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Abstract—Notwithstanding the popularity of conventional clus-
tering algorithms such as K-means and probabilistic clustering,
their clustering results are sensitive to the presence of outliers in
the data. Even a few outliers can compromise the ability of these al-
gorithms to identify meaningful hidden structures rendering their
outcome unreliable. This paper develops robust clustering algo-
rithms that not only aim to cluster the data, but also to identify
the outliers. The novel approaches rely on the infrequent pres-
ence of outliers in the data, which translates to sparsity in a ju-
diciously chosen domain. Leveraging sparsity in the outlier do-
main, outlier-aware robust K-means and probabilistic clustering
approaches are proposed. Their novelty lies on identifying outliers
while effecting sparsity in the outlier domain through carefully
chosen regularization. A block coordinate descent approach is de-
veloped to obtain iterative algorithmswith convergence guarantees
and small excess computational complexity with respect to their
non-robust counterparts. Kernelized versions of the robust clus-
tering algorithms are also developed to efficiently handle high-di-
mensional data, identify nonlinearly separable clusters, or even
cluster objects that are not represented by vectors. Numerical tests
on both synthetic and real datasets validate the performance and
applicability of the novel algorithms.

Index Terms—(Block) coordinate descent, clustering, expec-
tation-maximization algorithm, group-Lasso, K-means, kernel
methods, mixture models, robustness, sparsity.

I. INTRODUCTION

C LUSTERING aims to partition a set of data into subsets,
called clusters, such that data assigned to the same cluster

are similar in some sense. Working with unlabeled data and
under minimal assumptions makes clustering a challenging, yet
universal tool for revealing data structures in a gamut of appli-
cations such as DNA microarray analysis and bioinformatics,
(social) network analysis, image processing, and data mining
[18], [35]. Moreover, clustering can serve as a pre-processing
step for supervised learning in applications where labeling data
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one-at-a-time is costly. Multiple interpretations across disci-
plines of what a cluster is, have led to an abundance of applica-
tion-specific algorithms [35].
Among the algorithms which cluster data represented by

vectors, K-means and Gaussian mixture model (GMM-)based
clustering are two popular schemes [26], [35]. K-means relies
on the Euclidean distance as a similarity measure, thereby
yielding partitions that minimize the within-cluster scatter
[18]. Contrastingly, soft (a.k.a. fuzzy) K-means is well-suited
for overlapping clusters by allowing each datum to belong to
multiple clusters [2]. GMM-based clustering considers data
drawn from a probability density function (pdf), where each
class-conditional pdf corresponds to a cluster [35]. Clustering
then arises as a by-product of a maximum likelihood (ML)
estimation framework for the GMM parameters, which are
typically obtained through the expectation-maximization (EM)
algorithm [11]. Kernel methods have been devised to enable
clustering of nonlinearly separable clusters [29], [30].
Notwithstanding their popularity, K-means and GMM-based

clustering are sensitive to inconsistent data, termed outliers, due
to their functional dependency on the Euclidean distance [20].
Outliers appear infrequently in the data, emerging either due to
reading errors or because they belong to rarely-seen and hence,
markedly informative phenomena. However, even a few outliers
can render clustering unreliable: cluster centers and model pa-
rameter estimates can be severely biased, and thus the data-to-
cluster assignment is deteriorated. This motivates robustifying
clustering approaches against outliers at affordable computa-
tional complexity in order to unravel the underlying structure
in the data.
Several robust clustering approaches have been investigated

[16]. Those more relevant to the framework developed here in-
clude possibilistic clustering, which builds on fuzzy K-means
by measuring the so-called typicality of each datum with re-
spect to each cluster to decide whether a datum is an outlier
[24], [28]. However, possibilistic clustering is sensitive to ini-
tialization, and can output the same cluster more than once. Sim-
ilar to [19], the noise clustering method of [10] introduces an
additional cluster intended to capture all outliers, and its cen-
troid is heuristically assumed to be equidistant from all non-out-
lying data. To mitigate centroid bias, the -cut method performs
K-means steps, but cluster centroids are estimated using only the
-percentage of the data assigned to each cluster [36].
Other robust alternatives include sequential clustering ap-

proaches which identify a single cluster at a time, and remove
its points from the dataset [22], [38]. A minimum-volume
ellipsoid containing a predetermined fraction of the data is
identified per step in [22]; while [38] combines Huber’s -con-
taminated model with a GMM [20]. However, sequentially
removing points can hinder the underlying data structure.
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Inspired by robust statistics, clustering methods based on the
-distance (K-medians), Tukey’s biweighted function, and

trimmed means have been also proposed [4], [15], [23]; but
they are all limited to linearly separable clusters. A clustering
approach identifying clusters of arbitrary shape using kernel
functions was developed in [1]. Even though resilient to out-
liers, this method targets density estimation, while the number
of clusters identified depends critically on a grid search over a
kernel parameter. Robust GMM-based clustering approaches
introduce outlier-aware pdfs, and the ML problem arising is
typically solved via EM-like algorithms [27], [31].
The first contribution of the present work is to introduce a

data model for clustering that explicitly accounts for outliers via
a deterministic outlier vector per datum (Section II). A datum is
deemed an outlier if its corresponding outlier vector is nonzero.
Translating the fact that outliers are rare to sparsity in the outlier
vector domain leads to a neat connection between clustering
and the compressed sensing (CS) paradigm [7]. Building on this
model, an outlier-aware clustering methodology is developed
for clustering both from the deterministic (K-means), and the
probabilistic (GMMs) perspectives.
The second contribution of this work comprises various iter-

ative clustering algorithms developed for robust hard K-means,
soft K-means, and GMM-based clustering (Section III). The al-
gorithms are based on a block coordinate descent (BCD) iter-
ation and yield closed-form updates for each set of optimiza-
tion variables. In particular, estimating the outliers boils down
to solving a group-Lasso problem [37], whose solution is com-
puted in closed form. The novel robust clustering algorithms
operate at an affordable computational complexity of the same
order as that of their non-robust counterparts.
Several contemporary applications in bioinformatics, (so-

cial) network analysis, image processing, and machine learning
call for outlier-aware clustering of high-dimensional data, or
involve nonlinearly separable clusters. To accommodate these
clustering needs, the novel robust clustering algorithms are
kernelized in Section IV; and this is the third contribution of our
work. The assumed model not only enables such a kernelization
for both K-means and the probabilistic setups, but it also yields
iterative algorithms with closed-form updates. In Section V,
the algorithms developed are tested using synthetic as well as
real datasets from handwritten digit recognition systems and
social networks. The results corroborate the effectiveness of
the methods. Conclusions are drawn in Section VI.
Notation: Lower-(upper-)case boldface letters stand for

column vectors (matrices), and calligraphic letters for sets;
denotes transposition; the set of naturals ;
the vector of all zeros (ones); the identity

matrix; a diagonal matrix with diagonal
entries ; the range space of matrix ;

the expectation operator; the multivariate
Gaussian pdf with mean and covariance matrix evaluated
at ; for a positive semidefinite matrix ;

, with , for the -norm in .

II. SPARSITY-AWARE CLUSTERING: CONTEXT AND CRITERIA

After reviewing the clustering task, a model pertinent to
outlier-contaminated data is introduced next. Building on
this model, robust approaches are developed for K-means
(Section II-A), and probabilistic clustering (Section II-B).

A. K-Means Clustering

Given a set of -dimensional vectors ,
let be a partition of to subsets (clusters)

for , which are collectively exhaustive, mu-
tually exclusive, and non-empty. Partitional clustering seeks a
partition of such that two vectors assigned to the same cluster
are closer to each other in some well-defined sense, such as the
Euclidean distance, than to vectors assigned to other clusters.
Among partitional clustering methods, K-means is one of the

most widely used with well-documented merits and a long his-
tory [5]. In the K-means setup, a centroid is introduced
per cluster . Then, instead of comparing distances between
pairs of points in , the point-centroid distances
are considered. Moreover, for each input vector , K-means
introduces the unknown memberships for , defined
to be 1 when , and 0 otherwise. To guarantee a valid
partition, the membership coefficients apart from being binary
(c1): ; they should also satisfy the constraints (c2):

, for all , to preclude empty clusters; and (c3):
, for all , so that each vector is assigned to a

cluster.
The K-means clustering task can be then posed as that of

finding the centroids and the cluster assignments
’s by solving the optimization problem

subject to (c1)–(c3) (1)

However, problem (1) is known to be NP-hard, even for
[9]. Practically, a suboptimal solution is pursued using the cel-
ebrated K-means algorithm. This algorithm drops the (c2) con-
straint, which is checked in a post-processing step instead. Then,
it alternately minimizes the cost in (1) with respect to one set of
variables or , while keeping the other one fixed, and
iterates. K-means iterations are guaranteed to converge to a sta-
tionary point of (1)[32].
To gain more insight on K-means clustering, it is instructive

to postulate a pertinent data model ,
where is a zero-mean vector capturing the deviation of
from its associated centroid . It is easy to see that under (c1)-
(c3), the minimizers of (1) offer merely a blind least-squares
(LS) fit of the data respecting the cluster assignment
constraints. However, such a simplistic, yet widely applicable
model, does not take into account outliers; that is points vi-
olating the assumed model. This fact paired with the sensitivity
of the LS cost to large residuals explain K-means’ vulnerability
to outliers [10].
To robustify K-means, consider the following data model

which explicitly accounts for outliers:

(2)

where the outlier vector is defined to be determinis-
tically nonzero if corresponds to an outlier, and
otherwise. The unknowns in (2) can now
be estimated using the LS approach as the minimizers of

, or due to (c1) and (c3), as the
minimizers of , which are
the maximum likelihood (ML) estimates if .
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Even if ’s were known, estimating and based
solely on would be an under-determined problem. The
key observation here is that most of the ’s are zero. This mo-
tivates the following criterion for clustering and identification
of at most outliers

s. to (3)

where , ,
denotes the membership matrix with entries ,
is the set of all matrices satisfying (c1) and (c3), and de-
notes the indicator function. Since problem (3) reduces to the
K-means problem in (1) for , the former inherits the
NP-hardness of the latter. Consider now the Lagrangian form
of (3)

(4)
where is an outlier-controlling parameter. For , set-
ting for some yields a zero optimum cost, where
all ’s are declared as outliers. For sufficiently large, the op-
timum ’s are zero, is deemed outlier-free, and problem (4)
reduces to the K-means one in (1).
Along the lines of K-means, similar iterations could be

pursued for suboptimally solving (4). However, such iterations
cannot provide any convergence guarantees due to the discon-
tinuity of the indicator function at zero. Aiming at a practically
feasible solver of (4), consider first that is given.
The optimization with respect to remains non-convex
due to . Following the successful CS
paradigm, where the -(pseudo)norm of a vector ,
defined as , was surrogated by its
convex -norm , the problem in (4) is replaced by

(5)

The proposed robust K-means approach is to minimize (5),
which is convex in , but remains jointly non-convex.
The algorithm for suboptimally solving the non-convex
problem in (5) is postponed for Section III-A. Note that the
minimization in (5) resembles the group Lasso criterion used
for recovering a block-sparse vector in a linear regression
setup [37]. This establishes an interesting link between robust
clustering and CS. Two remarks are now in order.

Remark 1 (Colored Noise): If the covariance matrix of in
(2) is known, say , the -norms in (5) can be replaced by the
weighted norms and , respectively.

Remark 2 ( -Penalty for Entry-Wise Outliers): The regu-
larization term in (5) enables identifying whole
data vectors as outliers. Replacing it by enables
recovery of outlying data entries instead of the whole vector. It-
erative solvers for this case can be developed using the method-

ology presented in Section III; due to space limitations this case
is not pursued here.

Constraints (c1) and (c3) in (1) entail hard membership
assignments, meaning that each vector is assigned to a single
cluster. However, soft clustering which allows each vector to
partially belong to several clusters, can better identify overlap-
ping clusters [2]. One way to obtain fractional memberships
is via soft K-means. Soft K-means differs from hard K-means
by i) relaxing the binary-alphabet constraint (c1) to the box
constraint (c4): ; and ii) by raising the ’s in
(1) to the th power, where is a tuning parameter [2].
The robust soft K-means scheme proposed here amounts to
replace with its outlier-compensated version ,
and leverage the sparsity of the ’s. These steps lead to the
following criterion:

(6)

where is the set of all matrices satisfying (c3)-(c4).
An algorithm for approximately solving (6) is presented in
Section III-A. Note that a hard partition of can still be
obtained from the soft by assigning to the th cluster,
where .

B. Probabilistic Clustering

An alternative way to perform soft clustering is by following
a probabilistic approach [35]. To this end, a mixture distribu-
tion model is postulated for , while are now inter-
preted as unobserved (latent) random variables. The centroids

are treated as deterministic parameters of the mixture
distribution, and their ML estimates are subsequently obtained
via the EM algorithm.
To account for outliers, probabilistic clustering is generalized

to model (2). Suppose that the ’s in (2) are i.i.d. drawn
from a mixture model where the ’s are deterministic pa-
rameters. The memberships are latent
random vectors, corresponding to the rows of , and take values
in , where is the th column of . If is
drawn from the th mixture component, then . Assume
further that the class-conditional pdf’s are Gaussian and mod-
eled as for all and .
This implies that with

. If the ’s are independent, the log-likeli-
hood of the input data is

(7)
where , and . Controlling
the number of outliers (number of zero vectors) suggests
minimizing the regularized negative log-likelihood as

(8)

where is the set of all model
parameters, is the probability simplex

, and means that is a positive definite
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matrix. An EM-based solver of (8) is derived in Section III-B.
Having estimated the likelihood parameters, the posterior prob-
abilities can be readily obtained and
interpreted as soft memberships.
Although having a common covariance may seem

restrictive, it guarantees that the GMM is well-posed, thereby
avoiding spurious unbounded likelihood values [3, p. 433].
Specifically, it is easy to see that even if all ’s are set to zero,
the log-likelihood of a GMM with different per mixture
grows unbounded, e.g., by setting one of the ’s equal to an

and letting for that particular . This possibility
for unboundedness is also present in (8), and justifies the use
of a common . But even with a common covariance, vectors
can drive the log-likelihood in (7) to infinity: consider for

example, any pair satisfying , and
let . To make the problem of maximizing
well-posed and in analogy to the deterministic setup (cf. Re-
mark 1), the regularizer is introduced. Note also
that for , the optimal is zero and (8) reduces to the
conventional MLE estimation of a GMM; whereas for ,
the cost in (8) becomes unbounded from below.

III. ROBUST CLUSTERING ALGORITHMS

Algorithms for solving the problems formulated in Section II
are developed here. Section III-A focuses on the minimization
of (6), while the minimization in (5) is obtained from (6) for

. In Section III-B, an algorithm for minimizing (8) is
derived based on the EM approach. Finally, modified versions
of the new algorithms with enhanced resilience to outliers are
pursued in Section III-C.

A. Robust (Soft) K-Means Algorithms

Consider first solving (6) for . Although the cost is
jointly nonconvex, it is convex with respect to each of , ,
and . To develop a suboptimum yet practical solver, this per-
variable convexity motivates a BCD algorithm, which mini-
mizes the cost iteratively with respect to each optimization vari-
able while holding the other two variables fixed. Let , ,
and denote the solutions found at the th iteration. Also,
initialize randomly in , and to zero.
In the first step of the th iteration, (6) is optimized over

for and . The optimization decouples
over the ’s, and every is the closed-form solution of an
LS problem as

(9)

In the second step, the task is to minimize (6) with respect to
for and . The optimization problem

decouples per index , so that each can be found as the min-
imizer of

(10)

The cost is convex but non-differentiable. However,
its minimizer can be expressed in closed form as shown in the
ensuing proposition.
Proposition 1: The optimization problem in (10) is uniquely

minimized by

(11)

where , and is defined as

(12)

Proof: See Appendix A.
The update for in (11) reveals two interesting points:

i) the cost indeed favors zero minimizers; and ii) the
number of outliers is controlled by . After updating vector ,
its norm is compared against the threshold . If exceeds
, vector is deemed an outlier, and it is compensated by a

nonzero . Otherwise, is set to zero and is clustered
as a regular point.
During the last step of the th iteration, (6) is minimized over

for and . Similar to the conven-
tional soft K-means, the minimizer is available in closed form
as [2]

(13)
Regarding the robust hard K-means, a similar BCD approach

for solving (5) leads to updating and via (9), and
(11)–(12) for . Updating boils down to the minimum-
distance rule

otherwise.
(14)

Note that (14) is the limit case of (13) for .
The robust K-means (RKM) algorithm is tabulated as Al-

gorithm 1. RKM is terminated when ,
where denotes the Frobenius norm of a matrix, and is
a small positive threshold, e.g., . The computational
resources needed by RKM are summarized next.

Algorithm 1: Robust K-means

Require: Input data matrix , number of clusters , ,
and .

1: Initialize to zero and randomly in .

2: for do

3: Update via (9).

4: Update via (11)–(12).

5: Update via (13) or (14) .

6: end for
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Remark 3 (Computational Complexity of RKM): Suppose for
concreteness that: (as1) the number of clusters is small, e.g.,

; and (as2) the number of points is much larger than the
input dimension, i.e., . When (as2) does not hold, a mod-
ification of RKM is developed in Section IV. Under (as1)-(as2),
the conventional K-means algorithm performs scalar
operations per iteration, and requires storing scalar vari-
ables. For RKM, careful counting shows that the per iteration
time-complexity is maintained at : (13) requires com-
puting the Euclidean distances
and the norms which is ; ’s are up-
dated in ; while (11)–(12) entail operations.
Further, the memory requirements of RKM are of the same order
as those for K-means. Note also that the additional matrix
can be stored using sparse structures.

The RKM iterations are convergent under mild conditions.
This follows because the sequence of cost function values is
non-increasing. Since the cost is bounded below, the function
value sequences are guaranteed to converge. Convergence of
the RKM iterations is characterized next.
Proposition 2: The RKM algorithm for converges

to a coordinate-wise minimum of (6). Moreover, the hard RKM
algorithm converges to a local minimum of (5).

Proof: See Appendix B.

B. Robust Probabilistic Clustering Algorithm

An EM approach is developed in this subsection to carry out
the minimization in (8). If were known, the model parameters
could be estimated by minimizing the regularized negative

log-likelihood of the complete data ; that is,

(15)

where

(16)

However, since is not observed, the cost in (15) is sub-
optimally minimized by iterating the two steps of the EM
method. Let denote the model parameter values at the th
iteration. During the E-step of the th iteration, the expectation

is evaluated.
Since is a linear function of , and ’s are
binary random variables, it follows that

(17)

where . Using Bayes’ rule,

the posterior probabilities are evaluated in closed form as

(18)

During the M-step, is updated as

(19)

A BCD strategy that updates each set of parameters in one at a
time with all other ones fixed, is described next. First, the cost in
(19) is minimized with respect to . Given that
for all , the minimizer of over is
found in closed form as

for all (20)

Subsequently, (19) is minimized with respect to while ,
, and are set respectively to , , and . The

centroids are updated as the minimizers of a weighted LS cost
yielding

for all (21)

Then, (19) is minimized with respect to while keeping
the rest of the model parameters fixed to their already updated
values. This optimization decouples over , and one has to solve

(22)
for all . For a full covariance , (22) can be solved as a
second-order cone program. For the case of spherical clusters,
i.e., , solving (22) simplifies considerably. Specifi-
cally, the cost can then be written as

, which is similar to the cost in (10) for
, and for an appropriately scaled . Building on the solu-

tion of (10), the ’s are updated as

(23)

after redefining the residual vector as
in lieu of (12). Interestingly, the thresholding rule of (23)

shows that affects the detection of outliers. In fact, in
this probabilistic setting, the threshold for outlier identification
is proportional to the value of the outlier-compensated standard
deviation estimate and, hence, it is adapted to the empirical dis-
tribution of the data.
The M-step is concluded by minimizing (19) with respect to
for , , and , i.e.,

(24)
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For a generic , (24) must be solved numerically, e.g., via gra-
dient descent or interior point methods. Considering spherical
clusters for simplicity, the first order optimality condition for
(24) requires solving a quadratic equation in . Ignoring the
negative root of this equation, is found as

(25)

The robust probabilistic clustering (RPC) scheme is tabulated
as Algorithm 2. For spherical clusters, its complexity remains

operations per iteration, even though the constants
involved are larger than those in the RKM algorithm. Similar
to RKM, the RPC iterations are convergent under mild condi-
tions. Convergence of the RPC iterations is established in the
next proposition.

Algorithm 2: Robust Probabilistic Clustering

Require: Input data matrix , number of clusters , and
parameter .

1: Randomly initialize , , and set
for , and to zero.

2: for do

3: Update via (18) for all .

4: Update via (20).

5: Update via (21).

6: Update by solving (22) ((23)).

7: Update via (24) ((25)).

8:end for

Proposition 3: The RPC iterations converge to a coordinate-
wise minimum of the penalized negative log-likelihood in (8).

Proof: See Appendix C.
Proposition 3 guarantees that the RPC iterations converge.

However, since each non-differentiable term involves
two different optimization variables and , the BCD itera-
tion can be trapped at a coordinate-wise local minimum, which
is not necessarily a local minimum of (8). Once the iterations
have converged, the final ’s can be interpreted as soft cluster
assignments, whereby hard assignments can be obtained via
the maximum a posteriori detection rule, i.e., for

.

Remark 4 (Selecting ): Tuning is possible if additional in-
formation, e.g., on the percentage of outliers, is available. The
robust clustering algorithm is run for a decreasing sequence
of values , using “warm starts” [14], until the expected
number of outliers is identified.When solving for , warm start
refers to the optimization variables initialized to the solution ob-
tained for . Hence, running the algorithm over can be
efficiently done, because few BCD iterations per suffice for
convergence.

C. Weighted Robust Clustering Algorithms

As already mentioned, the robust clustering methods
presented so far approximate the discontinuous penalty

by , mimicking the CS paradigm in which
is surrogated by the convex function . However, it

has been argued that non-convex functions such as
for a small can offer tighter approximants of
[34]. This rationale prompts one to replace in (5), (6),
and (8), with to further enhance block sparsity
in ’s, and thereby improve resilience to outliers.
Altering the regularization modifies the BCD algorithms only

whenminimizingwith respect to . This particular step remains
decoupled across ’s, but instead of the in (10), one
minimizes

(26)

that is no longer convex. The optimization in (26) is per-
formed using a single iteration of the majorization-min-
imization (MM) approach1 [25]. The cost is
majorized by a function , which means
that for every and

when . Then
is minimized with respect to to obtain .

To find a majorizer for , the concavity of the loga-
rithm is exploited, i.e., the fact that
for any positive and . Applying the last inequality for the
penalty and ignoring the constant terms involved, we end up
minimizing

(27)

where . Comparing (27) to (10) shows that

the new regularization results in a weighted version of the orig-
inal one. The only difference between the robust algorithms pre-
sented earlier and their henceforth termedweighted counterparts
is the definition of . At iteration , larger values for
lead to smaller thresholds in the thresholding rules (cf. (11),
(23)), thereby making more likely to be selected as nonzero.
The weighted robust clustering algorithms initialize to the
associated value the non-weighted algorithm converged to.
Thus, to run the weighted RKM for a specific value of , the
RKM needs to be run first. Then, weighted RKM is run with all
the variables initialized to the values attained by RKM, but with
the as defined earlier.
The MM step combined with the BCD algorithms developed

hitherto are convergent under mild assumptions. To see this,

1Note that the MM approach for minimizing at the th BCD itera-
tion involves several internal MM iterations. Due to the external BCD iterations
and to speed up the algorithm, a single MM iteration is performed per BCD it-
eration .



FORERO et al.: ROBUST CLUSTERING USING OUTLIER-SPARSITY REGULARIZATION 4169

note that the sequences of objective values for RKM and RPC
are both non-increasing. Since the respective cost functions are
bounded below, those sequences are guaranteed to converge.
Characterizing the points and speed of convergence goes be-
yond the scope of this paper.

IV. CLUSTERING HIGH-DIMENSIONAL AND NONLINEARLY
SEPARABLE DATA

The robust clustering algorithms derived so far involve gen-
erally operations per iteration. However, several ap-
plications entail clustering relatively few but high-dimensional
data in the presence of outliers. In imaging applications, one
may wish to cluster of say

; while in DNAmicroarray analysis, some
tens of (potentially erroneous or rarely occurring) DNA sam-
ples are to be clustered based on their expression levels over
thousands of genes [18]. In such clustering scenarios where

, an efficient method should avoid storing and pro-
cessing -dimensional vectors [12]. To this end, the algorithms
of Section III are kernelized here [29]. It will be shown that these
kernelized algorithms require operations per iteration
and space; hence, they are preferable when .
This kernelization does not only offer processing savings in
the high-dimensional data regime (cf. Section IV-A), but it also
critically enables identifying nonlinearly separable clusters (cf.
Section IV-B).

A. Robust K-Means for High-Dimensional Data

Without loss of generality, the focus is on kernelizing the ro-
bust soft K-means algorithm. Consider the matrix
with entries , and the Gramian
formed by all pairwise inner products between the input vec-
tors. Even though computing costs , it is performed
only once. Note that the updates (9), (11), and (13) involve inner
products between the -dimensional vectors , and

. If is a pair of any of these vectors,
the cost for computing is clearly . However, if all
these vectors lie in , i.e., if there exist
such that , then , and the
inner product can be alternatively calculated in . Hinging
on this observation, it is first shown that all the vec-
tors involved indeed lie in . The proof is by induc-
tion: if at the st iteration every and

, it is shown that , , updated by RKM
lie in as well.
Suppose that at the th iteration, the matrix defining

is in , while there exists matrix such that
. Then, the update of the centroids in (9)

can be expressed as

(28)

(29)

where

(30)

Before updating , the residual vectors ’s must be updated
via (12). Concatenating the residuals in ,
the update in (12) can be rewritten in matrix form as

(31)

(32)

where

(33)

From (11), every is a scaled version of and the scaling
depends on . Based on (31), the latter can be readily com-

puted as , where

stands for the th column of . Upon applying the thresh-
olding operator, one arrives at the update

(34)

where the th column of is given by

(35)

Having proved the inductive step by (34), the argument is
complete if and only if the outlier variables are initialized
as for some , including the practically in-
teresting and meaningful initialization at zero. The result just
proved can be summarized as follows.
Proposition 4: By choosing for any

and , the columns of the matrix variables
, , and updated by RKM all lie in ; i.e., there

exist known , , and , such that ,
, and for all .

What remains to be kernelized are the updates for the cluster
assignments. For the update step (13) or (14), we need to com-
pute and . Given that ,
where denotes the th column of , and based on the ker-
nelized updates (28) and (34), it is easy to verify that

(36)

(37)

for every and , where is the th column of . As in
(34), it follows that

(38)

The kernelized robust K-means (KRKM) algorithm is sum-
marized as Algorithm 3. As for RKM, the KRKM algorithm is

terminated when , or equivalently due to
(28),
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for a small . KRKM requires operations per
iteration, whereas the stored variables , , , , and
occupy space. Note that if the centroids are explicitly
needed (e.g., for interpretative purposes), they can be acquired
via (28) after KRKM has terminated.

Algorithm 3: Kernelized RKM

Require: Gramian matrix , number of clusters ,
, and .

1: Initialize randomly in , and to zero.

2: for do

3: Update from (30).

4: Update from (33).

5: Update from (35).

6: Update and from (13) or (14), (36), and (38).

7: end for

B. Kernelized RKM for Nonlinearly Separable Clusters

Due to the Euclidean distance used, standard K-means tac-
itly assumes that the underlying clusters are of spherical shape,
and linearly separable; GMM-based clustering shares this lim-
itation too. Kernel K-means bypasses this hurdle by mapping
vectors to a higher dimensional space, , called feature
space, through the nonlinear function [30]. The
mapped data are of dimension or even
infinite. K-means in its kernelized version is subsequently ap-
plied on . Thus, linearly separable partitions in feature
space enable nonlinearly separable partitions in the original data
space.
For an algorithm to be kernelizable, the inner products

should be easily computable. When the linear
mapping is trivially assumed, these inner products
are simply the entries of the Gramian . When a nonlinear
mapping is used, the so-termed kernel matrix with entries

replaces the Gramian matrix and
must be known. By definition, is positive semidefinite and
can be employed for (robust) clustering, even when
is high-dimensional (cf. Section IV-A), infinite-dimensional,
or even unknown [13]. Of particular interest is the case
where is a reproducing kernel Hilbert space. Then, the
inner product in is provided by a known kernel function

[29, Ch. 3]. Typical kernels for
vector data are the polynomial and the Gaussian ones; kernels
can be defined for non-vectorial objects too, such as strings or
graphs [29].
Building on the KRKM developed in Section IV-A, handling

arbitrary kernels is now straightforward. Knowing and the
kernel , matrix can be readily computed. By using
the kernel in lieu of the Gramian, Algorithm 3 carries over
readily to the nonlinear clustering regime. Note however that
contrary to clustering high-dimensional data, in (robust) non-
linear clustering centroids cannot be computed in general: even
if one is able to recover the feature space centroid, its input space
pre-image may not exist [29, Ch. 18].

C. Kernelized Robust Probabilistic Clustering

Kernelizing RPC hinders a major difference over the ker-
nelization of RKM: GMM and RPC updates in Section III-B

remain valid for feature vectors only when their dimension
is finite and known. The implication is elucidated as follows.
First, updating the variance in (25) entails the underlying
dimension , which becomes when it comes to kernelization.
Second, the (outlier-aware) mixtures of Gaussians degenerate
when it comes to modeling infinite-dimensional random vec-
tors. To overcome this limitation, the notion of the empirical
kernel map will be exploited [29, Ch. 2.2.6]. Given the input
vectors in and their kernel matrix , it is possible to replace
with the empirical kernel map defined as

, where denotes
the Moore–Penrose pseudoinverse. The feature space in-
duced by has finite dimensionality , while it can be verified
that for all

.
In the kernelized probabilistic setup, ’s are assumed

drawn from a mixture of multivariate Gaussian distributions
with common to all clusters. The EM-based up-
dates of RPC in Section III-B remain valid after replacing the
dimension in (25) by , and the input vectors ’s by ’s
whose inner products are the entries of . The kernelization
procedure is similar to the one followed for RKM: first, the aux-
iliarymatrices , , and are introduced. By randomly
initializing with , , , and setting

to zero, it can be shown as in Proposition 4, that the kernel-
ized RPC updates for , , and have their columns
lying in , where . Instead of
the assignment matrix in KRKM, the matrix of pos-
terior probability estimates is used, where
satisfying . The kernelized RPC (KRPC) algo-
rithm is summarized as Algorithm 4. As with KRKM, its com-
putations are per iteration, whereas the stored vari-
ables , , , , , , and occupy space.

Algorithm 4: Kernelized RPC

Require: Gramian or kernel matrix , number of clusters
, and .

1: Randomly initialize , , and ; and set
to zero.

2: for do

3: Update via (18) exploiting (36).

4: Update as .

5: Update as .

6: Update as .

7: Update the columns of as

for all .

8: Update via (25) where is replaced by , using the
-norms computed in Step 3, and exploiting

for all .

9: end for

Remark 5 (Reweighted Kernelized Algorithms): As in
Section III-C, reweighted versions of KRKM and KRPC can be
derived simply by introducing an iteration-dependent parameter

.
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Fig. 1. Synthetic datasets: (Non-)outlier vectors are denoted by circles (stars
). (a) Dataset with spherical clusters and 80 outliers. (b) Dataset with

concentric rings and 60 outliers.

V. NUMERICAL TESTS

Numerical tests illustrating the performance of the novel al-
gorithms on both synthetic and real datasets are presented in this
section. Performance is assessed through their ability to identify
outliers and the quality of clustering itself. The latter is mea-
sured via the adjusted rand index (ARI) between the resulting
clustering and the true labels of the data [21]. For methods un-
able to identify outliers, the ARI is inevitably computed over all
data. For methods with outlier detection capabilities, the ARI
is computed after excluding the outliers. In each experiment,
is tuned using the grid search outlined in Remark 4. Thanks to
the warm-start technique, the solution path for all grid points
is computed in an amount of time comparable to that used for
solving for a specific value of .

A. Synthetic Datasets

Two synthetic datasets were used. The first one, shown in
Fig. 1(a), consisted of a random draw of 200 vectors from
bivariate Gaussian distributions (50 vectors per distribution),
and 80 outlying vectors . The Gaussian distributions
have different means and a common covariance matrix
. The second dataset comprised points belonging to

concentric rings as depicted in Fig. 1(b). The inner (outer) ring
had 50 (150) points. It also contained 60 points lying in-between
the rings and outside the outer ring corresponding to outliers

. Clustering this second dataset is challenging even if
outliers were not present due to the shape and multiscale nature
of the clusters.
The effect of on the number of outliers identified was in-

vestigated for the dataset with spherical clusters. In Fig. 2, the

Fig. 2. Curves of ’s as a function of for the dataset in Fig. 1(a).
(a) RKM algorithm for . (b) RPC algorithm.

values of are plotted as a function of (cf. Remark
4). The outlier-norm curves shown in Fig. 2(a) correspond to the
RKM algorithm with using a random initialization. For

, all ’s were set to zero. As approached zero more
’s took nonzero values. Selecting yielded 80

outliers. Fig. 2(b) shows as varies for the RPC
algorithm assuming . Note that the paths followed by
some ’s as decreases exhibit a fast transition from zero.
Focusing on these points, it was empirically observed that when
they had zero ’s, their posteriors ’s were ambiguous for
membership assignment. Upon decreasing so that ,
one of their ’s quickly becomes unity while the other ones
quickly drop to zero, hence, causing to rapidly increase
to some finite value (cf. (23)). It is worth mentioning that this
behavior does not entail instability or artifacts in identifying out-
liers.
In Fig. 3, the number of points identified as outliers, i.e., the

number of nonzero ’s, is plotted as a function of . These
curves are useful when setting the value of to identify a pre-
scribed number of outliers. The goal here was to identify
outliers. Both RKM and RPC, with tuned to detect 80 outliers,
were able to correctly cluster the data and identify the outliers.
Although obtaining the curves in Fig. 3 entails solving several
robust clustering problems, one for each value of considered,
they can be computed efficiently using warm starts as described
in Remark 4.
For this experiment, Fig. 3 also suggested estimating the

number of outliers in the dataset by inspecting the curve
slopes. When decreasing for hard RKM, a plateau results
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Fig. 3. Number of outliers identified as a function of for the dataset in
Fig. 1(a).

for , followed by a region with increased slope.
This plateau defined a transition region between correctly
identifying outliers and erroneously deeming non-outliers as
outliers. Similar curve slope changes were observed for soft
RKM and RPC around the values of the ’s yielding the correct
number of 80 outlying points.
The root-mean-squared error (RMSE) between the cluster

centroids estimated by the clustering methods and the sample
mean for each cluster was used as a figure of merit. Table I
shows the minimum RMSE obtained over 100 random ini-
tializations for several values of outlier contamination. All
tested algorithms shared common initializations. The tested
algorithms were weighted RKM (WRKM) and weighted RPC
(WRPC); hard K-means; soft K-means with ; EM;
noise clustering (NC) [10]; -cut [36]; and possibilistic clus-
tering [24]. The noise distance in NC was chosen so that the
noise cluster had the prescribed number of outliers and the
tuning parameters for possibilistic clustering were set to 2 for
all clusters. RKM and RPC achieved lower RMSE than their
non-robust counterparts and -cut, and were able to correctly
identify the outliers in all cases. Noticeable improvement was
achieved by WRKM and WRPC, which exhibited the best
performance among all algorithms tested. Note that the ARI
of the novel robust clustering algorithms corresponding to the
RMSE values in Table I was one. Surprisingly, the heuristic
NC offered competitive clustering performance after carefully
tuning its parameter. Although possibilistic clustering also
offers competitive performance, it was empirically observed
that it is sensitive to initialization and parameter tuning.
Next, the dataset with concentric circles shown in Fig. 1(b)

was clustered using the Gaussian kernel
, where is a scaling parameter.

The parameter was chosen as a robust variance estimate of
the entire dataset as described in [8]. Both KRKM and KRPC
were able to identify the 60 outlying points. In Fig. 4, the
number of outliers identified by KRKM and KRPC is plotted
as a function of for different values of . Fig. 5 illustrates
the values of ’s for WKRKM and WKRPC when seeking
60 outliers. Points surrounded by a circle correspond to vectors
identified as outliers, and each circle’s radius is proportional to
its corresponding value.

TABLE I
RMSE PERFORMANCE OF CLUSTERING ALGORITHMS FOR DATASET

WITH SPHERICAL CLUSTERS

Fig. 4. Number of outliers identified as a function of for the dataset in
Fig. 1(b). (a) KRKM algorithm. (b) KRPC algorithm.

B. USPS Dataset

In this subsection, the robust clustering algorithms were
tested on the United States Postal Service (USPS) handwritten
digit recognition corpus. This corpus contained gray-scale digit
images of 16 16 pixels with intensities normalized to .
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Fig. 5. Clustering results for the dataset in Fig. 1(b) using a Gaussian kernel
with . Points surrounded by a circle were deemed as outliers; the
radius of the circle is proportional to the value of . Smallest and largest

values are shown. (a) KRKM algorithm . (b) KRPC algorithm.

TABLE II
ARI FOR THE USPS DATASET

It was divided into 7201 training and 2007 test examples of
the digits 0–9. Although the corpus contained class labels, they
were known to be inconsistent: some digits were erroneously
labeled, while some images were difficult to be classified even
by humans [29, App. A]. In this experiment, the subset of digits
0–5 was used. For each digit, both training and test sets were
combined to a single set and then 300 images were sampled
uniformly at random, yielding a dataset of 1800 images. Each
image was represented by a 256-dimensional vector normalized
to have unit -norm.
RKM and RPC were used to partition the dataset

into clusters and identify outliers. A total of
20 Monte Carlo runs with random initializations common to
all algorithms were performed. The final clustering was chosen
as the one attaining the smallest cost in (5). The ARI’s for
K-means, K-medians, and the proposed schemes are shown
in Table II. Both RKM and RPC show improved clustering
performance than the non-robust algorithms. Also, the ARI
obtained by WRKM (WRPC) was equal to the one obtained by
RKM (RPC). Note that, the K-medians algorithm was unable
to find a partitioning for the data revealing the 6 digits present
even after 100 Monte Carlo runs.

The USPS dataset was clustered using the RKM and WRKM
tuned to identify 100 outliers. WRKM was initialized with the
results obtained by RKM. Although RKM and WRKM yielded
the same outlier images, the size of the ’s was different,
becoming nearly uniform for WRKM. The USPS dataset
was also clustered using the RPC and the WRPC algorithms.
Fig. 6(a) shows the cluster centroids obtained by RPC and
WRPC. Fig. 6(b) shows the 100 outliers identified. The outliers
identified by the RPC and WRPC algorithms also coincide. The
position of the outlier images in the mosaic corresponds to their
ranking according to the size of their corresponding (largest
to smallest from left to right, top to bottom). Note that all
outliers identified have a trait that differentiates them from the
average image in each cluster. Among the 100 outliers detected
by RKM and RPC, 97 were common to both approaches.
Kernelized versions of the algorithms were also used on the

USPS dataset. Similar to [29], the homogeneous polynomial
kernel of order 3, that is , was used. The
ARI scores obtained by the kernelized robust clustering algo-
rithms are shown in Table II. Based on these scores, two impor-
tant observations are in order: i) kernelized K-means is more
sensitive to outliers than K-means; but ii) KRKM for the par-
ticular kernel yields an improved clustering performance over
RKM. Finally, the 100 outliers identified by KRKM are shown
in Fig. 6(c).

C. Document Clustering

The KRKM algorithm developed in Section IV-A was evalu-
ated next. The context here is document clustering on the stan-
dard TDT2 dataset. The TDT2 corpus consists of data collected
during the first half of 1998 from six news sources [6]. It com-
prises documents classified into 96 semantic categories. Every
document is represented by a vector containing the times each
one of 36 771 terms occurs in the document. After dis-
carding the documents assigned to more than one category, one
ends up with 10 212 document vectors, which are subsequently
normalized to have unit -norm. The categories range from 1
to 1844 documents. For each clustering experiment, 4 out of the
19 largest categories are randomly selected, and 100 documents
from each of these 4 categories are uniformly sampled. An ad-
ditional random sample of 20 documents from the smallest 30
categories comprises the additive outliers, yielding a total of

420 documents. By hiding the category labels from the
algorithms, the task here is to jointly cluster the 400 documents
into 4 large categories and identify the 20 ones drawn from the
smaller categories as outliers. The Gaussian kernel with unit
bandwidth is utilized, i.e., , and
documents are partitioned into [6].
The hard KRKM (cf. Alg. 3) is compared against NC and
-cut [10], [36]. All algorithms tested are initialized to the par-
titioning found as follows: the matrix containing the
eigenvectors corresponding to the largest eigenvalues of
is input to the standard K-means algorithm, which assigns its
rows to classes [12]. The figure of merit here is detectability
of outlying documents. For each sample dataset, all three algo-
rithms are run for a grid of values for their tuning parameters (
for KRKM, the distance to the noise cluster in NC, and the per-
centage for the -cut method). Hence, for each dataset, pairs
of false alarm and correct detection probabilities are obtained,
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Fig. 6. Clustering and outliers for the USPS dataset with tuned to identify outliers (a) RPC and WRPC centroids (b) Outliers identified by RPC
and WRPC (c) Outliers identified by KRKM using the polynomial kernel of order 3.

Fig. 7. Identification of outlying documents in TDT2 corpus.

which correspond to points of the receiver operating character-
istic (ROC) curve. ROC curves of 50 sample datasets are av-
eraged via smoothing splines with parameter 0.9999, and the
results are plotted in Fig. 7. KRKM exhibits detection perfor-
mance comparable to NC, while they both outperform the -cut
method.

D. College Football Network

KRKM was used to partition and identify outliers in a net-
work of college football teams playing in 12 different
conferences for Division I games during year 2000 [17]. In this
schedule, teams played more often against teams in the same
conference. Each node in the network corresponds to a team
and a link between two teams exists if they played against each
other during the season. The network structure is summarized
by the adjacency matrix .
To identify groups and outliers, the connection between

kernel K-means and spectral clustering for graph partitioning
was exploited [12]. According to this connection, the conven-
tional spectral clustering algorithm is substituted by kernelized
K-means using a specific kernel matrix. The kernel matrix used
was , where and
was chosen such that . The teams were divided into

groups. KRKM was initialized via spectral clustering

Fig. 8. The kernel matrix for the college football network permuted using
KRKM clustering. Zero entries are colored blue and outliers are colored red.

and was tuned to identify outliers. Fig. 8 shows the
entries of the kernel matrix after being row and column
permuted so that teams in the same cluster appear grouped. The
ARI obtained by KRKM was 0.9218.
Teams identified as outliers sorted in descending order based

on their values are: Connecticut, Navy, Notre Dame,
Northern Illinois, Toledo, Miami (Ohio), Bowling Green State,
Central Michigan, Eastern Michigan, Kent, Ohio, and Marshall.
Three of them, namely Connecticut, Notre Dame, and Navy,
were independent teams. Connecticut was assigned to the Mid-
American conference, but it did not play as many games with
teams from this conference (4 games) as other teams in the
same conference did (around 8 games). Notre Dame and Navy
played an equal number of games with teams from two dif-
ferent conferences so they could be assigned to either one. Sev-
eral teams from theMid-American conference were categorized
as outliers. In hindsight, this can be explained by the subdivi-
sion of the conference into East and West Mid-American con-
ferences. Teams in each of the Mid-American sub-conferences
played about the same number of games with teams from their
own sub-conference and the rest of the teams. Interestingly, the
sub-partition of the Mid-American conference was identified by
using KRKMwith while still seeking for 12 outliers. In
this case, the ARI for the partition was 0.9110. The three inde-
pendent teams, Connecticut, Notre Dame, and Navy, were again
among the 12 outliers identified.
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Fig. 9. Clustering of the college football network obtained by KRKM for . Outliers are represented by diamond-shaped nodes.

VI. CONCLUSION

Algorithms were developed for robust clustering based on
a principled data model accounting for outliers. Both deter-
ministic and probabilistic partitional clustering setups based
on the K-means and GMM-based algorithms were considered.
Exploiting the fact that outliers appear infrequently in the
data, a neat connection with sparsity-aware signal processing
algorithms was made. This led to the development of compu-
tationally efficient and provably convergent robust clustering
algorithms. Kernelized versions of the algorithms, well-suited
for high-dimensional data or when only similarity information
among objects is available, were also developed. The perfor-
mance of the robust clustering algorithms was validated via
numerical experiments both on synthetic and real datasets.

APPENDIX A
PROOF OF PROPOSITION 1

Since for all and due to (c3), the first
summand of in (10) is a strictly convex function of

. Hence, is a strictly convex function too and its
minimizer is unique. Then, recall that a vector is a mini-
mizer of (10) if and only if , where
is the sub-differential of . For , where the
cost in (10) is differentiable, is simply the gra-

dient . At

, the sub-differential of the -norm is the set of
vectors by definition, and then the sub-dif-

ferential of is

.

When the minimizer is nonzero, the condition
implies

(A.39)

where has been defined in (12). Equation (A.39) reveals
that is a positively scaled version of . The scaling can
be readily found by taking the -norm on both sides of (A.39),
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i.e., , which is valid for . Sub-

stituting this back to (A.39), yields .

For , there exists a for which and
. This is possible when . These two

cases for are compactly expressed via (11).

APPENDIX B
PROOF OF PROPOSITION 2

By defining as being zero when the Boolean argument
is true, and otherwise, the problem in (6) can be written in
the unconstrained form

(B.40)

The cost in (B.40), call it , is a proper and lower
semi-continuous function, which implies that its non-empty
level sets are closed. Also, since is coercive, its level sets are
bounded. Hence, the non-empty level sets of are compact.
For , function has a unique minimizer per
optimization block variable , , and . Then, convergence
of the RKM algorithm to a coordinate-wise minimum point of
(6) follows from [33, Th. 4.1(c)].
When , define the first summand in (B.40) as

, which is
the differentiable part of . Function has an open domain,
and the remaining non-differentiable part of is separable with
respect to the optimization blocks. Hence, again by [33, Th.
4.1(c)], the RKM algorithm with converges to a local
minimum of (6).
It has been shown so far that for , a BCD iteration con-

verges to a local minimum of (6). The BCD step for updating
is the hard rule in (14). Hence, this BCD algorithm i) yields a

with binary entries, and ii) essentially implements the BCD
updates for solving (5). Since a local minimum of (6) with bi-
nary assignments is also a local minimum of (5), the claim of
the proposition follows.

APPENDIX C
PROOF OF PROPOSITION 3

Combining the two steps of the EM algorithm, namely (18)
and (19), it is easy to verify that the algorithm is equivalent to a
sequence of BCD iterations for optimizing

(C.41)

where , the matrix has en-
tries , and as in (B.40) that is
zero when condition is true, and otherwise. That the

are positive follows after using Bayes’ rule to de-
duce that and noticing that

(i) is positive for all , and (ii) all
must be positive so that the cost in (C.41) remains finite.
The objective function of this minimization problem is

proper, bounded below, and lower semi-continuous implying,
that its non-empty level sets are closed. Since this function is
also coercive, its level sets are bounded. Hence, its non-empty
level sets are compact. Moreover, the objective function has
a unique minimizer for the optimization blocks , , and
. In particular, the block minimizer is unique since

, for all . Then, by [33, Th. 4.1 (c)], the
RPC algorithm converges to a coordinate-wise minimum point
of (7).
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