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Abstract—Distribution grids are challenged by rapid voltage
fluctuations induced by variable power injections from dis-
tributed energy resources (DERs). To regulate voltage, the IEEE
Standard 1547 recommends each DER inject reactive power
according to piecewise-affine Volt/VAR control rules. Although
the standard suggests a default shape, the rule can be customized
per bus. This task of optimal rule design (ORD) is challenging as
Volt/VAR rules introduce nonlinear dynamics, and lurk trade-offs
between stability and steady-state voltage profiles. ORD is formu-
lated as a mixed-integer nonlinear program (MINLP), but scales
unfavorably with the problem size. Towards a more efficient
solution, we reformulate ORD as a deep learning problem. The
idea is to design a DNN that emulates Volt/VAR dynamics. The
DNN takes grid scenarios as inputs, rule parameters as weights,
and outputs equilibrium voltages. Optimal rule parameters can
be found by training the DNN so its output approaches unity
for various scenarios. The DNN is only used to optimize rules
and is never employed in the field. While dealing with ORD, we
also review and expand on stability conditions and convergence
rates for Volt/VAR dynamics on single- and multi-phase feeders.
Tests showcase the merit of DNN-based ORD by benchmarking
it against its MINLP counterpart.

Index Terms—IEEE 1547.8 Standard, linearized distribution
flow model, multiphase feeders, gradient backpropagation.

I. INTRODUCTION

DERs such as solar photovoltaics, are being advocated as
a means to battle climate change, shave peak demand, and
improve reliability. Despite the obvious benefits, the operation
of distribution grids is nowadays challenged by undesirable
voltage excursions induced by power injections from DERs.
Traditional voltage regulation apparatus (e.g., regulators and
capacitors) is deemed ineffective as responding to rapid and
frequent voltage fluctuations can significantly shorten the life-
time of such equipment. Fortunately, the inverters interfacing
DERs to the feeder can assist in regulating voltage by injecting
reactive power. To this end, the IEEE Std. 1547 provisions that
each DER should act autonomously, read its local voltage,
and compute its reactive injection based on a Volt/VAR curve.
This work aims to design these Volt/VAR curves optimally
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and customize them per bus according to the anticipated grid
loading conditions every few hours or so.

Ideally, the reactive power setpoints of DERs can be op-
timally selected by solving an optimal power flow (OPF)
given the current grid conditions [1]–[3]. Such centralized
schemes, however, involve high communication and computa-
tional overhead, privacy issues, and can introduce details. On
the other hand, local voltage regulation schemes for DERs
entail calculating control setpoints solely based on locally
collected data, such as load, solar generation, and voltage
measurements at the grid interface. The Std. 1547 prescribes
a local control scheme whereby DER setpoints are produced
by control rules taking the form of piecewise linear functions
of local measurements [4]. Local rules, though, are known to
produce sub-optimal setpoints [5], [6]. Nevertheless, autonomy
and simplicity are lucrative features of local schemes for
real-time DER control. Focusing on Volt/VAR control, this
work delves into the study and optimal design of local rules.
Since voltages are affected by reactive setpoints, Volt/VAR
rules give rise to closed-loop dynamics, which can become
unstable under control rules with steep slopes [7]–[9]. While
the aforementioned works study the convergence and stability
of Volt/VAR control rules, they do not address how to design
such rules, i.e., how to select their exact shape, in the first
place. Prior efforts on designing DER rules either resort
to heuristics [10]–[12], deal with non-dynamic Watt/VAR
rules [13]; or restrict themselves to affine Volt/VAR rules [14];
or ignore the deadband [15]. A recent work designs optimal
IEEE 1547-type rules, using mixed integer programs, which
are then solved using relaxation heuristics [16]. However,
discussions on the stability and convergence of the control
rules are omitted.

Similarly, there is a recent line of works that integrate
Volt/VAR and Watt/VAR rules into an OPF formulation, and
co-optimize rules and inverter setpoints for a single grid
loading scenario [17]–[20]. Optimizing rules at the same
timescale with setpoints may defy the intention of the IEEE
Standard 1547 to have DERs either operating autonomously
by running localized rules, or following centrally computed
OPF setpoints. Regardless, references [17], [18] co-optimize
rules and setpoints via a nonlinear non-convex program, which
may lack global optimality guarantees. In pursuit of global
optimality, subsequent reference [19] devised a mixed-integer
second-order cone program (MISOCP), which could scale
unfavorably with the network size (no running times were
reported) and is limited to single-phase radial grids. Extending
it to multiphase feeders under the exact AC grid model would
call for computationally costly mixed-integer semidefinite
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programs (MISDP). As a remedy, reference [20] adopts a
linearized grid model to co-optimize rules and setpoints under
the multiphase setting. Piecewise-affine rules are captured
via binary variables selecting segments of voltages. Products
of binary-continuous (voltage) variables are handled through
the standard big-M trick to arrive at a mixed-integer linear
program (MILP). However, the aforesaid works ignore linear
inequality constraints on rule parameters required by IEEE
Std. 1547 and do not ensure the rules are stable. Dealing
with these two requirements requires keeping the native rule
parameters (deadband, slope, saturation, reference voltage) as
the optimization variables. Unfortunately, such parameteriza-
tion of the problem introduces products between continuous
variables, whose big-M reformulations are known not to be
exact. This, in turn, gives rise to mixed-integer nonlinear
programs (MINLP). Reference [21] develops another MINLP
formulation for ORD, which nonetheless, ignores voltage
deadband, fixes kVAR saturation at the kVAR capacity of the
inverter, does not enforce the constraints required by the IEEE
Std. 1547, and is limited to single-phase grids.

Unlike above, our recent work in [22] formulates a bilevel
optimization to design the slopes, deadband, saturation, and
reference voltages for the Volt/VAR rules as the IEEE 1547.8
Standard prescribes. The bilevel optimization considers mul-
tiple grid scenarios to capture uncertainty. Upon leveraging
the properties of the system at equilibrium, it finds stationary
points using projected gradient descent iterates.

Our present work extends [22], and improves upon the
previously cited literature in four directions:

c1) Most of the existing works focus on simplified single-
phase distribution grid models. We extend the analysis of [9],
and provide conditions to ensure the stability of the IEEE
1547 Volt/VAR rules for the more practically relevant setup
of multiphase feeders;

c2) We cast the problem of finding optimal Volt/VAR
rules as a DNN training task. The training process involves
stochastic projected gradient updates (SPGD) that leverage
efficient, off-the-shelf Python libraries;

c3) We genuinely design the DNN to emulate Volt/VAR
dynamics: It accepts grid conditions as input, the parameters
of the Volt/VAR rule as weights, and computes approximate
equilibrium voltages at its output. Based on the convergence
rate of Volt/VAR dynamics, we determine the minimum depth
this DNN should have to approximate equilibrium voltages to
the desired level of accuracy;

c4) Leveraging the bilevel structure of ORD, we also refor-
mulate ORD as a mixed-integer nonlinear program (MINLP).
This MINLP-based approach does not scale favorably with the
number of DERs and grid scenarios. Nonetheless, it serves as
a benchmark for comparison to better assess the optimality
and computational speed of our DNN-based ORD approach.

We next expound upon how our work differs from prior
works utilizing machine learning and/or reinforcement learn-
ing for smart inverter control. DNNs have been extensively
employed before for optimal DER control under OPF formu-
lations, with the objective of minimizing energy losses and
energy costs; see e.g., [23]–[26]. Support vector machines
and Gaussian processes have also been suggested for reactive

power control using smart inverters [27], [28]. However, none
of the above references aim at modeling the IEEE 1547-
type piecewise linear, local, Volt/VAR rules. Furthermore, the
existing problem formulations preclude the presence of closed-
loop dynamics and are not nuanced by stability concerns as
in the present work. In terms of using a DNN to model
piecewise linear control rules, our work bears some simi-
larities with references [29]–[31]. References [29] and [31]
model piecewise linear control rule using a NN with a single
hidden layer, and do not capture Volt/VAR dynamics over
time using a neural network architecture. Furthermore, they
focus on optimal control of transient dynamics. In contrast,
the present work aims to design control rules that produce
equilibrium voltages close to unity across many scenarios. This
is achieved via efficient training of a recurrent neural network
(RNN) whose training coincides with ORD. While the recent
work [30] does leverage RNNs to design rules, it does so for
controlling frequency transients. Moreover, references [29]–
[31] do not discuss other topics covered in this work such as
the IEEE 1547-type Volt/VAR rules, their convergence speed
and depth of the resulting RNNs, as well as the implications
of Volt/VAR control in multiphase feeders. Parallel work
[32] designs a stable Volt/VAR control mechanism wherein
each DER decides its reactive injections via a single-layer
DNN driven by local data. Different from our approach, the
suggested control rule does not comply with IEEE 1547 and
training that DNN requires solving several OPF instances
beforehand to generate labels. Finally, reference [32] does not
cover multiphase feeders.

II. FEEDER MODELING PRELIMINARIES

Consider a feeder rooted at the substation. Although the
feeder can be single-phase or multiphase, it features a tree
(radial) structure in terms of buses. For multiphase feeders, a
bus may serve one to three phases; a valid pair of bus and
phase will be referred to as a node. For single-phase feeders,
the terms bus and node will be used interchangeably. The
substation is indexed by 0 and is considered balanced; all
remaining nodes are indexed by n ∈ N := {1, . . . , N}. All
DERs are assumed to be single-phase and be able to provide
reactive power control. For simplicity, each node is assumed
to host a DER; we briefly discuss the minor modifications to
deal with the more practical setting where not all nodes host
DERs. Our numerical tests evaluate the latter setting.

To study the effect of power injections on voltage mag-
nitudes, we use an approximate linearized grid model. Let
the active/reactive power injections and voltage magnitudes
(henceforth simply voltages) at the non-substation nodes be
collected into the N -length vectors p, q, and v, respectively.
The linearized grid model relates these quantities as [33]

v ≃ Rp+Xq+ v01 (1)

where v0 is the substation voltage, and real-valued matrices
R and X depend on line impedances and feeder topology.

If pg and pℓ denote the active power generated by DERs
and that consumed by the loads accordingly, then p = pg −
pℓ. Reactive power injections can be decomposed similarly as
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Fig. 1. The piecewise linear Volt/VAR control rule f(v) provisioned by
the IEEE 1547 standard [4]. The x-axis corresponds to the local voltage
magnitude and the y-axis to the inverter setpoint for reactive power injection.

q = qg − qℓ. Supposing p and qℓ are uncontrolled and vary
with time, reactive power compensation entails adjusting qg

to maintain v around one per unit (pu). To isolate the effect
of DER reactive injections on voltages, rearrange (1) as

v = Xqg + ṽ = Xq+ ṽ (2)

where the notation is slightly abused by denoting qg as q for
simplicity. The uncontrolled quantities are captured in vector
ṽ := R(pg −pℓ)−Xqℓ+ v01, where ṽ models voltages had
it not been for reactive power compensation. Vector ṽ will be
henceforth termed the vector of grid conditions.

Given its importance in Volt/VAR control, let us summarize
some properties of the sensitivity matrix X appearing in (2).
For single-phase feeders, matrix X is known to be symmetric,
positive definite, and with positive entries; see e.g., [34], [7].
For multiphase feeders, however, matrix X is non-symmetric
and has positive as well as negative entries [35]. Nonetheless,
under conditions typically met in practice [35], matrix X
remains positive definite for multiphase feeders in the sense
z⊤Xz > 0 for all z ̸= 0. These nuances of X call for
relatively different treatments of Volt/VAR control between
single- (Sections III–IV) and multi-phase feeders (Section VI).

III. CONTROL RULES FOR SINGLE-PHASE FEEDERS

The IEEE 1547.8 standard provisions four modes of reactive
power control [4]: constant power, constant power factor,
Watt/VAR, and Volt/VAR. We focus on the last one as being
the most grid-adaptive. This mode enables the inverters to
respond to local voltage deviations via a piecewise linear
control curve f(v), like the one depicted in Fig. 1. The curve
consists of a deadband of length 2δ centered around v̄; two
affine regions; and two regions wherein reactive injections
saturate at ±q̄. The IEEE standard constraints the curve
parameters as follows (see Table 8 of [4])

0.95 ≤ v̄ ≤ 1.05 (3a)
0 ≤ δ ≤ 0.03 (3b)

δ + 0.02 ≤ σ ≤ 0.18 (3c)
0 ≤ q ≤ q̂. (3d)

Per (3d), the saturation value q̄ can be equal to the reactive
power capability q̂ of the inverter, but also smaller than that.

The rule of Fig. 1 is parameterized by (v̄, δ, σ, q̄), which
can be customized per bus n as (v̄n, δn, σn, q̄n). The rule can

be alternatively parameterized by (v̄n, αn, δn, q̄n), where αn

is the negative slope of the affine segment and is defined as

αn =
qn

σn − δn
> 0. (4)

Let vectors (v̄,α, δ, q̄) collect (v̄n, αn, δn, q̄n) for all n ∈ N ;
and stack such vectors together in vector z := (v̄,α, δ, q̄).

The interaction of Volt/VAR-controlled DERs with the grid
results in the non-linear discrete-time dynamics

vt = Xqt + ṽ (5a)

qt+1 = fz(v
t) (5b)

where vector function fz(v
t) represents the action of Volt/VAR

rules across all nodes and is parameterized by z.
References [9], [36] guarantee that Volt/VAR dynamics are

stable if ∥ dg(α)X∥2 < 1, where dg(α) is a diagonal matrix
having α on its diagonal. To be satisfied as a strict inequality,
the condition can be strengthened as ∥dg(α)X∥2 ≤ 1− ϵ for
some ϵ ∈ (0, 1).

Definition 1. Volt/VAR rules satisfying ∥ dg(α)X∥2 ≤ 1− ϵ
for ϵ ∈ (0, 1) will be henceforth termed ϵ-stable.

To avoid the spectral norm condition ∥ dg(α)X∥2 ≤ 1− ϵ,
we have previously proposed the polytopic restriction [22]:

Xα ≤ (1− ϵ)1 (6a)

αn ≤ 1− ϵ∑
m∈N Xnm

, ∀n ∈ N . (6b)

If stable, the dynamics in (5) enjoy an equilibrium under
any grid condition ṽ [7]. In fact, the inverter setpoints at
equilibrium coincide with the unique minimizer of the convex
program [7]

q∗(z, ṽ) := argmin
−q̄≤q≤q̄

F (q) (7)

where the objective function is defined as

F (q) := 1
2q

⊤Xq+ q⊤(ṽ − v̄)︸ ︷︷ ︸
:=V (q)

+
∑
n∈N

1
2αn

q2n + δn|qn|︸ ︷︷ ︸
:=C(q)

.

Component V (q) can be equivalently expressed as [7]

V (q) =
1

2
(v − v̄)⊤X−1(v − v̄) + constants. (8)

Because X ≻ 0, function V (q) is an ℓ2-norm of (v − v̄).
Hence, minimizing V (q) aims at bringing voltages close to
reference voltages. Nonetheless, problem (7) involves also
C(q) in its cost. Hence, to best regulate voltages, one would
try setting α to infinity and δ to zero so C(q) = 0 and
the equilibrium setpoints minimize only V (q). This course
of action however would violate the stability condition of
∥dg(α)X∥2 ≤ 1.

The next section develops methods for selecting the
Volt/VAR rule parameters z so that a voltage regulation
objective is minimized for a set of grid scenarios. For single-
phase feeders, Section IV reformulates (ORD) as the problem
of training a neural network, while Section V tackles ORD as
a mixed-integer nonlinear program. For multiphase feeders,
solving ORD is dealt with in Section VI.
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IV. ORD FOR 1ϕ FEEDERS VIA DEEP LEARNING

Because Volt/VAR rules are used so inverters can operate
autonomously, it is reasonable to assume that rule parameters
z are updated infrequently, say every 2 hours. Then, rules z
should be optimized while considering the possibly diverse
loading conditions the feeder may experience over those 2
hours. To account for such conditions, suppose we are given a
set of S load/solar scenarios {(pg

s ,p
ℓ
s,q

ℓ
s)}Ss=1. Each scenario

is related to grid condition vector [see (1)]

ṽs := R(pg
s − pℓ

s)−Xqℓ
s.

Let q∗(z, ṽs) or simply q∗
s(z) denote the equilibrium setpoints

reached by stable Volt/VAR rules parameterized by z under
grid conditions ṽs. Unfortunately, setpoints q∗

s(z) cannot be
expressed as in closed form. They can be computed by
either iterating (5), or as the minimizer of (7). The related
equilibrium voltage is v∗

s(z) := Xq∗
s(z) + ṽs from (1).

We pose the ORD task as a minimization problem over z:

min
z

1

2S

S∑
s=1

∥Xq∗
s(z) + ṽs − 1∥22 (9)

s.to (3), (6)

to minimize the Euclidean distance of equilibrium voltages
from unity, averaged across scenarios. Constraints (3) and (6)
ensure rules are stable and compliant with the IEEE 1547.

It is worth iterating that the ORD is solved centrally by
the utility operator, but only every two hours or so. Once
decided, the optimal rule parameters z are communicated to
the DERs, which can operate autonomously for the next two
hours. The frequency at which the operator chooses to re-
optimize the rules or the number of scenarios S used, do not
alter the proposed methodology per se. Increasing S increases
the running time to some moderate extent as demonstrated in
the numerical tests. Re-optimizing the rules more frequently
(say every one instead of every two hours) would apparently
yield better grid performance. Nonetheless, it would raise
the communication and computational cost for the utility. If
the operator is willing to communicate with the DERs every
15 minutes or less, it may be more meaningful to solve a
(stochastic) OPF and communicate direct setpoints rather than
rules to DERs.

An additional important observation here is that (9) aims
at minimizing voltage deviations from unity averaged across
buses and scenarios S. Interestingly, the conference offshoot
of this work shows how the proposed ORD methodology can
be extended to design rules that minimize ohmic losses subject
to voltages lying within the desired range [37]. To account for
uncertainty, losses are averaged over scenarios, and voltage
ranges are enforced as chance constraints.

One may wonder why we are not satisfied with the fact
that any stable rule z settles at the minimizer of (7), which
is seemingly a meaningful equilibrium. Such equilibrium may
be insufficient due to three reasons: i) The term V (q) is a
rotated ℓ2-norm of (v − v̄), so that voltage deviations are
weighted unequally across buses; ii) If DERs are sited only
on a subset G ⊂ N of nodes, the cost V (q) gets modified
as VG(qG) = 1

2 (vG − v̄G)
⊤X−1

GG(vG − v̄G), where subscript

Fig. 2. Volt/VAR rule f(v) expressed as a sum of ReLUs.

G denotes the subvectors/submatrix obtained by keeping the
rows/columns corresponding to G; see [22]. Such cost may
not be representative of ∥v − v̄∥22; and iii) As discussed
earlier, stability limitations do not allow us to set α to
infinity although it seems desirable from a voltage regulation
standpoint. The aforementioned reasons motivate the need to
optimally design z so the induced equilibrium voltages v∗

s(z)
are better regulated.

Albeit simply stated, problem (9) is computationally chal-
lenging as q∗

s(z) is the solution of the inner minimization
problem (7), which is parameterized by z. Thereby, the ORD
task is a bilevel optimization over z: The outer problem (9)
depends on S inner problems of the form (7), one per scenario.

Our first strategy towards tackling (9) is to replace the
inner problem with a DNN that simulates the Volt/VAR
dynamics. This DNN has z as weights, accepts ṽs as input, and
outputs the equilibrium voltages v∗

s(z). Let the DNN output
be denoted by Φ(ṽs; z). The key idea is that if Φ(ṽs; z) are the
equilibrium voltages for rule z over scenario s, then problem
(9) becomes the supervised training task:

min
z

L(z) :=
1

2S

S∑
s=1

∥Φ (ṽs; z)− 1∥22 (10)

s.to (3), (6).

To draw a useful analogy, scenarios ṽs are analogous to
feature vectors in regression problems; equilibrium voltages
v∗
s = Φ(ṽs; z) are the predictions for feature vectors; and 1 is

the (constant) target label for the prediction. Formulating (9)
as (10) allows us to leverage efficient DNN libraries for
optimizing z. With this motivation in mind, we next design
the DNN, and then describe the steps to train it.

A. Designing a Digital Twin of Volt/VAR Dynamics

The Volt/VAR curve of Fig. 1 can be interpreted as a
superposition of four piecewise-linear functions, each with a
single breakpoint, as shown in Fig. 2. These functions can be
thought of as the outputs of rectified linear units (ReLU) ρ(x),
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Fig. 3. Volt/VAR rule f(v) model using a NN with 1 hidden layer.

which return x for x > 0; and 0 otherwise. To get the different
breakpoints and slopes as in Figure 2, the ReLU units need
the appropriate inputs and scaling. The required mathematical
operations can be implemented through the DNN of Fig. 3,
which takes vtn as input and computes the setpoint qt+1

n at
its output. The input and output layers have one neuron each.
The hidden layer consists of four neurons. The weights of the
hidden layer are fixed to [1, 1,−1,−1]⊤, but its bias vector is
trainable and given by [−(v̄ + δ),−(v̄ + σ), v̄ − δ, v̄ − σ]⊤.
Each of the four neurons in the hidden layer is equipped with
a ReLU unit. The output layer has a trainable weight vector
[−α, α, α,−α]⊤ and the bias is fixed at 0.

Heed that the NN of Fig. 3 implements the Volt/VAR curve
for a single inverter and a single time step as qt+1

n = fn(v
t
n).

To simulate the entire Volt/VAR network dynamics of (5), we
will treat the NN of Fig. 3 as a building block and replicate it
across inverters and time. Let VCn represent the NN module
running a single time step for inverter n. This module is
parameterized by (v̄n, αn, σn, δn). With a slight abuse of
terminology, let the collection of VCn’s for all inverters be
labeled as a single layer. These modules are stacked vertically,
as shown in Fig. 4. Each one of these layers implements
(5b) by receiving vt as input and producing setpoints qt+1 as
output at time t. The setpoints qt+1 in turn produce voltages
vt+1 = Xqt+1 + ṽ per the grid model (5a). To simulate
the dynamics over time, the new voltages vt+1 are passed
to the next layer corresponding to time t+ 1. The process is
repeated for T steps. Structurally, these interactions result in
a larger DNN with T repeating layers, one layer per iteration
of the dynamics in (5), as shown in Figure 4. The simulation
of dynamics over T iterations is equivalent to performing a
forward pass through the larger DNN with ṽ as the input. To
implement (5a), the input ṽ (grid scenario) is also propagated
to the inner layers via so-called skip connections.

It is worth stressing that each module VCn is replicated
horizontally across the T times. This implies significant weight
sharing across the T layers. Therefore, the number of trainable
parameters ẑ := (v̄,α, δ,σ) remains fixed at 4N , irrespective
of the DNN depth T . This weight-sharing aspect results
in computational and memory-related efficiencies for DNN
storing, prediction, and training, and has been instrumental
in the success of architectures such as recurrent (RNN),

convolutional (CNN), or graph (GNN) neural networks. In
fact, it is possible to obtain a recurrent ‘rolled’ representation
of the larger DNN of Fig. 4, as shown in Fig. 5, allowing one
to utilize RNN-specific functionalities in DNN libraries.

In a nutshell, the DNN of Fig. 4 simulates Volt/VAR
dynamics across T times. In other words, once fed with
a grid condition vector ṽs, its output will approximate the
equilibrium voltages v∗

s reached by Volt/VAR dynamics under
rule z. As a result, optimizing over z by training the DNN so
that equilibrium voltages {v∗

s(z)}Ss=1 come close to one pu,
serves the purposes of ORD. Surrogating Volt/VAR dynamics
by the DNN is effective only if the DNN depth T is sufficiently
large. How deep should the DNN be so that its output Φ (ṽs; ẑ)
is close to v∗

s? Because a DNN of depth T simulates exactly
the Volt/VAR dynamics up to time T , the answer for selecting
T is apparently the settling time of the Volt/VAR dynamics as
detailed next and shown in the appendix.

Proposition 1. Suppose ϵ-stable Volt/VAR rules are described
by z. The depth T of the DNN in Fig. 4 required to ensure
∥Φ (ṽ; z)− v∗(z)∥2 ≤ ϵ1 for all grid conditions ṽ is

T ≥
log 2∥X∥2∥q̂∥2

ϵ1

log(1− ϵ)−1
.

The result implies that the minimum depth T grows log-
arithmically with the desired accuracy ϵ1 and the stability
margin ϵ. Plugging in the typical values ϵ1 = 10−4, ∥X∥2 =
4.63 · 10−1 for IEEE 37-bus feeder, ∥q̂∥2 = 0.1, and ϵ = 0.3,
the bound yields a comfortably small number of T ≥ 20
layers. For ϵ1 = 10−6, the number of layers T increases to
32, demonstrating the scalability of the approach.

To recapitulate, the Volt/VAR rule for each DER is described
by four parameters (v̄n, σn, δn, αn). These parameters appear
as weights of the single-layer neural network shown in Fig. 3.
This building block is indicated as a yellow block and termed
VCn in the RNN of Figure 4. Each VCn is repeated at each
layer t of the RNN. Although the RNN may have T layers,
there is significant weight sharing and only 4N parameters to
be trained, 4 per inverter.

B. DNN Training

With rule parameters ẑ embedded as DNN weights and
biases, the optimal Volt/VAR curves are obtained by training
Φ (ṽs; ẑ). Conventional DNN training uses stochastic gradient
descent (SGD) to update the DNN parameters and eventually
minimize the loss function in (10). However, parameters ẑ
should satisfy constraints (3) and (6). Plain SGD may fail to
return a feasible z. This can be circumvented by using pro-
jected stochastic gradient (PSGD) updates. PSGD updates first
compute an intermediate quantity x̂i+1 via gradient descent

x̂i+1 = ẑi − µ

2B
∇ẑi

(∑
s∈Bi

∥Φ(ṽs; ẑ)− 1∥22

)
(11)

where µ > 0 is the step size; set Bi is a batch of B scenarios (a
subset of the original S scenarios); and ∇ẑi(·) is the gradient
of the loss function with respect to ẑ evaluated at ẑ = ẑi.
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Fig. 4. DNN-based digital twin for the Volt/VAR dynamics of (5). The DNN is structured so that T time steps are arranged horizontally. The modules VCn’s
implementing the Volt/VAR curves for each one of the N inverters are stacked vertically. Skip connections propagate the input vector (grid scenario) ṽ to
each time instant to implement vt+1 = Xqt+1 + ṽ.

Fig. 5. Recurrent representation (RNN) of the digital twin of Fig. 4.

The gradient term in (11) is calculated efficiently thanks to
gradient back-propagation.

The second step for PSGD updates entails projecting x̂i+1

into the feasible space defined by (3) and (6). To this end,
we first transform x̂i+1 from parameter space (v̄,α, δ,σ) to
space (v̄, c, δ,σ), where vector c has entries cn := 1/αn.
Variable x̂i+1 transformed in the new space is called x̃i+1.
The transformation is a one-to-one mapping between the two
spaces and is used so that the feasibility set induced by (3)
and (6) is convex, and so it is easy to project onto it. We
proposed this transformation in [22]. We review it here for
completeness. Using (4), constraint (3d) is expressed as

0 ≤ σ − δ ≤ c⊙ q̂ (12)

where ⊙ means element-wise multiplication. Constraints (6)
can be expressed in terms of c instead of α as [22]

c ≥ 1

1− ϵ
X1 (13a)

Xa ≤ (1− ϵ) · 1 (13b)
a⊙ c ≥ 1, ∀ n ∈ N (13c)

where a is an auxiliary variable. Constraint (13c) can be
rewritten as a second-order cone. In [22], we show how (13)
is equivalent to (6). The quantity x̃i+1 can now be projected
onto the feasible space via the convex minimization

z̃i+1 = argmin
z

∥x̃i+1 − z∥22 (14)

s.to (3a) − (3c), (12), (13).

The PSGD update is completed by transforming z̃i+1 from
space (v̄, c, δ,σ) back to space (v̄,α, δ,σ) to get ẑi+1.

The proposed DNN training can be implemented in Python
using DNN libraries such as PyTorch. Step (11) is the standard
SGD update pertaining to the loss function of (10) over the

batch of training labels {ṽs, 1}Bi . As with standard DNN
training, adaptive moment-based algorithms such as Adam can
enable fast convergence and avoid saddle points. The DNN
weights and biases are transformed between the parameter
spaces and then passed to a convex optimization module
to implement the projection step of (14). In the last step,
DNN weights and biases are updated with the new projected
parameters, upon transformation to the original space. The
steps are repeated for several epochs.

V. ORD FOR 1ϕ FEEDERS AS AN MINLP

A second approach towards solving the bilevel program
in (9) is to replace each inner problem with its first-order op-
timality conditions and append these conditions as constraints
to the outer problem. To capture complementary slackness,
we will introduce binary variables and use the so-termed big-
M trick to eventually express the outer problem as a mixed-
integer nonlinear program (MINLP). The process is delineated
next. Although this MINLP approach does not scale gracefully
with the number of DERs and/or scenarios, it serves as a
benchmark for the DNN-based ORD.

We first transform (7) to a differentiable form as

min
q,w

1

2
q⊤ (X+ dg(c))q+ q⊤(ṽs − v̄) + δ⊤w (15a)

s.to −w ≤ q ≤ w : (λ,λ) (15b)
− q̄ ≤ q ≤ q̄ : (µ,µ) (15c)

where vector c has entries cn := 1/αn, and variable w
has been introduced to deal with the non-differentiable terms
|qn| in (7). Slightly abusing notation, denote the optimal
primal/dual variables of (15) by (q,w;λ,λ,µ,µ). Although
the variables vary per scenario, we suppress subscript s for
simplicity. These variables satisfy the optimality conditions

(X+ dg(c))q+ ṽs − v̄ − λ+ λ− µ+ µ = 0 (16a)

δ − λ− λ = 0 (16b)
−w ≤ q ≤ w (16c)
−q̄ ≤ q ≤ q̄ (16d)

λ,λ,µ,µ ≥ 0 (16e)

λ⊙ (q−w) = 0 (16f)
λ⊙ (−q−w) = 0 (16g)
µ⊙ (q− q̄) = 0 (16h)

µ⊙ (−q− q̄) = 0. (16i)
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Equalities (16a)–(16b) follow from Lagrangian optimality; and
inequalities (16c)–(16e) from primal/dual feasibility. Inequal-
ities (16f)–(16i) are complementary slackness conditions.

The bilevel problem in (9) can be now reduced to a
single-level formulation upon appending conditions (16) as
constraints to (9) per scenario s. Such constraints ensure that
q∗
s(z) is indeed the minimizer of (7). Nonetheless, constraint

(16a) and the complementary conditions introduce bilinear
terms. Bilinearity can be partially addressed by handling
complementary slackness conditions through the big-M trick.
For example, condition (16f) can be expressed as

0 ≤ λ ≤ M1b (17a)
0 ≤ q−w ≤ M2(1− b) (17b)

where b is an N -dimensional binary variable, and (M1,M2)
are large positive constants. The latter can be selected as
M2 = 2q̄, while the former can be set to a numerically
estimated upper bound of the corresponding dual variables
λ. Although complementarity constraints can be reformulated
to linear ones, that is not true for the bilinear term dg(c)q
between two continuous variables appearing in (16a). This
term gives rise to a mixed-integer nonlinear program rather
than a mixed-integer linear program.

Since (16)–(17) contain c and q̄, the constraints (3) and (6)
need to be rewritten in terms of c and q̄ as well. To this end,
we chose the parameterization z̃ := (v̄, c, δ, q̄). In this new
parameterization, constraint (3c) is replaced by

0.02 · 1 ≤ c⊙ q̄ ≤ 0.18 · 1− δ (18)

which introduces bilinear terms too. Stability constraints (6)
have already been transformed from α to c in (13).

Putting everything together, the bilevel ORD problem of (9)
can be solved as the MINLP:

z̃∗ = argmin
z̃

1

2S

S∑
s=1

∥Xqs + ṽs − 1∥22 (19a)

over z̃ := (v̄, c, δ, q̄) (19b)
s.to (3a), (3b), (3d), (13), (18) (19c)

(16a) − (16e) ∀ s (19d)
(16f) − (16i) as in (17) ∀ s. (19e)

The bilinear terms in (16a) and (18), and the binary variables
in (19e) increase with the number of inverters and scenarios.

Remark 1. The Volt/VAR curve of Fig. 1 has four degrees
of freedom that control the center, deadband, slope, and
saturation of the curve. These degrees of freedom are amenable
to different equivalent parameterizations, such as (v̄,α, δ,σ)
and (v̄, c, δ,σ) that we used in Sec. IV; (v̄,α, δ, q̄); or
(v̄, c, δ, q̄). We used the last one in (19b) as it yielded
significantly shorter solution times during our tests.

Although the MINLP can solve ORD to near-global opti-
mality (modulo the bilinear terms left to be handled internally
by the solver), it was found to scale unfavorably with the
number of DERs and/or scenarios of Section VII.

VI. ORD FOR 3ϕ FEEDERS VIA DEEP LEARNING

Under transposed lines and balanced injections, one could
deal with ORD using the single-phase formulations discussed
earlier. Under imbalance conditions, however, a linearized
multiphase feeder model would be a better approximation.
DERs would still implement local Volt/VAR rules, yet sen-
sitivity matrix X now has different properties as discussed in
(1). For the multiphase case, we were not able to come up with
an optimization problem whose minimizer coincides with the
equilibrium q∗ similar to (7). Nonetheless, we show in the
appendix that the Volt/VAR rules of Fig. 1 do converge to a
unique equilibrium under the following polytopic conditions,
which form a restriction of ∥ dg(α)X∥2 ≤ 1− ϵ.

Proposition 2. Consider the Volt/VAR dynamics of (5) oper-
ating over a multiphase feeder modeled by (1). If the Volt/VAR
slope vector α satisfies

|X|⊤α ≤ (1− ϵ1) · 1 (20a)

0 ≤ αn ≤ 1− ϵ2∑
m∈N |Xnm|

, ∀n ∈ N (20b)

for some ϵ1, ϵ2, and ϵ ∈ (0, 1) with (1−ϵ1)(1−ϵ2) ≤ (1−ϵ)2,
the dynamics in (5) exhibit a unique equilibrium q∗ to which
they converge exponentially fast as

∥qt − q∗∥2 ≤ 2∥q̂∥2 · (1− ϵ)t. (20c)

The absolute value |X| applies entry-wise. The result gen-
eralizes (6) and [9, Th. 3] to multiphase feeders, wherein X is
non-symmetric and with some of its entries being negative. It
provides linear constraints on α to ensure stability. Although
ϵ1 and ϵ2 could be selected to reduce conservatism of the
restriction, they were henceforth set equal as ϵ1 = ϵ2 = ϵ.

The ORD task for multiphase feeders can be formulated
as in (7) with the appropriate modification of the sensitivity
matrix X. Since equilibrium setpoints cannot be expressed as
the minimizer of an inner optimization, the MINLP approach
of Section V cannot be adopted here. Alternatively, one may
pursue an MINLP formulation along the lines of [38], though
scalability is still expected to be an issue. Fortunately, the
DNN-based approach for ORD remains applicable with the
next minor modifications: i) Sensitivity matrices are modified
accordingly; ii) Every layer now consists of 3N building
modules corresponding to bus/phase (node) combinations; and
iii) Use the stability constraints of (20) instead of (6).

Proposition 1 on minimum depth T of DNNs for Volt/VAR
rules in single-phase feeders carries over to multiphase feeders.
This is easily confirmed by applying the steps from the proof
of Proposition 1 to the results from Proposition 2.

Remark 2. The conditions of Prop. 2 are general enough to
ensure the stability of Volt/VAR rules in any type of distribution
network, single-phase or multi-phase; radial or meshed.

VII. NUMERICAL TESTS

The proposed ORD methods were evaluated on single- and
multi-phase feeders. Real-world data of active load and solar
generation at one-minute frequency was sourced from the
Smart* project on April 2, 2011 [39]. The set consists of
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active loads from 444 homes and generation from 43 solar
panels. Loads from multiple homes were averaged to better
simulate loads at buses of the primary distribution network.
Each averaged load was normalized so its peak value during
the day coincided with the nominal active power load of its
hosting node. For each time interval, reactive loads were added
by randomly sampling lagging power factors within [0.9, 1].
Similarly to loads, each solar generation signal was normalized
so its peak value was twice that of the nominal active load of
the hosting bus. Apparent power limits for inverters were set
to 1.1 times the peak active generation.

Control rules were designed and evaluated in Python on a
2.4 GHz 8-Core Intel Core i9 processor laptop with 64 GB
RAM. Pytorch was selected as the library to design and train
DNNs, as it implements computation graphs dynamically. That
is quite important for our purposes, as dynamic computation
graphs imply that the number of layers T does not need to
be fixed beforehand. It is rather decided on the fly based
on the convergence of rules for the given ṽt. This flexibility
enables limiting the DNN to lower depths. Convergence was
determined based on the change in objective value by adding
a layer: The rules were assumed to have converged if the
objective changed by less than 1 · 10−7 within consecutive
layers. The batch size B was set to the maximum of the
integer part of S/10 and 1. The step size µ was determined
individually for each network such that the proposed design
approach worked for various times of the day. All DNNs were
trained using the Adam optimizer.

The projection step (14) was performed by solving a
SOCP using the CVXPY library in Python with GUROBI.
The MINLP (19) was implemented in MATLAB using
YALMIP [40] with GUROBI, and used to benchmark the re-
sults for optimality and runtime. Other details such as learning
rates for DNN training, initialization of design parameters,
load and solar panel assignments, and time period for scenario
sampling are presented along with the corresponding results.

A. Tests on Single-Phase Feeder

The first set of tests was conducted on the single-phase
equivalent of the IEEE 37-bus feeder. Homes with IDs 20-369
were averaged 10 at a time and successively added as active
loads to buses 2 − 26 as shown in Fig. 6. Active generation
from solar panels was also added, as per the mapping in
Fig. 6. Additionally, buses {6, 9, 11, 12, 15, 16, 20, 22, 24, 25}
were equipped with DERs capable of reactive power control.

The DNN-based rules were optimized using 80 grid scenar-
ios sampled from the high-solar period 3:00-4:20 pm, and were
trained using the learning rate µ = 0.003 over 200 epochs. The
design parameters z := (v̄, δ,σ,α) were initialized at the
feasible point (v̄n, δn, σn, αn) = (0.95, 0.1, 0.3, 1.5) for all n.
Figure 7 shows the convergence of Volt/VAR rule parameters
for DERs at nodes {12, 22, 29}, for ϵ = 0.5, during training.
To accommodate different ranges of magnitudes, all plots are
normalized with respect to their initial values.

Figure 8 highlights the efficacy of the optimized Volt/VAR
rules in improving the voltage profile across the feeder.
Voltages across buses are plotted under three setups: voltages

Fig. 6. The IEEE 37-bus feeder used for the tests. Node number-
ing follows the format node number {panel ID}. DERs at nodes
{6, 9, 11, 12, 15, 16, 20, 22, 24, 25} provide reactive power control; the rest
operate at unit power factor.

Fig. 7. Convergence of PGD iterations (11)–(14) for Volt/VAR rules with
ϵ = 0.5. Values of rule parameters for DERs 12, 22, and 29 are plotted against
training epochs. Plots have been normalized with respect to their initial values.

without DER reactive power support, voltages under the de-
fault settings (v̄n, δn, σ, qn) = (1, 0.02, 0.08, q̂n) from IEEE
1547.8 [4]; and voltages under control rules with optimal
z. For each bus, voltages for all S = 80 scenarios have
been marked. The default control rules were found only
marginally to improve voltage profiles. On the other hand,
optimally designed control rules successfully lowered voltages
and brought them close to unity on all buses.

We next studied the impact of the stability margin ϵ on the
optimal cost L(z) of (10) under Volt/VAR rules. Recall that
ϵ determines the feasible space of design parameters via (6).
The larger the ϵ, the more restricted problem (9) is. Table I
confirms this by presenting the objectives during training for
a range of ϵ values. Table I also lists the chosen initial value
for α, represented by αinit, that renders the initial z feasible
for the corresponding value of ϵ. The objective converged to
the highest value for ϵ = 0.9 and the lowest for ϵ = 0.5. Note
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Fig. 8. Voltage profiles across different scenarios and control options: This
plot shows the voltage magnitude across all buses. Each point corresponds
to a different grid loading scenario. The three colors correspond to different
control options: Red denotes no reactive power compensation by DERs (unit
power factor): Blue denotes Volt/VAR rules with the default rule parameters
suggested by the IEEE Std. 1547; and Green denotes optimized Volt/VAR
rules.

TABLE I
TEST RESULTS CAPTURING THE EFFECT OF ϵ ON THE OPTIMAL OBJECTIVE

VALUE FOR VOLT/VAR CONTROL RULES. THE SMALLER THE ϵ, THE
LARGER THE FEASIBLE REGION FOR RULE PARAMETERS IS, AND SO

LOWER VOLTAGE REGULATION VALUES CAN BE ATTAINED.

ϵ αinit Objective (p.u.)
0.9 0.4 2.22 · 10−3

0.8 0.5 1.37 · 10−3

0.7 1 1.06 · 10−3

0.6 1.5 9.73 · 10−4

0.5 1.5 8.50 · 10−4

that for the studied scenarios, reducing ϵ below 0.5 did not
impact the optimal value of the objective, which indicates that
the feasible space for ϵ = 0.5 contains the optimizers for all
ϵ ≤ 0.5 as well. Consequently, ϵ has been fixed at 0.5 for the
subsequent results on the 37-bus feeder.

We also studied the performance of control rules on sce-
narios other than those used for designing the rules. To obtain
different loading conditions over time, we scaled the overall
solar generation by 0.8. Then two sets of control rules were
designed. The first set of rules was designed using S = 60
samples drawn between 2:00-3:00 pm and is referred to as the
in-sample sample rules. The second set of rules was designed
using S = 60 samples drawn between 1:00-2:00 pm and is
referred to as the out-of-sample control rules. Both sets of
rules were then evaluated on the samples drawn between 2:00-
3:00 pm. Figure 9 illustrates the voltage experienced on each
bus and across all S = 60 scenarios for the two sets of control
rules. The voltages experienced with no Volt/VAR control are
also plotted for comparison. Both sets of rules improved the
voltage profile over the no Volt/VAR control option, yet out-of-
sample exhibited a somewhat inferior performance compared
to the in-sample rules as expected.

While rules were designed using the linearized grid model,
their performance on the accurate AC grid model was also
evaluated. For this purpose, the in-sample control rules de-

TABLE II
TESTS COMPARING THE MINLP WITH THE DNN-BASED ORD FOR

DIFFERENT NUMBERS OF SCENARIOS S , WITH NG = 5 SMART DERS.

S
MINLP DNN

Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)
10 Yes 2.45 9.82 · 10−4 18.16 9.82 · 10−4

20 Yes 3.64 1.57 · 10−3 20.08 1.58 · 10−3

40 Yes 123.32 2.78 · 10−3 20.63 2.78 · 10−3

80 No 300 2.68 · 10−3 22.17 2.62 · 10−3

Fig. 9. Bus voltages of the IEEE 37-feeder across S = 60 scenarios during
2:00-3:00 pm. In-sample rules were designed and validated using the same
S = 60 scenarios drawn between 2:00-3:00 pm. Out-of-sample rules were
designed using S = 60 scenarios from 1:00-2:00 pm, and validated using
the S = 60 scenarios drawn from 2:00-3:00 pm. Voltages experienced during
2:00–3:00 pm with no Volt/VAR control are also shown for comparison. As
expected, the performance of the rules degrades when rules are designed based
on non-representative scenarios.

signed in the previous paragraph for 2:00–3:00 pm were
applied and ran until equilibrium, under the linearized and AC
power flow models. Then for each bus and scenario, a percent-
age error was calculated by taking the difference between the
linearized and corresponding AC equilibrium voltage, divided
by the AC equilibrium voltage. The results are illustrated as
a box plot in Fig. 10. Evidently, the linearization error at
equilibrium is consistently less than 0.1% or approximately
0.001 per unit, which verifies that control rules are effective
over the AC grid model too.

The last test on the IEEE 37-bus feeder intended to provide
some intuition on the shape of the control rules designed
across different periods of the day. To this end, we sampled
three sets of S = 80 scenarios at three different hours of the
day: 9 am, 3 pm, and 6 pm. For each set, we quantified the
experienced voltage profiles by a single number given by the
objective of (9), before voltage regulation. We fixed the design
parameters v̄ and δ to 0.95 and 0.01, respectively, hence
localizing the impact of the control rule design process to σ
and α. The resulting Volt/VAR rules for Bus 5 are presented
in Figure 11. The legend for each rule captures the starting
time for drawing S = 80 consecutive samples. The value of
the objective of (9) for prior voltages is also presented for each
rule. Figure 11 shows that as the grid voltages move further
away from 1 pu, both α and σ increase, resulting in steeper
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Fig. 10. Comparison of equilibrium voltages under the linearized and the
exact AC grid models. Control rules were designed over the 2:00–3:00 pm
window using the linearized model and then ran until reaching equilibrium
using the linearized and AC models. Errors between the equilibrium voltages,
captured in the percentage of AC equilibrium voltage, were found to be small
enough to validate the proposed approach for designing control rules.

Fig. 11. Volt/VAR rules obtained for Bus 5. Three sets of voltage scenarios
were sampled. The deviation from the nominal 1 pu is captured by the value
for Obj for each of the sets. The Volt/VAR rules become steeper with higher
saturation limits as the grid voltages worsen.

curves with higher saturation limits. Such a design enables
the curves to provide more voltage regulation as grid voltages
worsen.

To verify the optimality and scalability of DNN-based ORD,
we benchmarked them against the MINLP formulation of (19).
The MINLP was allowed to run until completion or till 300
seconds, whichever happened earlier. Scaling with respect to
both the number of scenarios as well as DERs was studied.
Table II reports the results for the case when the number of
smart DERs was fixed to NG = 5 and scenarios were increased
from S = 10 to 80. As evident from Table II, the DNN-
based ORD scaled much better than the MINLP for larger
S, as expected. Furthermore, the DNN-based ORD achieved
the same objective as the MINLP across all tested values of
S. This is remarkable since SGD for non-convex problems
can only guarantee convergence to stationary points. Similar

TABLE III
COMPARING MINLP WITH THE DNN-BASED APPROACH

FOR DIFFERENT NG AND S = 80.

NG
MINLP DNN

Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)
2 Yes 3.90 3.62 · 10−3 14.12 3.62 · 10−3

4 No 300 3.22 · 10−3 17.96 3.18 · 10−3

6 No 300 2.77 · 10−3 21.95 2.35 · 10−3

8 No 300 1.40 · 10−3 33.42 1.16 · 10−3

10 No 300 1.20 · 10−3 39.76 8.50 · 10−4

Fig. 12. Inverter siting on the IEEE 123-bus distribution feeder.

conclusions can be drawn from Table III where we fixed S =
80 and varied NG from 2 to 10. The MINLP was faster than
the DNN-based approach for NG = 2, but could not be solved
within 300 seconds if more inverters were added. On the other
hand, the DNN-based ORD scaled gracefully with the NG and
achieved lower objectives for all NG ≥ 4.

The scalability of the DNN-based control rules was also
confirmed by implementing them for the larger IEEE 123-bus
feeder of Fig. 12. Active load data was generated by averaging
homes with IDs 20-386, three at a time, and were serially
assigned to buses 2-123. Solar generation from 10 panels
with IDs {106, 116, 119, 296, 372, 650, 734, 841, 933, 1574}
was added to buses {17, 29, 32, 39, 50, 71, 78, 96, 100, 114},
respectively. All solar buses were equipped with smart DERs
for reactive power support. The DNNs for Volt/VAR rules
were trained with the learning rate µ = 0.01, with ϵ set to
0.5. The design parameters z := (v̄, δ,σ,α) were initialized
at the feasible point (1.05, 0.1, 0.3, 1.5), and µ was set as
0.01. With NG and S fixed at 10 and 80, respectively, the
DNN-based ORD was compared to the MINLP one. For this
larger network, the MINLP solver was allowed to run until
500 seconds. To ensure repeatability, the results were repeated
across several time periods between 1− 6 PM, and have been
compiled in Table IV. For all time periods, the DNN-based
solver scaled well in terms of the DNN training time. The
MINLP solver could not converge within 500 seconds and
was outperformed by the DNN-based solver in terms of final
objective values across all setups.
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TABLE IV
TEST RESULTS COMPARING THE MINLP WITH THE DNN-BASED ORD

APPROACH FOR THE SINGLE-PHASE IEEE 123-BUS FEEDER, ACROSS
DIFFERENT TIME PERIODS FOR NG = 10 DERS AND S = 80 SCENARIOS.

Time MINLP DNN
Solved Time (s) Obj. (p.u.) Time (s) Obj. (p.u.)

1 pm No 500 9.26 · 10−4 28.6 8.95 · 10−4

2 pm No 500 6.69 · 10−4 30.18 6.40 · 10−4

3 pm No 500 4.17 · 10−4 27.55 3.92 · 10−4

4 pm No 500 2.17 · 10−4 29.83 2.09 · 10−4

5 pm No 500 2.98 · 10−3 27.53 2.87 · 10−4

Fig. 13. The three-phase IEEE 13-bus distribution feeder system.

B. Tests on a Multiphase Feeder

The DNN-based control rules were also tested on the
multiphase IEEE 13-bus feeder. Active loads from homes with
IDs 20-379 were averaged ten homes at a time. The resulting
36 averaged loads were added to buses 1-12, allocating all
three phases for a bus before moving on to the next one. Solar
generation was added to nodes per the panel assignments in
Fig. 13. Values in red, green, and blue correspond to panel
IDs assigned to Phases A, B, and C, respectively. Reactive
power compensation was provided by nine inverters added
across phases, and bus indices, as shown in Fig 13, with the
colors indicating the corresponding phase.

The learning rate for DNN-based control rules was set
to µ = 0.1, with the design parameters z := (v̄, δ,σ,α)
initialized to feasible values (0.95, 0.01, 0.3, 1.5). In the ab-
sence of an MINLP solver, the optimized DNN-based control
rules were benchmarked against control rules with the default
settings from the IEEE 1547.8 standard. Table V collects the
values for the objective (9) for S = 80 scenarios, across
different windows of time from 1− 5 pm, under three control
schemes– no reactive power compensation, optimized control
rules, and default control rules. The default control rules did
not manage to significantly reduce the objective (9), as the
grid conditions ṽ were observed to fall in the deadband of
the default control rules frequently. In contrast, the optimized
control rules took the grid conditions ṽ into consideration
while designing the deadband, and hence improved voltage
profiles considerably.

TABLE V
TEST RESULTS ON THE MULTIPHASE IEEE 13-BUS FEEDER FOR NG = 9

INVERTERS AND S = 80 SCENARIOS. COMPARING THE OBJECTIVE (9)
UNDER THREE SCENARIOS: NO REACTIVE POWER COMPENSATION,

OPTIMIZED CONTROL RULES, AND THE DEFAULT RULES PER IEEE 1547.

Time q = 0 Optimized Default
1 pm 2.51 · 10−3 1.15 · 10−3 2.31 · 10−3

2 pm 1.48 · 10−3 6.89 · 10−4 1.42 · 10−4

3 pm 6.89 · 10−4 4.94 · 10−4 6.89 · 10−4

4 pm 8.03 · 10−4 5.26 · 10−4 8.03 · 10−4

5 pm 5.51 · 10−4 4.11 · 10−4 5.51 · 10−4

VIII. CONCLUSIONS

This work has genuinely reformulated the ORD problem to
train a DNN using grid scenarios as training data, unit voltages
as desired targets for equilibrium voltages, and Volt/VAR
rule parameters as weights. The proposed DNN-based ORD
framework is general enough to accommodate Volt/VAR rules
on single- and multi-phase feeders. We have also reviewed
and extended results on the stability and convergence rates of
Volt/VAR control rules. For benchmarking purposes, we have
also developed a MINLP approach to ORD. The suggested
approaches have been validated using real-world data on
IEEE test feeders. The tests show that DNN-based ORD
outperforms the MINLP approach in terms of optimality under
time budgets and that optimized ORD curves outperform the
default values. Our findings form the foundations for exciting
research directions, such as: d1) Can the DNN-based ORD
framework be extended to designing incremental Volt/VAR
control rules with favorable stability characteristics? d2) What
are the appropriate Volt/VAR control rules for three-phase
(probably large-scale utility-owned) DERs?

APPENDIX

Proof of Proposition 1: By a contraction mapping argument,
reference [9] proves that as long as stable, the Volt/VAR
dynamics qt enjoy exponential convergence to the equilibrium
q∗. That means that if ∥ dg(α)X∥2 < 1, then

∥qt − q∗∥2 ≤ ∥dg(α)X∥2 · ∥qt−1 − q∗∥2.

Propagating the previous claim across time and for ϵ-stable
rules ∥dg(α)X∥2 ≤ 1− ϵ, we get that

∥qt − q∗∥2 ≤ ∥q0 − q∗∥2 · (1− ϵ)t ≤ 2∥q̂∥2 · (1− ϵ)t

since the initial distance to the equilibrium can be upper
bounded by ∥q0 − q∗∥2 ≤ 2∥q̂∥2. Because v = Xq + ṽ,
translate injection distances to voltage distances

∥vt − v∗∥2 ≤ 2∥X∥2∥q̂∥2(1− ϵ)t.

To ensure the voltage approximation error at time T is smaller
than ϵ1, or ∥vT −v∗∥2 ≤ 2∥X∥2∥q̂∥2(1−ϵ)T ≤ ϵ1, it suffices
to select T as

T log(1− ϵ) ≤ log
ϵ1

2∥X∥2∥q̂∥2
.

The claim follows by noticing that log(1− ϵ) < 0.
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Proof of Proposition 2: Reference [9, Th. 3] shows that
the Volt/VAR rules of f(·) are Lipschitz continuous in q with
∥ dg(α)X∥2 as the Lipschitz constant, that is

∥f(q)− f(q′)∥2 ≤ ∥dg(α)X∥2 · ∥q− q′∥2 (21)

for any q and q′ obeying (3d). From Hölder’s inequality for
matrix norms, it holds that

∥ dg(α)X∥22 ≤ ∥dg(α)X∥1 · ∥ dg(α)X∥∞
= ∥ dg(α)|X|∥1 · ∥ dg(α)|X|∥∞

where ∥ · ∥1 and ∥ · ∥∞ are defined as the maximum absolute
sums column-wise and row-wise, respectively. The equality
holds because α has positive entries. It is easy to check that
∥ dg(α)|X|∥1 is the maximum entry of vector |X|⊤α, and
∥ dg(α)|X|∥∞ is the maximum entry of vector dg(|X|1)α.
Consequently, enforcing (20) results in ∥ dg(α)X∥2 ≤ (1−ϵ).
Substituting ∥dg(α)X∥2 < (1− ϵ) in (21) yields

∥f(q)− f(q′)∥2 ≤ (1− ϵ)∥q− q′∥2 (22)

Since ϵ ∈ (0, 1), the above relation is a contraction mapping
over the space q ∈ [−q̄, q̄] with respect to the ℓ2-norm. The
latter establishes the existence and uniqueness of the equi-
librium, as well as the exponential convergence of Volt/VAR
dynamics. To explicitly derive the convergence result (20c),
note that qt = f

(
qt−1

)
and q∗ = f (q∗). From (22), we get

∥qt − q∗∥2 ≤ (1− ϵ)∥qt−1 − q∗∥2 ≤ (1− ϵ)t∥q0 − q∗∥2.

The claim follows as ∥q0 − q∗∥2 ≤ 2∥q̂∥2.
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