma 5 for , , , and

, it follows that

(40)

Taking into account that for , and since
there are off-diagonal terms, their collective
probability bound is

(41)

Returning to the bilinear diagonal entries, every can
be written as for some . Even
though the summands are not independent, they exhibit iden-
tical structural dependence observed in ’s; thus, the same
splitting trick can be applied here too. Upon using Lemma 5 for

, , , , and , and adding
the contribution of all bilinear diagonal entries,
we end up with

(42)

Regarding the entries and , an immediate application
of Hoeffding’s inequality yields

(43)

(44)
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whereas the probabilities have been already

accounted for in the analysis of the ’s.

The entries are for

some and , where every summand lies in .
Two sub-cases will be considered. The first corresponds to
the entries with (or equivalently ),
in which every summand depends on a single input. Through
Lemma 4, the sum of probabilities related to these entries
is upper bounded by . The second case

includes the remaining entries with , for
which the splitting trick can be applied to yield the bound

. Combining the two bounds
yields

(45)

The entries can be expressed as
for some

, where each summand is bounded in .
Exploiting the same splitting trick and summing up the
contributions of all the entries, yields

(46)

The ’s are for some

and , while every summand lies in . Note

that there exist ’s with summands being two-input mono-
mials, i.e., for or . However, to simplify the pre-
sentation, the derived bound is slightly loosened by considering
all ’s as sums of three-input monomials. This specific struc-
ture precludes the application of the splitting procedure into two
halves, and necessitates use of the dependency graph. It can be
shown that the degree of the dependency graph associated with
the three-variable products for any entry is at most 6. Then,

application of Corollary 1 over the entries to-
gether with the inequality , which holds for ,
yield

(47)

The ’s are for

some and , where the summands lie in .

Following a reasoning similar to the one for ,

(48)
Finally, any entry is expressed as a sum of four-input

monomials where each summand lies in ; thus, the

degree of the associated dependency graph is at most 12. Upon
applying Corollary 1 over the ’s, and since

for , we obtain

(49)
Adding together the bounds for the diagonal elements (38),

(39), and (42), implies

(50)

for . For the off-diagonal elements, upon adding (41),
(43)–(49), it follows for that

(51)

By choosing , the arguments of the exponentials
in (50) and (51) become equal, and after adding the two bounds,
we arrive at

(52)

Since translates to

for , the bound in (52) simplifies to

(53)

Now set and choose any . Whenever
, (53) yields

which completes the proof.
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