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Abstract—On par with data-intensive applications, the
sheer size of modern linear regression problems creates an
ever-growing demand for e�cient solvers. Fortunately, a
signi�cant percentage of the data accrued can be omitted
while maintaining a certain quality of statistical inference
with an a�ordable computational budget. �is work intro-
duces means of identifying and omitting less informative
observations in an online and data-adaptive fashion. Given
streaming data, the related maximum-likelihood estimator is
sequentially found using �rst- and second-order stochastic
approximation algorithms. �ese schemes are well suited
when data are inherently censored or when the aim is to save
communication overhead in decentralized learning setups. In
a di�erent operational scenario, the task of joint censoring
and estimation is put forth to solve large-scale linear re-
gressions in a centralized setup. Novel online algorithms are
developed enjoying simple closed-form updates and provable
(non)asymptotic convergence guarantees. To attain desired
censoring patterns and levels of dimensionality reduction,
thresholding rules are investigated too. Numerical tests on
real and synthetic datasets corroborate the e�cacy of the
proposed data-adaptive methods compared to data-agnostic
random projection-based alternatives.

Index Terms—Parameter estimation, least squares, stochas-
tic approximation, big data, support vector machines, data
reduction, censoring, LMS, RLS, random projections.

I. Introduction

Nowadays omni-present monitoring sensors, search en-

gines, rating sites, and Internet-friendly portable devices

generate massive volumes of typically dynamic data [1]. �e

task of extracting the most informative, yet low-dimensional

structure from high-dimensional datasets is thus of utmost

importance. Fast-streaming and large in volume data, moti-

vate well updating analytics rather than re-calculating new

ones from scratch, each time a new observation becomes

available. Redundancy is an a�ribute of massive datasets
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encountered in various applications [2], and exploiting it

judiciously o�ers an e�ective means of reducing data pro-

cessing costs.

In this regard, the notion of optimal design of experiments

has been advocated for reducing the number of data required

for inference tasks [3]. In recent works, the importance

of sequential optimization along with random sampling of

Big Data has been highlighted [1]. Speci�cally for linear

regressions, random projection (RP)-based methods have

been advocated for reducing the size of large-scale least-

squares (LS) problems [4], [5], [6], [7], [8]; see also [9]

for a randomized approach on constrained LS, and [10],

[11] for randomized fast ridge regression. As far as online

alternatives, the randomized Kaczmarz’s (a.k.a. normalized

least-mean-squares (LMS)) algorithm generates a sequence

of linear regression estimates from projections onto a�ne

subspaces [12], [13], [14]. Sequential optimization includes

stochastic approximation, along with recent advances on

online learning [15]. Frugal solvers of (possibly sparse) linear

regressions are also available by estimating regression coe�-

cients based on (severely) quantized data [16], [17]; see also

[18] for decentralized sparse LS solvers.

In this context, the idea here draws on interval censoring

to discard “less informative” observations. Censoring emerges

naturally in several areas, and batch estimators relying on

censored data have been used in econometrics, biometrics,

and engineering tasks [19], including survival analysis [20],

saturated metering [21], and spectrum sensing [22]. It has

recently been employed to select data for distributed estima-

tion of parameters and dynamical processes using resource-

constrained wireless sensor networks, thus trading o� per-

formance for tractability [23], [24]. �ese works con�rm that

estimation accuracy achieved with censored measurements

can be comparable to that based on uncensored data. Hence,

censoring o�ers the potential to lower data processing costs,

a feature certainly desirable in Big Data applications.

To this end, the present work employs interval censoring

for large-scale online regression. Two censoring strategies are

put forth, each tailored for di�erent application scenarios

(Section II). According to the �rst strategy, data are cen-

sored using a data-nonadaptive rule. �is strategy is ideal

when measurements are inherently censored (for example

in survival analysis, saturated metering, and localization

applications); and/or when censoring is introduced to reduce

the cost of forwarding distributed data to a remote pro-

cessing site. Relative to [23]–[24], the contribution here is

�rst- and second-order stochastic approximation algorithms
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for sequentially maximizing the likelihood of censored and

uncensored observations (Section III). Error bounds as well

as threshold selection rules for a�aining prescribed data

rejection ratios are provided. �e second strategy employs

censoring based on a data-adaptive rule to reduce the com-

plexity of large-scale linear regressions (Section IV); see

also [24] for innovation-based censoring. �e di�erence with

dimensionality-reduction alternatives, such as optimal design

of experiments, randomized Kaczmarz’s and RP-based meth-

ods, is that the devised technique discards observations in a

data-driven manner. Judiciously designed threshold rules and

robust versions of the algorithms are studied too. Section V

compares the performance of the developed algorithms to

competing alternatives on real and synthetic data, and the

work is concluded in Section VI.

Notation. Lower- (upper-) case boldface le�ers denote

column vectors (matrices). Calligraphic symbols are reserved

for sets, while symbol
T

stands for transposition. Vectors

0, 1, and en denote the all-zeros, the all-ones, and the n-
th canonical vector, respectively. Symbol 1E denotes the

indicator for the event E. Notation N (m,C) stands for the

multivariate Gaussian distribution with mean m and covari-

ance matrix C; while φ(t) := (1/
√

2π)exp(−t2/2) denotes

the standardized Gaussian probability density function (pdf);

and Q(z) :=
∫ +∞
z

φ(t)dt the associated complementary

cumulative distribution function. Symbols tr(X), λmin(X),
and λmax(X) are reserved for the trace, the minimum and

maximum eigenvalues of matrix X, respectively.

II. Problem Statement and Preliminaries

Consider a p × 1 vector of unknown parameters θo gen-

erating scalar streaming observations

yn = xTnθo + υn, n = 1, 2, . . . , D (1)

where xTn is the n-th row of the D × p regression matrix

X, and the noise samples υn are assumed independently

drawn from N (0, σ2). �e high-level goal is to estimate θo in
an online manner, while meeting minimal resource require-

ments. �e term resources here refers to the total number

of utilized observations {yn} and/or rows {xn}, as well

as the overall computational complexity of the estimation

task. Furthermore, the sought data- and complexity-reduction

schemes are desired to be data-adaptive, and thus scalable

to the size of any given dataset {yn,xn}Dn=1. To meet such

requirements, the proposed �rst- and second-order online

estimation algorithms are based on the following two distinct

censoring methods.

A. NAC and AC Rules

A generic censoring rule for the data in (1) is given by

zn :=

{
∗ , yn ∈ Cn
yn , otherwise

, n = 1, . . . , D (2)

where ∗ denotes an unknown value when the n-th datum

has been censored (thus it is unavailable) – a case where

we only know that yn ∈ Cn for some set Cn; otherwise, the
actual measurement yn is observed. Given {zn,xn}Dn=1, the

goal is to estimate θo. Aiming to reduce the cost of storage

and possible transmission, it is prudent to rely on innovation-

based interval censoring of yn. To this end, de�ne per time

n the binary censoring variable cn = 1 if yn ∈ Cn; and
zero otherwise. Each datum is decided to be censored or not

based on a predictor ŷn formed using a preliminary (e.g., LS)

estimate of θo as

θ̂K = (XT
KXK)−1XT

KyK (3)

from K ≥ p measurements (K � D) collected in yK , and

the corresponding K× p regression matrix XK . Given ŷn =
xTn θ̂K , the prediction error ỹn := yn − ŷn quanti�es the

importance of datum n in estimating θo. �e la�er motivates

what we term non-adaptive censoring (NAC) strategy:

(zn, cn) :=

{
(yn, 0) , if

∣∣∣yn−xTn θ̂Kσ

∣∣∣ ≥ τn
(∗, 1) , otherwise

(4)

where {τn}Dn=1 are censoring thresholds, and as in (2), ∗
signi�es that the exact value of yn is unavailable. �e rule (4)

censors measurements whose absolute normalized innovation

is smaller than τn; and it is non-adaptive in the sense that

censoring depends on θ̂K that has been derived from a �xed

subset of K measurements. Clearly, the selection of {τn}Dn=1

a�ects the percentage of censored data. Given streaming data

{zn, cn,xn}, the next section will consider constructing a

sequential estimator of θo from censored measurements.

�e e�ciency of NAC in (4) in terms of selecting infor-

mative data depends on the initial estimate θ̂K . A data-

adaptive alternative is to take into account all censored data

{xi, zi}n−1i=1 available up to time n. Predicting data through

the most recent estimate θ̂n−1 de�nes our data-adaptive
censoring (AC) rule:

(zn, cn) :=

{
(yn, 0) , if

∣∣∣yn−xTnθn−1

σ

∣∣∣ ≥ τn
(∗, 1) , otherwise

. (5)

In Section IV, (5) will be combined with �rst- and second-

order iterations to perform joint estimation and censoring

online. Implementing the AC rule requires feeding back θn−1
from the estimation to the censoring module, which may be

undesirable in decentralized se�ings. Nonetheless, in central-

ized linear regression, AC is well motivated for reducing the

problem dimension and computational complexity.

III. Online Estimation with NAC

Survival data analysis, saturated metering devices, and

localization tasks, are examples where censored observations

occur naturally [25]. On the other hand, data in distributed

applications can be purposefully censored to save communi-

cation overhead between local agents collecting data (yn,xn)
and a central processing agent. With xn’s known to the

central agent, the NAC rule in (4) can be applied so that

less informative yn’s are not forwarded to the central agent.

Focusing on this mode of intentional censoring, this section

develops stochastic approximation solvers for �nding the as-

sociated maximum-likelihood estimator (MLE). Although the

error and threshold analyses are geared towards intentional
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Algorithm 1 First-order SA-MLE

Initialize θ1 as the LSE θ̂K in (3).

for n = 1 : D do
Measurement yn is possibly censored using (4).

Estimator receives (zn, cn,xn).
Parameter θ is updated via (8) and (9).

end for

censoring, the devised solvers can be coupled with any data-

nonadaptive thresholding rule of the form of (2), including
those emerging with non-deliberately censored data.

Since noise samples {υn}Dn=1 in (1) are independent and

(4) applies independently over data, {zn, cn}Dn=1 are indepen-

dent too. With zD := [z1, . . . , zD]T and cD := [c1, . . . , cD]T ,
the joint pdf is p(zD, cD;θ) =

∏D
n=1 p(zn, cn;θ) with

p(zn, cn;θ) =
[
N
(
zn; xTnθ, σ

2
)]1−cn

[Pr{cn = 1;θ}]cn
(6)

since cn = 0 means no censoring, and thus zn = yn is

Gaussian distributed; whereas cn = 1 implies |yn − ŷn| ≤
τnσ, that is Pr{cn = 1;θ} = Pr{ŷn − τnσ − xTnθ ≤ vn ≤
ŷn + τnσ − xTnθ}. Recalling that vn is Gaussian yields

Pr{cn = 1;θ} = Q
(
zln(θ)

)
−Q (zun(θ))

where zln(θ) := −τn − xTnθ−ŷn
σ and zun(θ) := τn − xTnθ−ŷn

σ .

�en, the maximum-likelihood estimator (MLE) of θo is

θ̂ = arg min
θ
LD(θ) :=

D∑
n=1

`n(θ) (7)

where functions `n(θ) are given by [cf. (6)]

`n(θ) := 1−cn
2σ2

(
yn − xTnθ

)2−cn log
[
Q
(
zln(θ)

)
−Q (zun(θ))

]
.

If the entire dataset {zn, cn,xn}Dn=1 is available, the batch
MLE can be obtained via gradient descent or by using

Newton’s iterations; see for example [24] and [23].

A. First-Order SA-MLE
Targeting streaming big data applications, we resort to

stochastic approximation solutions and process censored data

sequentially. In particular, when datum n becomes available,

the unknown parameter can be updated as

θn := θn−1 − µngn(θn−1) (8)

for a step size µn > 0, and with gn(θ) = βn(θ)xn denoting

the gradient of `n(θ), where

βn(θ) :=
1− cn
σ2

(yn − xTnθ) +
cn
σ

φ (zun(θ))− φ
(
zln(θ)

)
Q (zun(θ))−Q (zln(θ))

.

(9)

�e overall scheme is tabulated as Algorithm 1.

When the n-th datum is not censored (cn = 0), the second
summand in the right-hand side (RHS) of (9) vanishes, and

(8) reduces to an ordinary LMS update. When cn = 1, the
�rst summand in (9) disappears, while the second summand

captures the fact that the unavailable yn lies in the known

interval, that is |yn − xTn θ̂K | ≤ τnσ. �e la�er information

would have been ignored by an ordinary LMS algorithm

using merely the uncensored data.

�e SA-MLE is in fact a Robbins-Monro iteration on the

sequence {g(θ)}Dn=1; hence, it inherits SA-related conver-

gence properties. Speci�cally, by selecting µn = 1/(nM) for

an appropriate M , the SA-MLE algorithm is asymptotically

e�cient and Gaussian [26, pg. 197]. Performance guarantees

also hold with �nite samples. Indeed, with D �nite, the regret
a�ained by iterates {θn} against a vector θ is de�ned as

RD(θ) :=

D∑
n=1

[`n(θn)− `n(θ)] . (10)

Selecting µ properly, Algorithm 1 can a�ord bounded regret

as asserted next and shown in the Appendix.

Proposition 1. With θ∗ denoting the minimizer of (7),
suppose ‖θ∗ − θ̂K‖2 < A, ‖xn‖2 ≤ x̄, and |βn(θ)| ≤ β̄ for
n = 1, . . . , D, and let θ∗ be the minimizer of (7). By choosing
µ = cA/(

√
2Dβ̄x̄) for some c > 0, the regret of the SA-MLE

against θ∗ is bounded as

RD(θ∗) ≤
√

2DAx̄β̄max{c, 1/c}.

Apparently, se�ing c = 1 yields the step size with the

tightest regret bound. Otherwise, parameter c quanti�es

the performance degradation for deviating from that value.

Proposition 1 assumes bounded xn’s and noise. Furthermore,

we assume that ‖θ∗− θ̂K‖2 < A, which for large enough A
holds with high probability, since θ∗ is the MLE and θ̂K is

the LSE based on uncensored data, and are both close to θo.

B. Second-Order SA-MLE

If extra complexity can be a�orded, one may consider

incorporating second-order information in the SA-MLE up-

date to improve its performance. In practice, this is possible

by replacing scalar with matrix step-sizes Mn. �us, the

�rst-order stochastic gradient descent (SGD) update in (8)

is modi�ed as follows

θn := θn−1 −M−1
n gn(θn−1). (11)

When solving minθ E[`n(θ)] using a second-order SA it-

eration, a desirable Newton-like matrix step size is Mn =
E[∇2`n(θn)]. Given that the la�er requires knowing the av-

erage Hessian that is not available in practice, it is commonly

surrogated by its sample-average (1/n)
∑n
i=1∇2`i(θi) [27,

Sec. 2.1]. In this direction, note �rst that ∇2`n(θ) =
γn(θ)xnxTn , where

γn(θ) :=
(1− cn)

σ2
+
cn
σ2

[(
φ (zun(θ))− φ

(
zln(θ)

)
Q (zun(θ))−Q (zln(θ))

)2

−
zun(θ)φ (zun(θ))− zln(θ)φ

(
zln(θ)

)
Q (zun(θ))−Q (zln(θ))

]
. (12)

Due to the rank-one update Mn = ((n − 1)/n)Mn−1 +
(1/n)γn−1(θn−1) xn−1x

T
n−1, the matrix step size Cn :=
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Algorithm 2 Second-order SA-MLE

Initialize θ1 as the LSE θ̂K in (3).

Initialize C0 = σ2(XT
KXK)−1.

for n = 1 : D do
Measurement yn is possibly censored using (4).

Estimator receives (zn,xn, cn).
Compute γn(θn−1) from (12).

Update matrix step size from (13).

Update parameter estimate as in (11).

end for

M−1
n can be obtained e�ciently using the matrix inversion

lemma as

Cn =
n

n− 1

(
Cn−1 −

Cn−1xnxTnCn−1

(n− 1)γ−1n (θn−1) + xTnCn−1xn

)
.

(13)

Similar to its �rst-order counterpart, the algorithm is ini-

tialized by the preliminary estimate θ0 = θ̂K , and C0 =
σ2(XT

KXK)−1. �e second-order SA-MLE method is summa-

rized as Algorithm 2, while the numerical tests of Section V-A

con�rm its faster convergence at the cost of O(p2) com-

plexity per update. Since Mn is updated regardless whether

datum n is censored or not, Algorithm 2 incurs the same

complexity order as the ordinary RLS.

C. Controlling Data Reduction via NAC

To apply the NAC rule of (4) for data reduction at

a controllable rate, a link between thresholds {τn} and

the censoring rate must be established. Furthermore, prior

knowledge of the problem at hand (e.g., observations likely

to contain outliers) may dictate a speci�c pa�ern of censoring

probabilities {π∗n}Dn=1. If d is the number of uncensored data

a�er NAC is applied on a dataset of size D ≥ d, then

(D−d)/D is the censoring ratio, a metric introduced in [23],

[24]. Since {yn} are generated randomly according to (1), it

is clear that d is itself a random variable. �e analysis is thus

focused on the average censoring ratio

c̄ := E
[
D − d
D

]
=

1

D

D∑
n=1

E[cn] =
1

D

D∑
n=1

πn (14)

where πn := Pr(cn = 1) is the probability of censoring

datum n, that as a function of τn is given by [cf. (4)]

πn(τn) = Pr{−τnσ ≤ yn − ŷn ≤ τnσ}

= Pr{−τn ≤
xTn (θo − θ̂K) + vn

σ
≤ τn}. (15)

Using the properties of LSE, θ̂K ∼ N (θo, σ
2(XT

KXK)−1), it
follows that

xTn (θo − θ̂K) + vn
σ

∼ N
(
0,xTn (XT

KXK)−1xn + 1
)
.

�us, the censoring probabilities in (15) simplify to

πn(τn) = 1− 2Q
(
τn
[
xTn (XT

KXK)−1xn + 1
]−1/2)

. (16)

Solving (16) for τn, one arrives for a given π?n = πn(τ?n) at

τ?n =
[
xTn (XT

KXK)−1xn + 1
]1/2

Q−1
(

1− π?n
2

)
. (17)

Hence, for a prescribed c̄, one can select a desired censoring

probability pa�ern {π?n}Dn=1 to satisfy (14), and correspond-

ing {τ?n}Dn=1 in accordance with (17).

�e threshold selection in (17) requires knowledge of all

{xn}Dn=1. In addition, implementing (17) for all D obser-

vations, requires O(Dp2) computations that may not be

a�ordable for D � p. To deal with this, the ensuing

simple threshold selection rule is advocated. Supposing that

{xn}Dn=1 are generated independently and identically dis-

tributed (i.i.d.) according to some unknown distribution with

known �rst- and second-order moments, a relation between

a target common censoring probability π? and a common

threshold τ can be obtained in closed form. Suppose without

loss of generality that E [xn] = 0, and let E
[
xnxTn

]
= Rx

and ζK := (θo − θ̂K)/σ ∼ N (0, (XT
KXK)−1). For su�-

ciently large K , it holds that (XT
KXK)−1 ≈ R−1x /K , and

thus ζK ∼ N (0,R−1x /K). Next, using the standardized

Gaussian random vector u ∼ N (0, Ip), one can write

ζK = R
−1/2
x u/

√
K . Also, with an independent zero-mean

random vector un with E[unuTn ] = Ip, it is also possible to

express xn = R
1/2
x un, which implies xTnζK = uTnu/

√
K . By

the central limit theorem, uTnu converges in distribution to

N (0, p) as the inner dimension of the two vectors p grows;

thus, xTnζK ∼ N (0, p/K). Under this approximation, it holds

that

πn ≈ π = Q

(
− τ√

p/K + 1

)
−Q

(
τ√

p/K + 1

)

= 1− 2Q

(
τ√

p/K + 1

)
, n = 1, . . . , D. (18)

As expected, due to the normalization by σ in (4), π does

not depend on σ. Interestingly, it does not depend on Rx

either. Having expressed π as a function of τ , the la�er can

be tuned to achieve the desirable data reduction. Following

the law of large numbers and given parameters p and K , to

achieve an average censoring ratio of c̄ = π? = (D − d)/D,

the threshold can be set to

τ =
√

1 + p/K Q−1
(

1− π?

2

)
. (19)

Figure 1(a) depicts π as a function of τ for p = 100 and

K = 200. Function (18) is compared with the simulation-

based estimate of πn using 100 Monte Carlo runs, con�rming

that (18) o�ers a reliable approximation of π, which improves

as p grows. However, for the approximation (XT
KXK)−1 ≈

R−1x /K to be accurate, K should be large too. Figure 1(b)

shows the probability of censoring for varying K with �xed

p = 100 and τ = 1. Approximation (18) yields a reliable

value for π for as few as K ≈ 200 preliminary data.

IV. Big Data Streaming Regression with AC

�e algorithms devised and analyzed in Section III employ

NAC rules. Data censoring there either occurred naturally,
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Fig. 1. a) Censoring probability for varying threshold (p = 100,K = 200).
b) Censoring probability for varying K (p = 100, τ = 1).

or, it was introduced to reduce communication costs. �is

section employs data-adaptive censoring for data reduction.

It should be understood that the NAC rule in (4) decouples

censoring from estimation, whereas one intuitively expects

improved performance with a joint censoring-estimation de-

sign. In this context, �rst- and second-order sequential algo-

rithms are developed next for the AC rule of (5). Instead of

θ̂K , censoring is here performed using the latest estimate

of θ. Apart from being e�ective in handling streaming

data, AC can markedly lower the complexity of a batch LS

problem. Upon outlining an AC-based LMS algorithm, its

RLS counterpart will be developed as a viable alternative to

random projections and sampling.

A. AC-LMS

A �rst-order AC-based algorithm is presented here, in-

spired by the celebrated LMS algorithm. Originally devel-

oped for adaptive �ltering, LMS is well motivated for low-

complexity online estimation of (possibly slow-varying) pa-

rameters. Given (yn,xn), LMS entails the simple update

θn = θn−1 + µxnen(θn−1) (20)

where en(θ) := yn − xTnθ can be viewed as the inno-

vation of yn, since ŷn = xTnθn−1 is the prediction of

yn given θn−1. LMS can be regarded as an SGD method

for minimizing E[fn(θ)] over θ for the instantaneous costs

fn(θ) = e2n(θ)/2.
To derive a �rst-order method for online censored regres-

sions, consider minimizing E[f
(τ)
n (θ)] with the instantaneous

cost selected as the truncated quadratic function

f (τ)n (θ) :=

{
1
2 [e2n(θ)− τ2nσ2] , |en(θ)| ≥ τnσ
0 , |en(θ)| < τnσ

(21)

for a given τn > 0. For the sake of analysis, a common thresh-

old will be adopted; that is, τn = τ ∀n. �e truncated cost can

be also expressed as f
(τ)
n (θ) = max{0, (e2n(θ) − τ2σ2)/2}.

Being the pointwise maximum of two convex functions,

f
(τ)
n (θ) is convex, yet not everywhere di�erentiable. From

standard rules of subdi�erential calculus, its subgradient is

∂f (τ)n (θ) =

 −xnen(θ) , |en(θ)| > τσ
0 , |en(θ)| < τσ
{−ϕxnen(θ) : 0 ≤ ϕ ≤ 1} , |en(θ)| = τσ

.

An SGD iteration for the instantaneous cost in (21) with τn =
τ , performs the following AC-LMS update per datum n

θn :=

{
θn−1 + µxnen(θn−1) , |en(θn−1)| ≥ τσ
θn−1 , otherwise

(22)

where µ > 0 can be either constant for tracking a time-

varying parameter, or, diminishing over time for estimating

a time-invariant θo. Di�erent from Alg. 1, AC-LMS does not

update θ if datum n is censored. �e intuition is that if yn can

be closely predicted by ŷn := xTnθn−1, then (yn,xn) can be

censored; small innovation is indeed not much informative.

Extracting interval information through a likelihood function

as in Alg. 1 appears to be challenging here. �is is because

unlike NAC, the AC data {zn}Dn=1 are dependent across time.

Interestingly, upon invoking the so termed independent-

data assumption of SA [26], following the same steps as in

Section III, and substituting θ̂K = θn−1 into (9), the interval

information term is eliminated. �is is a strong indication

that interval information from censored observations may

be completely ignored without the risk of introducing bias.

Indeed, one of the implications of the ensuing Proposition 2

is that the AC-LMS is asymptotically unbiased. Essentially,

in AC-LMS as well as in the AC-RLS to be introduced later,

both xn and yn are censored – an important feature e�ecting

further data reduction and markedly lowering computational

complexity of the proposed AC algorithms. A bound of

the mean-square error (MSE) performance of AC-LMS is

established in the next proposition proved in the Appendix.

Proposition 2. Consider the observation model (1), where
xn’s are generated i.i.d. with E [xn] = 0, E

[
xnxTn

]
= Rx,

E
[
‖xn‖32

]
= r3x, and E

[
‖xn‖42

]
= r4x. Assume that

(A0) Ev
[
‖ζ11{|xT ζ1+v|≥τσ} − ζ21{|xT ζ2+v|≥τσ}‖

2
2

]
≤ λ1(τ)‖ζ1 − ζ2‖22 ∀ζ1, ζ2

(A1) Ev
[
v2
(
1{|xT ζ1+v|≥τσ} − 1{|xT ζ2+v|≥τσ}

)2]
≤ λ2(τ)‖ζ1 − ζ2‖22 ∀ζ1, ζ2
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and that the AC-LMS in (22) uses a �xed threshold τ and is
initialized at θ1. For a diminishing step size µn = 2/(αn), the
AC-LMS estimates θn exhibit bounded MSE as

E
[
‖θn − θo‖22

]
≤ e4L

2/α2

n2

(
‖θ1 − θo‖22 +

∆

L2

)
+

8∆ log n

α2n

where α := 2Q(τ)λmin(Rx), ∆ := 2tr(Rx)σ2[1 −
Q(τ) +τφ(τ)], and L2 := r4xλ1(τ) + tr(Rx)λ2(τ) +
2r3x

√
λ1(τ)λ2(τ). Furthermore, for a constant µ, the estimates

θn converge exponentially to a bounded error as

E
[
‖θn − θo‖22

]
≤ 2 exp

(
−
(αµ

4
− 4L2µ2

)
n− 4L2µ2

)
×
(
‖θ1 − θo‖22 +

∆

L2

)
+

4µ∆

α

when 0 < µ < α/(16L2).

Proposition 2 asserts that AC-LMS achieves a bounded

MSE. It also links MSE to the censoring threshold τ , which
can be used to adjust the censoring probability. Closer

inspection reveals that the MSE bound decreases with τ . In
par with intuition, lowering τ allows the estimator to access

more data, thus enhancing estimation performance at the

price of increasing the data volume processed.

Apparently, AC-LMS incurs the same order of complexity

O(p) per iteration as the ordinary LMS. �us, in a cen-

tralized estimation scenario, running AC-LMS rather than

the ordinary LMS does not have a computational advantage.

In a decentralized setup however, where data (yn,xn) are

forwarded to a central agent, censoring via AC-LMS can

signi�cantly reduce the data forwarding overhead. With

the central agent broadcasting θn’s to local agents, each

local agent can separately decide whether its data should

be censored or forwarded. �is is a clear communication

advantage of AC-LMS over Alg. 1, which presumed that

xn’s are either transmi�ed to or they are known a priori
by the central agent. Note also that θn needs to be broadcast

only when it is updated; hence, the central agent would be

transmi�ing relatively infrequently. Beyond this decentral-

ized setup, major computational savings can be harvested

when introducing censoring into the RLS setup described

next.

B. AC-RLS
A second-order AC algorithm is introduced here for se-

quential estimation and dimensionality reduction. It is closely

related to the RLS algorithm, which per time n implements

the updates; see e.g., [28]

Cn =
n

n− 1

[
Cn−1 −

Cn−1xnxTnCn−1

n− 1 + xTnCn−1xn

]
(23a)

θn = θn−1 +
1

n
Cnxn(yn − xTnθn−1) (23b)

where Cn is the sample estimate for R−1x , and it is typically

initialized to C0 = εI, for some small positive ε, e.g., [29].
�e RLS estimate at time n can be also obtained as

θn = arg min
θ

n∑
i=1

(yi − xTi θ)2 + ε‖θ‖22. (24)

Algorithm 3 Adaptive-Censoring (AC)-RLS

Initialize θ1 = 0 and C0 = εI.
for n = 1 : D do

if
∣∣yn − xTnθn−1

∣∣ ≥ τσ then
Estimator receives (yn,xn) while cn = 0.
Update inverse sample covariance from (25a).

Update estimate from (25b).

else
Estimator receives no information (cn = 1).
Propagate inverse covariance as Cn = n

n−1Cn−1.

Preserve estimate θn = θn−1.
end if

end for

�e bias introduced by the arbitrary choice of C0 vanishes

asymptotically in n, while the RLS iterates converge to the

batch LSE. RLS can be viewed as a second-order SGD method

of the form θn = θn−1 −M−1
n ∇fn(θn−1) for the quadratic

cost fn(θ) = e2n(θ)/2. In this instance of SGD, the ideal

matrix step size Mn := E[∇2fn(θn−1)] = E
[
(1− cn)xnxTn

]
is replaced by its running estimate (1/n)C−1n ; see e.g., [27].

To obtain a second-order counterpart of AC-LMS, we

replace the quadratic cost of RLS with the truncated quadratic

in (21). �e matrix step-size is selected as

Mn =
1

n

n∑
i=1

(1− ci)xixTi

=
n− 1

n
Mn−1 +

1

n
(1− cn)xnxTn .

Applying the matrix inversion lemma in �nding M−1
n yields

the next AC-RLS updates

Cn =
n

n− 1

[
Cn−1 −

(1− cn)Cn−1xnxTnCn−1

n− 1 + xTnCn−1xn

]
(25a)

θn = θn−1 +
1− cn
n

Cnxn(yn − xTnθn−1) (25b)

where cn is decided by (5). When cn = 1, not only the

parameter vector is not updated, but costly updates of Cn

are avoided too. In addition, di�erent from the iterative

expectation-maximization algorithm in [24], AC-RLS skips

the covariance updates completely. Its performance is charac-

terized by the following proposition proved in the Appendix.

Proposition 3. If xns are i.i.d. with E [xn] = 0 and
E
[
xnxTn

]
:= Rx, while observations yn adhere to the model

in (1), assuming {xnxTn (1 − cn)} is an ergodic process, for
θ1 = 0 and constant τ , there exists k > 0 such that AC-RLS
estimates θn yield bounded MSE

1

n
tr
(
R−1x

)
σ2 ≤ E

[
‖θn − θo‖22

]
≤ 1

n

tr
(
R−1x

)
σ2

2Q(τ)
, ∀n ≥ k.

As corroborated by Proposition 3, the AC-RLS estimates

are guaranteed to converge to θo for any choice of τ . Over-
all, the novel AC-RLS algorithm o�ers a computationally-

e�cient and accurate means of solving large-scale LS prob-

lems encountered with Big Data applications.
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At this point, it is useful to contrast AC-RLS with RP

and random sampling methods that have been advocated

as fast LS solvers [30], [6]. In practice, RP-based schemes

�rst premultiply data (y,X) with a random matrix R =
HD, where H is a D × D Hadamard matrix and D
is a diagonal matrix whose diagonal entries take values

{−1/
√
D,+1/

√
D} equiprobably. Intuitively, premultiplying

by R yields measurements of approximately equal leverage

scores (see [6], [7]), so that the ensuing random matrix

Sd exhibits no preference in selecting uniformly a sub-

set of d rows. �en, the reduced-size LS problem yields

θ̌d = arg minθ ‖SdHD(y −Xθ)‖22. For a general precon-

ditioning matrix HD, computing the product HD[y X]
incurs prohibitive complexity of O(D2p) computations. �is

is mitigated by choosing H to be the Hadamard matrix.

�en, by using the fast Walsh-Hadamard transform one can

reduce complexity of the sketch to O(Dp logD), or, as low

as O(Dp log d), if one is only interested in d rows. Overall,

the RP method reduces the computational complexity of LS

from O(Dp2) to O(Dp log d+ dp2) operations.

By se�ing τ = Q−1(d/(2D)), our AC-RLS Algorithm 3

achieves an average reduction ratio d/D by scanning the

observations, and selecting only the most informative ones.

�e same ratio can be achieved more accurately by choosing

a sequence of data-adaptive thresholds {τn}Dn=1, as described

in the next subsection. As will be seen in Section V-C, AC-

RLS achieves signi�cantly lower estimation error compared

to RP-based solvers. Intuitively, this is because unlike RPs

that are based solely on X and are thus observation-agnostic,
AC extracts the most informative in terms of innovation

subset of rows for a given problem instance (y,X).

Regarding the complexity of AC-RLS, if the pair (yn,xn)
is not censored, the cost of updating θn and Cn is O(p2)
multiplications. For a censored datum, there is no such

cost. �us, for d uncensored data the overall computational

complexity is O(dp2). Furthermore, evaluation of the abso-

lute normalized innovation requires O(p) multiplications per

iteration. Since this operation takes place at each of the D
iterations, there areO(Dp) computations to be accounted for.

Overall, AC-RLS reduces the complexity of LS from O(Dp2)
to O(Dp+dp2). Evidently, the complexity reduction is more

prominent for larger model dimension p. For p� 1, the �rst
term may be neglected, yielding an O(dp2) complexity for

AC-RLS.

A couple of remarks are now in order.

Remark 1. �e novel AC-LMS and AC-RLS algorithms bear

structural similarities to sequential set-membership (SM)-

based estimation [31], [32]. However, the model assumptions

and objectives of the two are di�erent. SM assumes that the

noise distribution in (1) has bounded support, which implies

that θo belongs to a closed set. �is set is sequentially iden-

ti�ed by algorithms interpreted geometrically, while certain

observations may be deemed redundant and thus discarded

by the SM estimator. In our Big Data setup, an SA approach

is developed to deliberately skip updates of low importance

for reducing complexity regardless of the noise pdf.

Remark 2. Estimating regression coe�cients relying on most

informative data is reminiscent of support vector regression

(SVR), which adopts an ε-insensitive cost (truncated `1 error

norm). SVR has well-documented merits in robustness as

well as generalization capability, both of which are a�ractive

for (even nonlinear kernel-based) prediction tasks [33]. SVR

solvers are typically based on nonlinear programming, and

support vectors (SVs) are returned a�er batch processing.

Inheriting the merits of SVRs, the novel AC-LMS and AC-RLS

can be viewed as returning “causal SVs,” which are di�erent

from the traditional (non-causal) batch SVs, but become avail-

able on-the-�y at complexity and storage requirements that

are a�ordable for streaming Big Data. In fact, we conjecture

that causal SVs returned by AC-RLS will approach their non-

causal SVR counterparts if multiple passes over the data

are allowed. Mimicking SVR costs, our AC-based schemes

developed using the truncated `2 cost [cf. (21)] can be readily

generalized to their counterparts based on the truncated `1
error norm.

1
Cross-pollinating in the other direction, our

AC-RLS iterations can be useful for online learning from

streaming large-scale data with second-order closed-form

iterations.

C. Controlling Data Reduction via AC

A clear distinction between NAC and AC is that the la�er

depends on the estimation algorithm used. As a result, thresh-

old design rules are estimation-driven rather than universal.

In this section, threshold selection strategies are proposed for

AC-RLS. Recall the average reduction ratio c̄ in (14), and let

ζn := (θo−θn)/σ ∼ N (0,Kn) denote the normalized error

at the n−th iteration. Similar to (16), it holds that

πn(τn) = 1− 2Q
(
τn
[
xTnKn−1xn + 1

]−1/2)
. (26)

For n� p, estimates θn are su�ciently close to θo and thus

Kn ≈ 0. �en, the data-agnostic τn ≈ Q−1( 1−πn
2 ) a�ains

an average censoring probability π̄, while its asymptotic

properties have been studied in [24]. For �nite data, this

simple rule leads to under-censoring by ignoring appreciable

values of Kn, which can increase computational complexity

considerably. �is consideration motivates well the data-

adaptive threshold selection rules designed next.

AC-RLS updates can be seen as ordinary RLS updates

on the subsequence of uncensored data. A�er ignoring the

transient error due to initialization, it holds that Kn ≈[∑n
i=1(1− ci)xixTi

]−1
. �e term xTnKn−1xn is encoun-

tered as xTnCn−1xn/n in the updates of Alg. 3, but it

is not computed for censored measurements. Nonetheless,

xTnCn−1xn/n can be obtained at the cost of p(p + 1) mul-

tiplications per censored datum. �en, the exact censoring

probability at AC-RLS iteration n can be tuned to a prescribed

π?n by selecting

τn =
(
xTnCn−1xn/n+ 1

)1/2
Q−1

(
1− π?n

2

)
. (27)

1
In fact, any truncated error function taking value zero over the “dead

zone” [−τ, τ ] will discard data leading to errors in [−τ, τ ], and thus reduce

complexity of large-scale problems.
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Given {π?n}Dn=1 satisfying (14), an average censoring ratio of

(D − d)/D is thus achieved in a controlled fashion.

Although lower than that of ordinary RLS, the complexity

of AC-RLS using the threshold selection rule (27) is still

O(Dp2). To further lower complexity, a simpler rule is

proposed that relies on averaging out the contribution of

individual rows xTn in the censoring process. Suppose that

xn’s are generated i.i.d. with E[xn] = 0 and E[xnxTn ] = Rx.

Similar to Section III-C, for p su�ciently large the inner

product xTnζn is approximately Gaussian. It then follows that

the a priori error en(θn−1) = σxTnζn−1 + vn is zero-mean

Gaussian with variance

σ2
en = σ2

tr

(
E
[
xnxTnζn−1ζ

T
n−1

])
+ σ2

= σ2tr (RxKn−1) + σ2
(28)

where the �rst equality follows from the independence of

xTnζn−1 and vn; and the third one from that of xn with

ζn−1. �e censoring probability at time n is then expressed

as

πn = Pr{|en(θn−1)| ≤ τσ} = 1− 2Q

(
τn

σ

σen

)
.

To a�ain π?n, the threshold per datum n is selected as

τn =
σen
σ
Q−1

(
1− π?n

2

)
. (29)

It is well known that for large n, the RLS error covariance

matrix Kn converges to (σ2/n)R−1x . Specifying {π?n}Dn=1 is

equivalent to selecting an average number of

∑n
i=1(1− π?i )

RLS iterations until time n. �us, the AC-RLS with controlled

selection probabilities yields an error covariance matrix

Kn ≈ (
∑n
i=1(1− π?i ))

−1
σ2R−1x . Combined with (28), the

la�er provides

σ2
en = σ2p

(
n−1∑
i=1

(1− π?i )

)−1
+ σ2.

Plugging σen into (29) yields the simple threshold selection

τn =

p(n−1∑
i=1

(1− π?i )

)−1
+ 1

1/2

Q−1
(

1− π?n
2

)
. (30)

Unlike (27), where thresholds are decided online at an ad-

ditional computational cost, (30) o�ers an o�-line thresh-

old design strategy for AC-RLS. Based on (30), to achieve

c̄ = π? = (D − d)/D, thresholds are chosen as

τn =

(
p

(n− 1)(1− π?)
+ 1

)1/2

Q−1
(

1− π?

2

)
(31)

which a�ains a constant π∗ across iterations.

D. Robust AC-LMS and AC-RLS

AC-LMS and AC-RLS were designed to adaptively select

data with relatively large innovation. �is is reasonable

provided that (1) contains no outliers whose extreme values

may give rise to large innovations too, and thus be mistaken

for informative data. Our idea to gain robustness against

outliers is to adopt the modi�ed AC rule

(cn, c
o
n) =

 (1, 0) , |en(θn−1)| < στ
(0, 0) , τσ ≤ |en(θn−1)| < τoσ
(0, 1) , |en(θn−1)| ≥ τoσ

. (32)

Similar to (5), a nominal censoring variable cn is activated

here too for observations with absolute normalized innova-

tion less than τ . To reveal possible outliers, a second cen-

soring variable con is triggered when the absolute normalized

innovation exceeds threshold τo with τo > τ .
Having separated data-censoring from outlier identi�ca-

tion in (32), it becomes possible to robustify AC-LMS and

AC-RLS against outliers. Toward this end, one approach is

to completely ignore yn when con = 1. Alternatively, the
instantaneous cost function in (21) can be modi�ed to a

truncated Huber loss (cf. [34])

fo(en) =


0 , (cn, c

o
n) = (1, 0)(

1
2e

2
n − 1

2τ
2σ2
)

, (cn, c
o
n) = (0, 0)

τoσ
(
|en| − 3

2τ
2
oσ

2 − 1
2τ

2σ2
)

, (cn, c
o
n) = (0, 1)

.

Applying the �rst-order SGD iteration on the cost fo(en),
yields the robust (r) AC-LMS iteration

θn = θn−1 + µngn(θn−1) (33)

where the gradient vector is now provided as

gn(θ) =

 0 , (cn, c
o
n) = (1, 0)

xn(yn − xTnθ) , (cn, c
o
n) = (0, 0)

τoσxn sign
(
yn − xTnθ

)
, (cn, c

o
n) = (0, 1)

.

Similarly, the second-order SGD yields the rAC-RLS

θn = θn−1 +
1

n
Cngn(θn−1) (34a)

Cn =
n

n− 1

[
Cn−1 −

(1− cn)(1− con)Cn−1xnxTnCn−1

n− 1 + xTnCn−1xn

]
.

(34b)

Observe that when con = 1, only θn is updated, and the

computationally costly update of (34b) is avoided.

V. Numerical Tests

A. SA-MLE

�e online SA-MLE algorithms presented in Section III are

simulated using Gaussian data generated according to (1)

with a time-invariant θo ∈ Rp, where p = 30, υn ∼ N (0, 1)
and xn ∼ N (0p, Ip). �e �rst K = 50 observations are

used to compute θ̂K . �e �rst-and second-order SA-MLE

algorithms are then run for D = 5, 000 time steps. �e

NAC rule in (4) was used with τ = 1.5 to censor ap-

proximately 75% of the observations. To achieve a desirable

tradeo� between convergence speed and asymptotic error

performance, a diminishing step size µn = 0.1/
√
n was used

for the SA-MLE. Plo�ed in Fig. 2 is the MSE E
[
‖θo− θ̂n‖22

]
across time n, approximated by averaging over 100 Monte

Carlo experiments. Also plo�ed is the Cramer-Rao lower

bound (CRLB) of the observations, given by modifying the

results of [23] to accommodate the NAC rule in (4). It can
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Fig. 2. Convergence of �rst- and second-order SA-MLE (d/D = 0.25) .

be inferred from the plot that the second-order SA-MLE

exhibits markedly improved convergence rate compared to

its �rst-order counterpart, at the price of minor increase in

complexity. Furthermore, by performing a single pass over

the data, the second-order SA-MLE performs close to the

CRLB, thus o�ering an a�ractive alternative to the more

computationally demanding batch Newton-based iterations

in [23] and [24].

To further evaluate the e�cacy of the proposed methods,

additional simulations were run for di�erent levels of censor-

ing by adjusting τ . Plo�ed in Figs. 3(a) and 3(b) are the MSE

curves of the �rst- and second-order SA-MLE respectively,

for di�erent values of τ . Notice that censoring up to 50% of

the data incurs negligible estimation error compared to the

full-data case (blue solid curve). In fact, even when operating

on data reduced by 95% (red dashed curve) the proposed

algorithms yield reliable online estimates.

B. AC-LMS
�e AC-LMS algorithm introduced in Section IV-A was

tested on synthetic data and compared to the normalized LMS

(Kaczmarz) and the randomized Kaczmarz algorithm [12].

For this experiment, D = 3, 000 observations yn were

generated as in (1) with σ2 = 1, while xn’s of dimension

p = 200 were generated i.i.d. following a standardized

multivariate Gaussian distribution. For the randomized Kacz-

marz algorithm, the probability of selecting the n-th row is

pn = ‖xn‖22/‖X‖2F [12]. In this experiment, xn’s were scaled
with random weights to provide a favorable case for this

magnitude-based random sampling. For AC-LMS, the step-

size was set to µ = 0.004 and the censoring threshold to τ =
2.3 yielding a compression ratio of d/D ≈ 0.25. Plo�ed in

Fig. 4, are the relative MSE

(
E
[
‖θo − θ̂n‖22

/
‖θo‖22

])
curves

of the three algorithms w.r.t. n, averaged over 50 Monte

Carlo runs. Interestingly, even a�er performing only 25% of

the updates, AC-LMS achieves convergence speed and steady

state error comparable to that of randomized Kaczmarz.

Although AC-LMS does not provide major computational

savings, a signi�cant number of updates can be skipped thus

harvesting communication savings in a decentralized se�ing.
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Fig. 3. Convergence of (a) �rst-order SA-MLE; and (b) second-order SA-MLE

for di�erent values of τ .
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Fig. 4. Relative MSE for Kaczmarz, randomized Kaczmarz, and AC-LMS.

AC-LMS used approximately 25% of the data (500 updates out of 3, 000
data).

C. AC-RLS

�e AC-RLS algorithm developed in Section IV-B was

tested on synthetic data. Speci�cally, the AC-RLS is treated

here as an iterative method that sweeps once through the

entire dataset, even though more sweeps can be performed

at the cost of additional runtime. Its performance in terms

of relative MSE was compared with the Hadamard (HD) pre-

conditioned randomized LS solver, while plo�ed as a function

of the compression ratio d/D. Parallel to the two methods,

a uniform sampling randomized LSE was run as a simple

benchmark. Measurements were generated according to (1)

with p = 300, D = 10, 000, and vn ∼ N (0, 9). Regarding the

data distribution, three di�erent scenario’s were examined. In
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Figure 5(a), xn’s were generated according to a heavy tailed

multivariate t−distribution with one degree of freedom, and

covariance matrix with (i, j)-th entry Σi,j = 2 × 0.5|i−j|.
Such a data distribution yields matrices X with highly non-

uniform leverage scores, thus imitating the e�ect of a subset

of highly “important” observations randomly sca�ered in the

dataset. In such cases, uniform sampling without precondi-

tioning performs poorly since many of those informative

measurements are missed. As seen in the plot, precondi-

tioning signi�cantly improves performance, by incorporating

“important” information through random projections. Further

improvement is e�ected by our data-driven AC-RLS through

adaptively selecting the most informative measurements and

ignoring the rest, without overhead in complexity.

�e experiment was repeated (Fig. 5(b)) for xn generated

from a multivariate t−distribution with 3 degrees of freedom,

and Σ as before. Leverage scores for this dataset are moder-

ately non-uniform, thus inducing more redundancy and re-

sulting in lower performance for all algorithms, while closing

the “gap” between preconditioned and non-preconditioned

random sampling. Again, the proposed AC-RLS performs

signi�cantly be�er in estimating the unknown parameters

for the entire range of data size reduction.

Finally, Fig. 5(c) depicts related performance for Gaussian

xn ∼ N (0,Σ). Compared to the previous cases, normally

distributed rows yield a highly redundant set of measure-

ments with X having almost uniform leverage scores. As

seen in the plots, preconditioning o�ers no improvement in

random sampling for this type data, whereas the AC-RLS

succeeds in extracting more information on the unknown θ.

�e e�cacy of AC-RLS was further assessed using a real

dataset regarding the physicochemical properties of protein

tertiary structures [35]. In this linear regression dataset,

p = 9 a�ributes of proteins are used to predict a value related

to protein structure. A total of D = 45, 730 observations are

included. Data (yn,xn) were centered around the origin by

compensating for their empirical mean. Since the true θo is

unknown, it is estimated by solving LS on the entire dataset.

Subsequently, the noise variance is also estimated via sample

averaging as σ2 = (D−1)−1
∑D
n=1 (yn − xTnθo)

2
. In a real-

istic scenario where θo is unknown, the variance σ2
can be

estimated recursively as σ̂2
n = n−1

n σ̂2
n−1 + 1

n (yn−xTnθn−1)2.
Figure 6 depicts the relative squared error (RSE) with respect

to the data reduction ratio d/D. �e RSE curve for the HD-

preconditioned LS corresponds to the RSE averaged over

50 runs, while the size of the vertical bars is proportional

to its standard deviation. Di�erent from RP-based methods,

the RSE for AC-RLS does not entail standard deviation

bars, because the algorithm output is deterministic for a

given initialization and data order. It can be observed that

for d/D ≥ 0.25, the AC-RLS outperforms RPs in terms

of estimating θ; while for very small d/D, RPs yield a

lower average RSE, at the cost however of very high error

uncertainty (variance). Heed that the dataset deviates from

the assumed model; which demonstrates that AC-RLS is

robust to model mismatch.
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Fig. 5. Relative MSE of AC-RLS and randomized LS algorithms, for di�erent

levels of data reduction. Regression matrix X was generated with highly

non-uniform (a), moderately non-uniform (b), and uniform leverage scores

(c).

D. Robust AC-RLS

To test rAC-LMS and rAC-RLS of Section IV-D, datasets

were generated with D = 10, 000, p = 30 and xn ∼
N (0,Σ), where Σi,j = 2×0.5|i−j|; noise was i.i.d. Gaussian
vn ∼ N (0, 9); meanwhile measurements yn were generated
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Fig. 6. Relative MSE of AC-RLS and randomized LS algorithms, for di�erent

levels of data reduction using the protein tertiary structure dataset.
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Fig. 7. Relative MSE of AC-RLS, rAC-RLS, and randomized LS algorithms,

for di�erent levels of data reduction using an outlier-corrupted dataset.

according to (1) with random and sporadic outlier spikes

{on}Dn=1. Speci�cally, we generated on = αnβn, where

αn ∼ Bernoulli(0.05), and βn ∼ N (0, 25× 9), thus resulting
in approximately 5% of the data e�ectively being outliers.

Similar to previous experiments, our novel algorithms were

run once through the set selecting d out of D data to

update θn. Plo�ed in Fig. 7 is the RSE averaged across

100 runs as a function of d/D for the HD-preconditioned

LS, the plain AC-RLS, and the rAC-RLS with a Huber-like

instantaneous cost. As expected, the performance of AC-RLS

is severely undermined especially when tuned for very small

d/D, exhibiting higher error than the RP-based LS. However,

our rAC-RLS algorithm o�ers superior performance across

the entire range of d/D values.

VI. Concluding Remarks

We developed online algorithms for large-scale LS linear

regressions that rely on censoring for data-driven dimension-

ality reduction of streaming Big Data. First, a non-adaptive

censoring se�ing was considered for applications where

observations are censored – possibly naturally – and prior to

estimation. Computationally e�cient �rst- and second-order

online algorithms were derived to estimate the unknown

parameters, relying on stochastic approximation of the log-

likelihood of the censored data. Performance was bounded

analytically, while simulations demonstrated that the second-

order method performs close to the CRLB.

Online data reduction occurring parallel to estimation

was also explored. For this scenario, censoring is performed

deliberately and adaptively based on estimates provided by

�rst- and second-order algorithms. Robust versions were also

developed for estimation in the presence of outliers. Intro-

duced within the framework of stochastic approximation, the

proposed algorithms were shown to enjoy guaranteed MSE

performance. Moreover, the resulting recursive methods were

advocated as low-complexity recursive solvers of large LS

problems. Experiments run on synthetic and real datasets

corroborated that the novel AC-LMS and AC-RLS algorithms

outperformed competing randomized algorithms.

Our future research agenda includes approaches to non-

linear (e.g., kernel-based) (non)parametric large-scale regres-

sions, along with estimation of dynamical (e.g., state-space)

processes using adaptively censored measurements.

Appendix

Proof of Proposition 1: It can be veri�ed that ∇2`n(θ) �
0, which implies the convexity of `n(θ) [23]. �e regret of

the SGD approach is then bounded as [15, Corollary 2.7]

R(D) ≤ 1

2µ
‖θ∗ − θ1‖22 + µ

D∑
n=1

‖∇`n(θn−1)‖22

=
1

2µ
‖θ∗ − θ̂K‖22 + µ

D∑
n=1

‖xn‖22β2(θn−1)

≤ 1

2µ
‖θ∗ − θ̂K‖22 + µD(x̄β̄)2

≤ 1

2µ
A2 + µD(x̄β̄)2

where {θn}Dn=1 is any sequence of estimates produced by

the SA-MLE. Se�ing µ = µ∗ = A/(
√

2Dβ̄x̄) minimizes the

aforementioned upper bound. Otherwise, selecting µ = cµ∗

for some c > 0 readily provides the bound of Proposition 1

since 2(c+ 1/c) ≥ max{c, 1/c}.
Proof of Proposition 2: For the SGD update in (22), it is

shown in [36] that by choosing a diminishing step size µn =
C/n, the MSE Ex,v

[
‖θn − θo‖22

]
, with θo = arg minθ F (θ)

and F (θ) := Ex,v

[
f (τ)(θ; y)

]
can be bounded as

E
[
‖θn − θo‖22

]
≤ e2L

2C2

nαC

(
‖θ1 − θo‖22 +

∆

L2

)
+ 2

∆C2ωαC/2−1(n)

nαC/2

where ωx(n) = log n for x = 0. A�er se�ing C = 2/α, the
�rst bound in Proposition 2 is obtained with the parameters

α, ∆, and L being identi�ed as detailed next.

For the above bounds to hold, it is necessary to have:

a1) the function gradient to be bounded at the optimum,

i.e., Ex,v

[
‖∇f (τ)(θo,y)‖22

]
≤ ∆; a2) the gradient to be

L−smooth for any other θ; and, a3) F (θ) to be α−strongly
convex [36]. Note that for i.i.d. {(xn, vn)}, α,∆ and L do

not depend on n. Also, discontinuity points of f (τ)(.) are

zero-measure in expectation, and hence can be neglected.
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Starting with a3), interchanging di�erentiation with expec-

tation yields

∇2F (θ) = ∇2
θEx,v

[
f (τ)(θ; x, v)

]
= Ex,v

[
∇2

θ

e2

2
(1− c)

]
= Ex,v

[
xxT (1− c)

]
= Ex

[
xxTEv

[
1{|xT (θo−θ)+v|≥τσ}

]]
= Ex

[
xxT Pr

{
|xT (θo − θ) + v| ≥ τσ

} ]
= Ex

[
xxT

[
Q

(
τ +

xT (θo − θ)

σ

)
+Q

(
τ − xT (θo − θ)

σ

)]]
.

Observe that the function g(z) := Q(τ + z) + Q(τ − z) is

minimized at z = 0 when τ > 0. To see this, heed that

its derivative g′(z) = −φ(τ + z) + φ(τ − z) vanishes when

|τ + z| = |τ − z|. �us, g(z) ≥ g(0) = 2Q(τ) for all z, or

Q

(
τ +

xT (θo − θ)

σ

)
+Q

(
τ − xT (θo − θ)

σ

)
≥ 2Q(τ)

for all x and θ. �e la�er implies that ∇2F (θ) �
2Q(τ)Ex

[
xxT

]
� 2Q(τ)λmin(Rx)I showing that function

F (θ) is α−strongly convex with α = 2Q(τ)λmin(Rx). As
expected, α reduces for increasing τ .
Regarding the instantaneous gradient, it su�ces to

�nd L such that Ex,v

[
‖∇f (τ)(θ1)−∇f (τ)(θ2)‖22

]
≤

L2‖θ1 − θ2‖22 for all n and (θ1,θ2). Concerning the errors

ζi := θo − θi for i = 1, 2, it holds

Ex,v

[
‖∇f (τ)(θ1)−∇f (τ)(θ2)‖22

]
= Ex,v

[
‖xe(θ1)(1− c1)− xe(θ2)(1− c2)‖22

]
= Ex,v

[
‖x(xT ζ1 + v)1{|xT ζ1+v|≥τσ}

− x(xT ζ2 + v)1{|xT ζ2+v|≥τσ}‖
2
2

]
= Ex,v

[
‖xxT ζ11{|xT ζ1+v|≥τσ} − xxT ζ21{|xT ζ2+v|≥τσ}

+ xv(1{|xT ζ1+v|≥τσ} − 1{|xT ζ2+v|≥τσ})‖
2
2

]
≤ Ex,v

[
‖xxT (ζ11{|xT ζ1+v|≥τσ} − ζ21{|xT ζ2+v|≥τσ})‖

2
2

+ ‖xv(1{|xT ζ1+v|≥τσ} − 1{|xT ζ2+v|≥τσ})‖
2
2

+ 2‖xxT (ζ11{|xT ζ1+v|≥τσ} − ζ21{|xT ζ2+v|≥τσ})‖2
× ‖xv(1{|xT ζ1+v|≥τσ} − 1{|xT ζ2+v|≥τσ})‖2

]
≤ Ex,v

[
λmax((xxT )2)‖ζ11{|xT ζ1+v|≥τσ} − ζ21{|xT ζ2+v|≥τσ}‖

2
2

+ ‖x‖22v2(1{|xT ζ1+v|≥τσ} − 1{|xT ζ2+v|≥τσ})
2

+ 2λmax(xxT )‖ζ11{|xT ζ1+v|≥τσ} − ζ21{|xT ζ2+v|≥τσ}‖2
× ‖x‖2|v(1{|xT ζ1+v|≥τσ} − 1{|xT ζ2+v|≥τσ})|

]
≤ Ex

[
‖x‖42λ1(τ)‖ζ1 − ζ2‖22 + ‖x‖22λ2(τ)‖ζ1 − ζ2‖22

+ 2‖x‖32
√
λ1(τ)λ2(τ)‖ζ1 − ζ2‖22

]
=
(
rx4λ1(τ) + tr(Rx)λ2(τ) + 2rx3

√
λ1(τ)λ2(τ)

)
× ‖ζ1 − ζ2‖22. (35)

where the �rst inequality comes from Cauchy-Schwarz in-

equality; the second inequality follows by bounding the

Rayleigh quotient, and the last one uses (A0) and (A1). �e

identities λmax((xxT )2) = ‖x‖42, λmax(xxT ) = ‖x‖22, and
E[‖x‖22] = tr(Rx), have also been used. Since ‖ζ1 − ζ2‖2 =
‖θ1 − θ2‖2, we have from (35) that L2 = r4xλ1(τ) +
tr(Rx)λ2(τ) + 2r3x

√
λ1(τ)λ2(τ).

Finally, the expected norm of the gradient at θ = θo is

bounded and equals

E
[
‖∇f (τ)(θo)‖22

]
= E

[
‖x‖22e(θo)(1− c)

]
= Ex

[
‖x‖22

]
Ev
[
v21{|v|>τσ}

]
= tr(Rx)

σ2 −
τσ∫
−τσ

v2
e−

v2

2σ2

√
2πσ2

dv


= tr(Rx)

[
σ2 − σ2

[
Q
( v
σ

)
− v

σ
φ
( v
σ

)]τσ
−τσ

]
= 2σ2tr(Rx) (1−Q(τ) + τφ(τ))

which completes the proof.

Proof of Proposition 3: For the error vector ζn := θn−θo,
AC-RLS satis�es ζn = Cn

n∑
i=1

xivi(1 − ci). If {ci}ni=1 are

deterministic and given, the error covariance matrix Kn :=
E[ζnζ

T
n ] becomes

Kn = Ex,v

Cn

n∑
i=1

n∑
j=1

xix
T
j vivj(1− ci)(1− cj)Cn


= Ex

Cn

n∑
i=1

n∑
j=1

xix
T
j Ev [vivj ] (1− ci)(1− cj)Cn


= σ2Ex

[
Cn

n∑
i=1

xix
T
i (1− ci)Cn

]
= σ2Ex

[
CnC−1n Cn

]
= σ2Ex[Cn]

Having assumed xnxTn (1 − cn) to be ergodic and for large

enough n, then C−1n =
n∑
i=1

xix
T
i (1 − ci) can be approx-

imated by nEx,v

[
xxT (1− c)

]
= nEx

[
xxTEv[1− c]

]
=

nEx

[
xxT Pr{c = 0|x}

]
= C̄−1n . Given that 2Q(τ) ≤

Pr{c = 0|x} ≤ 1 ∀x, we obtain

2Q(τ)nRx � C̄−1n � nRx.

From [37, Cor. 7.7.4(a)] and since Cn converges monotoni-

cally to C̄n, there exists k > 0 such that for all n > k

1

n
R−1x � Cn �

1

2Q(τ)n
R−1x .

�e result follows since E
[
‖θn − θo‖22

]
= tr(Kn) =

σ2tr(E [Cn]).
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