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Adaptive Conjugate Gradient DFEs for
Wideband MIMO Systems

Aris S. Lalos, Vassilis Kekatos, and Kostas Berberidis

Abstract—New adaptive equalization algorithms for wireless systems op-
erating over wideband multiple-input multiple-output (MIMO) channels
are proposed. The problem of MIMO decision feedback equalizer (DFE)
design is formulated as a set of linear equations with multiple right-hand
sides (RHSs) evolving in time. By applying an adaptive modified conjugate
gradient algorithm, we derive an equalizer with identical convergence, im-
proved tracking capabilities, but higher computational load as compared
to the Recursive Least Squares (RLS) algorithm. To reduce its complexity,
two updating strategies of the equalizer filters based on Galerkin projec-
tions are employed.

Index Terms—Adaptive equalizers, conjugate gradient methods, decision
feedback equalizers, Galerkin method, MIMO systems.

I. INTRODUCTION

Equalization of wireless multiple-input multiple-output (MIMO)
frequency-selective channels is a challenging task mainly due to the
fact that the respective MIMO equalizers should cope with inter-
symbol, as well as interstream interference. When the channel is static
and has already been estimated by the receiver, a well established
solution would be to apply a multicarrier technique, such as a MIMO
orthogonal-frequency-division multiplexing (OFDM) system [2].
Even though MIMO OFDM systems offer simplicity in analysis and
receiver design, they still suffer from drawbacks related to implemen-
tation (peak to average power ratio), identifiability (spectral nulls),
and sensitivity to carrier sychronization. Another drawback is that
uncoded OFDM has no significant performance gain as the delay
spread of the channel increases [3], i.e., uncoded OFDM does not
exploit multipath diversity. On the other hand, single-carrier (SC)
modulation is a well-proven technology in many existing wireless
and wireline applications and has been extensively used in practice
(e.g., SC frequency domain equalization has been proposed in 802.16
[4]). Thus, alternative SC approaches for the design of batch MIMO
decision feedback equalizers (DFEs) have been proposed in [5] and
[6].

However, in MIMO systems with relatively long bursts and under
time varying conditions, the involved channel impulse responses
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change within a burst and, as expected, batch MIMO DFEs fail to
equalize the channel. On the other hand, if a MIMO OFDM is adopted,
the frame size should be made short and thus cyclic prefix overhead
becomes overwhelming. Therefore, to achieve effective channel
equalization in such cases, adaptive methods are required. Both a
minimum bit error rate (MBER) design [7], [8] and the standard
minimum mean-square error (MMSE) design [9]–[11] have been
invoked for implementing adaptive MIMO DFEs. The respective
equalizers are updated either by using gradient Newton methods (i.e.,
RLS, LMS-Newton) or by employing stochastic gradient techniques.
The main problems appearing in adaptive MIMO equalization, i.e.,
the increased filter size and the colored noise caused by interstream
interference, slow down significantly the performance of stochastic
gradient algorithms. On the other hand, the computational require-
ments of MIMO RLS algorithms increase significantly. Thus, the aim
is to seek for adaptive schemes with convergence properties close to
RLS but of lower computational cost.

It is known that single-input single-ouptut (SISO) adaptive algo-
rithms based on the CG (conjugate gradient) method [12]–[14] are
numerically stable and exhibit convergence properties comparable to
RLS with a computational cost that lies between the RLS and LMS al-
gorithms. CG methods were developed for iterative solutions of finite
linear equations during the early 1950s [15], [16]. Later, these methods
were extended for solving linear equations with multiple right-hand
sides [17]. The aim in conjugate gradient methods is to accelerate the
slow convergence rate of the steepest descent method while avoiding
the involvement of a Hessian matrix associated with Newton methods.
To the best of our knowledge, no work has been done towards de-
veloping MIMO adaptive equalization algorithms based on the CG
method.

In this work, our main goal is to derive a computationally efficient
CG-based algorithm for updating the MIMO DFE filters, based on
the MMSE design criterion. To this end, we initially formulate the
adaptive MIMO DFE problem as a set of linear equations evolving
in time. It should be noted that many MIMO adaptive filtering prob-
lems, such as system identification and echo cancellation, may have
a similar formulation. Therefore, such a problem formulation, allows
for the applicability of the proposed schemes to other adaptive fil-
tering problems with simple and straightforward modifications. Then,
we apply the idea of [12] to the MIMO case, resulting in a numer-
ically stable scheme (so-called MIMO-modified CG, MIMO-MCG)
with convergence properties similar to MIMO-RLS. The main draw-
back of this scheme is its increased computational cost. Thus, we focus
on reducing the cost of the aforementioned algorithm by making use of
some linear algebra tools known as Galerkin projections. The Galerkin
projection techniques have been proposed for solving linear systems
with multiple right hand sides. By incorporating the above ideas to the
adaptive MIMO DFE design, we finally derive two new schemes with
complexity lower than that of RLS and almost identical convergence
properties.

The rest of the correspondence is organized as follows. In Section II,
the problem of the adaptive MIMO DFE design is formulated as a set
of time-evolving linear equations with multiple RHS. Furthermore, we
present the conjugate gradient optimization method for solving single
linear systems. In Section III, the new adaptive MIMO DFEs are de-
rived. Their performance is illustrated in Section IV by means of nu-
merical examples, and the work is concluded in Section V.
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II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we initially formulate the adaptive MIMO DFE
problem as a set of linear equations evolving in time. It is also shown
that the feedforward (FF) and feedback (FB) filters may be treated
separately. Also we briefly present the CG optimization technique for
solving linear systems.

A. System Model and Problem Formulation

Let us consider a MIMO communication system operating over a
frequency selective wireless channel. The system employs � transmit
and � receive antennas, with ��� , while spatial multiplexing is as-
sumed. The signal transmitted through the � antennas at time � can
be described by the vector

���� � � ����� � � � �� ��� �� (1)

where �����, � � �� � � � �� , are i.i.d. symbols of unit variance. By em-
ploying a discrete-time complex baseband model, the signal received
at the �th antenna can be expressed as

����� �
��
�

�

���

�

���

	���
������ 
� � ����� (2)

where 	���
� for 
 � 	� � � � � �, is the sampled impulse response be-
tween transmitter � and receiver �, ��� �� is the channel length, and
�����, � � �� � � � � � , are white Gaussian complex noise samples of
variance ��

 per dimension. The samples received at time � can be
assembled in the vector

���� � � ����� � � � ����� �
� � (3)

The intersymbol and interstream interference involved in the system
described by (2) can be mitigated through a MIMO DFE [9]. The pro-
posed equalizer architecture is a structure of � MISO DFEs operating
in parallel. The �th MISO DFE is designated to extract the �th stream
�����, and it consists of a feedforward and a feedback filter of temporal
span �� and �	 taps, respectively. The input of the feedforward filter
�����, for � � �� � � � �� , can be described by the ��� � � vector

���� � ��� �� ��� � �� � � � �� ��� �� � (4)

Similarly, if ������ denotes the output of the �th DFE, and ����� �
�� ������� is the corresponding decision device output, then the input
of the feedback filters, ����� for � � �� � � � �� , can be expressed by
the ��	 � � vector

���� � ��� �� ��	� � � � �� �� � �� �� (5)

where the ���� is defined as

���� � � ����� � � � ����� �� �

By using the above definitions, the output of the �th DFE can be
compactly expressed as

������ ��


� ��������

����� � � ��� ��� ��� ��� �
� �

���� � ��� ��� �� ��� �� � � � �� � � � ��� (6)

Notice that all the MISO DFEs have a common input, ����, of dimen-
sion � � ��� ���	.

The MIMO DFE may be found by using a least squares (LS) cri-
terion. Provided that all previous decisions are correct, each equalizer
����� can be computed as the minimizer of the cost function

� ���������� ������ �
�
�������



� 
� �



����� (7)

with respect to �.1 Matrix ������ stands for the � �� exponentially
time-averaged input data autocorrelation matrix, and ����� for the
crosscorrelation vector, which can be recursively computed as

������ ������� � �� � �����
��� (8)

����� ������ � �� � ������� ��� (9)

and � is a forgetting factor �	 � � � ��.
It can be readily shown starting from (7) that the required minimizers

can be derived as

������	��� � 
��� (10)

where 	��� � ������ � � � ����� � and 
��� �
� ����� � � � �� ��� �. Note that (10) is a linear system with
multiple RHS.

1) Computing the FF and FB Filters Separately: Alternatively each
one of the systems to be solved in (10) may be written as

�������� ��������

���

����� ��������

�����

�����
�

�������

�������
(11)

where the submatrices ��������, ��������, �������� and the vectors
������� and ������� may be computed recursively in a way similar to
������ and ����� in (8) and (9). Thus, the FF and FB filters ����� and
����� may be computed separately by solving the following set of
equations:

��������������������
��

�� ������
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� �
�
�����������������
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�� ����
�
����� (12)

����� � ������� ��� �
�
���������


���������� � (13)

Note that matrix������� ��� could be updated by making use of the matrix
inversion lemma [18] which implies that the FB filter could be updated
in an RLS fashion. Then the FF filter could be updated by applying any
one of the schemes proposed in Section III. This hybrid scheme (i.e.,,
RLS for the FB and CG for the FF filter) is simply mentioned here as
an alternative one and is not further treated in this correspondence.

B. The Conjugate Gradient Method

Before proceeding to the derivation of the new algorithms let
us briefly review the conjugate gradient optimization method. This
method is an iterative method for solving linear systems of the form
���� � �, where ��� is a ��� Hermitian positive definite matrix [15].
The CG method minimizes the quadratic function �������� �� defined
in (7) by iteratively updating the parameters’ vector as

���� � ���� �� � ��������� (14)

The search direction vectors ���� for � � � (where � denotes
the iteration step) are designed to be ���-orthogonal to each other, i.e.,

1Note the cost function in (7) is quadratic with respect to� for every � even
under error propagation conditions.
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������������ � � for � �� �. Moreover, the step sizes ���� are se-
lected as the minimizing arguments of ����������� �� with respect to
����.

To obtain the ���-orthogonal direction vectors, the Gram–Schmidt
conjugation process [15] is applied to a set of orthogonal vectors. The
CG method selects the successive negative gradients (or residuals) of
the cost function, i.e.,

���� � �
������������ ��

������
� ��������� (15)

to be the basis vectors. By using the properties of the gradients, the
direction vectors can be updated as

���� �� � ���� � �������� (16)

and ���� are chosen to ensure the ���-orthogonality among the direc-
tion vectors. Finally, it can be shown that the CG method converges in
at most � iterations [15].

III. ALGORITHM DERIVATION

In this section we derive three new MIMO MCG algorithms. These
algorithms are based on CG optimization techniques for solving mul-
tiple linear systems of the form ����� � �� for 	 � �� � � � �
 . A
straightforward but costly approach, for solving the aforementioned
systems of equations, is to treat each system independently and apply
to it the CG method presented in Section II-B. However, more sophisti-
cated methods have been proposed in literature [19], [17] for linear sys-
tems of the aforementioned form. Those using projections [17] are the
most computationally efficient and the most suitable for the problem at
hand.

According to the projection methods, one of the linear systems is
selected as the “seed” system. This system is solved by using the con-
ventional CG method of Section II-B until it converges to its solution.
During these iterations, the rest of the systems do not perform any CG
iteration, but rather they use the search direction of the seed system
to update their solution. After the seed system is solved, a new seed
system is selected from the unsolved ones and the whole procedure is
repeated.

In the subsection that follows, we initially apply to the MIMO case
the idea of executing one CG iteration [12] per update of the correlation
quantities. We treat each one of the 
 systems that are to be solved
independently and we derive an algorithm with convergence properties
identical to RLS but of higher computational cost. In order to reduce
its complexity we modify the algorithm by properly applying the idea
of projections.

A. Adaptive MIMO Modified Conjugate Gradient

By generalizing the adaptive MCG algorithm of [12] to the MIMO
case, the solution of (10) can be time updated as

���� ���� � �� ��������� (17)

where the columns of���� are the search directions for each of the 

systems, and ���� is a 
 �
 diagonal matrix having as the 	th di-
agonal element, �����, the step size of the corresponding system. Each
one of the systems in (10) is treated independently, and its solution is
updated by executing only one CG iteration per update of the correla-
tion quantities. Thus, a time instant corresponds to an iteration of the

algorithm. The gradients of the systems at the �th time can be derived
by (17), (8), and (9) as

���� � 	�������������� � 
������������������ (18)

where 
��� is defined as


��� ����� � �� � ��������� (19)

and

���� � 
�������� � ������ (20)

is the a priori estimation error. The step sizes ����� are selected as the
minimizing arguments of � �������������� ������, i.e.,

����� �
��� ��������

��� ��������������
� 	 � �� � � � �
 (21)

and ����� is the 	th column of
���. Then, the search directions for the
next update are computed as

���� �� � ���� ��������� (22)

where ���� is again a 
 � 
 diagonal matrix. By employing the
Polak–Ribiere method [12], the diagonal elements of���� can be com-
puted as

����� �
������� ����� ���� �����

��� �� � ������� ��
� 	 � �� � � � �
� � � 	

(23)

where ����� is the 	th column of the gradient matrix ����. The
proposed algorithm, called hereafter MIMO-MCG, is summarized
in Table I. Notice that it can be viewed as the application of the
SISO-MCG algorithm of [12] to each of the linear systems of (10)
independently. Following standard practice in DFE design, a decision
delay should be inserted between equalizer decisions and transmitted
symbols. As in [5], we consider a decision delay parameter
 common
for all streams, and set it to 
 � �� � �. Hence, the decision 
����
corresponds to symbol ���� �
�.

By comparing MIMO-MCG to the MIMO-RLS algorithm, three
remarks should be made: a) Following the rationale of [12], it can be
shown that the MIMO-MCG converges to the solution of the systems
in (10). Moreover, as it will be shown by simulations, its convergence
performance in terms of mean square error (MSE) is identical to that of
the RLS algorithm, which is optimum in the least squares sense. b) In
contrast to the RLS algorithm, the matrix����� is not needed. Note that
in rapid time-varying conditions where smaller values of � are used,
and/or in high-dimensional MIMO DFE systems, the size of the auto-
correlation matrix may become comparable to the effective memory
of the system, �������. As verified by simulations in Section IV, the
involvement of an ill-conditioned����� leads MIMO-RLS to numerical
instability and reduces its tracking capabilities, whereas MIMO-MCG
remains robust under such conditions. c) As shown in Table III,
MIMO-MCG is more computationally demanding than MIMO-RLS.
To reduce its complexity, we incorporate Galerkin projections into the
MCG algorithm.
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TABLE I
SUMMARY OF MIMO-MCG

B. Galerkin Projection-Based MIMO-MCG

Recall that according to MIMO-MCG, all linear systems,
����������� � �����, � � �� � � � �� , are constantly updated by
the MCG algorithm. By using the idea of Galerkin projections, an
approximate solution can be obtained by updating via MCG just a
single system � (seed system) at each time instant �, while the others
are updated through Galerkin projections, i.e., they use the search
direction of the seed system, �����, to update their solution as

����� � ���� � �� � ���������� (24)

where the step size ����� is again selected as the minimizing argument
of ��������������� ������

����� �
�
�
� ��������

��� ��������������
(25)

and ����� is the search direction of the seed system. Thus, all systems
take different steps, �� ��� for � � �� � � � �� , in the same direction
�����. Note that, during the MCG update of the seed system � at the
�th time instant, a new direction that is ���-orthogonal to �� ��� is fol-
lowed. This one will be used for updating the solution of the �th system
the next time that this system is selected again as the seed system.
Note that MCG updating leads to more accurate approximations than
Galerkin projections. Extensive simulations have confirmed that substi-
tuting Galerkin projections for MCG updates results in a slight degra-
dation in performance.

Considering the selection of the seed system, we have studied the
following two alternatives.

1) Circular Scheme (MIMO-MCG-PI): A straightforward choice
would be to select the seed system at each time instant �, in a round
robin fashion. Thus, the seed system that is MCG updated at the �th
time instant is selected according to ���	
�������. Furthermore,
the selection can be considered random given that each system is se-
lected in a circular way without taking into account issues related to
the current solution.

2) Maximum Update Scheme (MIMO-MCG-PII): A more sophisti-
cated scheduling technique takes into account the “need” for an MCG
update. One way of measuring this “need” is to measure for each
system the absolute difference between the filters at two successive

previous time instances and select the seed system as the one that
diverged more. The seed system can therefore be selected as

� � ��
���
�

������ ����� �� � ����

� ��
���
�

����� � ���� 	 (26)

It has been verified by simulations that this policy leads to an improved
performance as compared to the round robin one, without paying any
increase in complexity. Finally, it should be mentioned that its perfor-
mance is very close to the optimum performance obtained in the least
square sense (RLS algorithm).

The two schemes described above are presented in Table II, where
the initialization can be performed as in Table I. Since only a single
system is MCG-updated at each time instant, while the non-seed
systems are updated according to efficient Galerkin projections,
both schemes have a computational complexity of 
��� � ���.
The complexities for all the proposed algorithms, as well as the
MIMO-RLS of [9] implemented in a square-root fashion to avoid
numerical instability [10], are presented in Table III.

At this point, it should be mentioned that projections can be also
applied in time dimension as well. To be more specific, the direction
vector �����, that is used for updating each one of the weight coef-
ficient vectors, may be also used for updating the systems solutions
����� for some next time steps as well, as described in the time pro-
jection scheme presented in [1]. The schemes presented above, along
with the time projection scheme presented in [1], provide a flexible
framework in MIMO adaptive equalization design to trade efficiency
for performance.

IV. SIMULATION RESULTS

The performance of the proposed equalizers was evaluated through
computer simulations. We considered a system transmitting uncoded
QPSK symbols of duration ���0.25 
s over a wireless channel mod-
eled according to the UMTS Vehicular Channel Model A [20]. Fol-
lowing standard DFE design practice [5], the feedforward and feedback
filters had a temporal span of ��� 20 and ��� 10 taps.

Initially, to study the convergence of the equalizers, the channel was
kept static for an interval of ������. An ���� 3 antenna config-
uration operating at ��� � 16 dB was simulated, while the system
was constantly in training mode. Six different MIMO DFE algorithms
were tested: a) a MIMO-RLS of [9] implemented in a square root RLS
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TABLE II
SUMMARY OF PROJECTION-BASED SCHEMES (MIMO-MCG-PI & II)

TABLE III
COMPARISON OF COMPLEXITIES

fashion to avoid numerical instability [10], b) a MIMO normalized
LMS (MIMO-NLMS) algorithm, c) the MIMO-MCG of Table I, d) the
MIMO-MCG-PI of Table II, e) the MIMO-MCG-PII of Table II, and
f) a scheme that executes only one MCG update every� iterations and
does not perform any projection (MIMO-MCG-NOP). In Fig. 1(a), the
MSE, averaged over all streams, is plotted. By setting the parameter �
of the MCG algorithms equal to the forgetting factor of the RLS and ad-
justing accordingly the step size of the NLMS, all the equalizers were
tuned to converge at the same steady state error. As it is shown, the
MIMO-MCG curve coincides with that of MIMO-RLS, while MIMO-

MCG-PI and MIMO-MCG-PII lie very close to it. The PII scheme is
better than the PI as it was expected, while the MIMO-MCG-NOP and
MIMO-NLMS exhibit very slow convergence. Note that the projec-
tions can offer significant improvement in performance at a limited ad-
ditional cost.

The convergence of the projection schemes can be intuitively at-
tributed to the following: i) given that the sequence of seed search di-
rections among the systems is uncorrelated and by ensuring that each
search direction of a seed system is perpendicular to the next one of
this system, the subspace where all filters lie is adequately spanned and
ii) the line search performed during the Galerkin projections in (25) is
crucial.

Error propagation effects in decision-directed mode and the impact
of MCG updates frequency were studied by simulating a system that
operates over a 6� 6 static channel. A training period of ����� was
employed. As it can be seen in Fig. 1(b), all equalizers are robust to
error propagation effects. Moreover, by performing the MCG update
less frequently [every � � � iterations instead of 3 in Fig. 1(a)], a
slight degradation in performance can be observed.

The tracking performance of the algorithms was studied by sim-
ulating a system that operates over a 3� 3 slow fading channel
for an interval of 8000 symbols. A normalized Doppler frequency
�������� ��

�� was simulated by using the Jakes method. It should
be noted that within this interval and for the specific Doppler spread

Authorized licensed use limited to: University of Minnesota. Downloaded on June 2, 2009 at 12:23 from IEEE Xplore.  Restrictions apply.
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Fig. 1. Convergence of adaptive equalizers at SNR � 16 dB. (a) Always trained system over a 3� 3 static MIMO channel �� � �������. (b) Training and
decision directed mode over a 6� 6 static MIMO channel �� � �������.

Fig. 2. (a) Convergence of adaptive equalizers for a ��� time-varying MIMO system at SNR � 16 dB �� � ����� and (b) uncoded BER curves for a 2� 2
static (S) and time-varying (TV) systems.

the amplitude of the channel taps may change significantly (i.e., 75%
amplitude variation and ���� phase rotation) which implies that the
use of adaptive algorithms is imperative. As illustrated in Fig. 2(a),
MIMO-MCG and MIMO-MCG-PII successfully track channel vari-
ations, with the latter exhibiting a slightly inferior performance. On
the other hand, MIMO-RLS, even in its square root implementation
and even though it was tuned to yield the same tracking performance,
converges at a higher MSE due to the involvement of matrix ���

��

which for small � (short effective memory) becomes ill-conditioned.
The BER performance of the proposed equalizers operating over

static and time-varying frequency selective channels has also been
studied. We consider a� � � � � system, trained for �����. For the
time-varying case a normalized Doppler frequency �������� ��

��

was simulated. The curves in Fig. 2(b) indicate that the proposed
algorithms can operate efficiently under the simulated severe channel

selectivity conditions. As expected, the tracking curve is worse than
that in the static case.

V. CONCLUSION

Three adaptive algorithms for updating a MIMO DFE have been de-
veloped. By extending the algorithm of [12], we derived an adaptive
CG MIMO DFE. To reduce its complexity, we employed the idea of
Galerkin projections, and two schemes of convergence close to RLS
have been proposed. As shown by simulations, all the new equalizers
can be successfully employed in practical MIMO wideband systems.
Moreover, the proposed algorithms can be easily modified so as to be
applicable to other signal processing problems as well which can be for-
mulated as linear systems of equations with multiple right hand sides
evolving in time.
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On Fourier Interpolation Error for Band-Limited Signals

Zhengguang Xu, Benxiong Huang, and Kewei Li

Abstract—Fourier interpolation is a useful tool to reconstruct continuous
signals from discrete samples. This correspondence derives Fourier inter-
polation expression from Fourier series for periodic signals and investigates
its error expression and upper bound for general band-limited signals. Two
numerical examples are given to interpret the meaning of the formulas.

Index Terms—Error bound, error expression, Fourier interpolation.

I. INTRODUCTION

For band-limited signals, the Shannon sampling theorem makes it
possible to denote continuous signals by discrete samples, therefore
the discrete signal has found wide applications in signal processing
fields [1]. However, some special applications, for example, Empirical
Mode Decomposition [2], [3], requires the exact location of extrema
in the signal. With the limited sampling rate, the extrema are difficult
to locate, thus we should reconstruct the continuous signal from the
discrete samples. The mostly used technology is Shannon interpolation
as follows:
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where �� is sampling interval and ������ are samples. Although
Shannon interpolation is capable of recovering the original signal
for a band-limited signal, it still has two drawbacks: 1) an infinite
number of samples is required in Shannon interpolation so that a finite
sequence will cause truncation error [4], [5] and 2) the extrema in the
reconstructed signal are obtained by searching all the interpolation
sequence, which is complex in computation and limited in location
precision. A new technology based on Fourier interpolation for finding
the extrema is proposed in [6]. Fourier interpolation expression is
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where �� are Fourier coefficients and � is duration of the signal. Com-
pared with Shannon interpolation, Fourier interpolation has two advan-
tages: 1) Fourier interpolation can recover the band-limited periodic
signal perfectly by finite samples and 2) some formulas can be used to
locate the extrema exactly [6]. However, Fourier interpolation also has
a drawback that Fourier interpolation will cause errors if the signal is
nonperiodic. Some literature studied the property of Fourier interpola-
tion [7 ]–[9], but few of them focused on the error of Fourier interpola-
tion for nonperiodic signals. This correspondence studies the problem,
and investigates the error expression and upper bound of Fourier inter-
polation for general band-limited signals.
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