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Abstract—The IEEE 1547 Standard for the interconnection
of distributed energy resources (DERs) to distribution grids
provisions that smart inverters could be implementing Volt/VAR
control rules among other options. Such rules enable DERs to
respond autonomously in response to time-varying grid loading
conditions. The rules comprise affine droop control augmented
with a deadband and saturation regions. Nonetheless, selecting
the shape of these rules is not an obvious task, and the default
options may not be optimal or dynamically stable. To this end,
this work develops a novel methodology for customizing Volt/VAR
rules on a per-bus basis for a single-phase feeder. The rules are
adjusted by the utility every few hours depending on anticipated
demand and solar scenarios. Using a projected gradient descent-
based algorithm, rules are designed to improve the feeder’s
voltage profile, comply with IEEE 1547 constraints, and guar-
antee stability of the underlying nonlinear grid dynamics. The
stability region is inner approximated by a polytope and the
rules are judiciously parameterized so their feasible set is convex.
Numerical tests using real-world data on the IEEE 141-bus feeder
corroborate the scalability of the methodology and explore the
trade-offs of Volt/VAR control with alternatives.

Index Terms—Dynamic stability; second-order cone; nonlinear
dynamics; project gradient descent; voltage profile.

I. INTRODUCTION

Motivated by climate change concerns and rising fossil
fuel prices, countries around the globe are integrating large
amounts of solar photovoltaics and other distributed energy
resources (DERs) into the grid. Unfortunately, the uncertain
nature of photovoltaics and DERs can result in undesirable
voltage fluctuations in distribution feeders. Inverters equipped
with advanced power electronics can provide effective voltage
regulation through reactive power compensation if properly
orchestrated. This work aims at designing the Volt/VAR con-
trol rules for inverters, as recommended by the IEEE 1547.8
Standard [1], on a quasi-static basis to ensure their dynamic
stability and real-time voltage regulation performance.

Inverter-based voltage regulation has been extensively stud-
ied and adopted approaches can be classified as central-
ized, distributed, and localized. Centralized approaches entail
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communicating instantaneous load/solar data to the utility,
solving an optimal power flow (OPF) problem to obtain
optimal setpoints [2], and communicating back to inverters.
Although centralized approaches are able to compute optimal
setpoints, they may incur high computation and communica-
tion overhead in real time. Distributed approaches partially
address these concerns by sharing the computational burden
across inverters [3], [4]. However, they may need a large
number of iterations to converge, which leads to delays in
obtaining setpoints. Real-time OPF schemes where setpoints
are updated dynamically have been shown to be effective [5],
[6] by computing fast an approximate solution, yet two-way
communication is still necessary.

Controlling inverters using control rules has been advocated
as an effective means to reduce the computational overhead.
In such a scheme, inverter setpoints are decided as a (non)-
linear function of solar, load, and/or voltage data; see e.g., [7],
[8] and references therein. Although such approaches reduce
the computational burden, they still have high communication
needs if driven by non-local data. To this end, there has been
increased interest in local rules, i.e., policies driven by purely
local data [9]. Perhaps not surprisingly, local control rules lack
global optimality guarantees as established in [10], [11], yet
they offer autonomous inverter operation.

As a predominant example of local control rules, the IEEE
1547.8 standard provisions that inverter setpoints can be
selected upon Volt/VAR, Watt/VAR, or Volt/Watt rules [1].
The recommended rules take a parametric, non-increasing,
piecewise affine shape, equipped with saturation regions and
a deadband. Albeit easy to implement, designing the exact
shape of control curves is not an obvious task. Among the
different control options, Volt/VAR rules could be considered
most effective as voltage is the quantity to be controlled
and also carries non-local information. Watt/VAR curves have
been optimally designed before in [12], [13]. The resulting
optimization models involve products between continuous
and binary variables, which can be handled exactly using
McCormick relaxation (big-M trick) as in [13]. On the other
hand, designing Volt/VAR curves is more challenging as they
incur a closed-loop dynamical system, whose stability needs to
be enforced. Moreover, designing Volt/VAR curves gives rise
to optimization models involving products between continuous
variables, which are harder to deal with.

Although Volt/VAR rules have been shown to be stable
under appropriate conditions, their equilibria may not be
optimal in terms of voltage regulation performance [14], [15],
[16]. This brings about the need for systematically designing
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Volt/VAR curves and customizing their shapes based on grid
loading conditions on a per-bus basis. Volt/VAR dynamics
exhibit an inherent trade-off between stability and voltage
regulation. In view of this, several works have suggested
augmenting Volt/VAR rules with a delay component so that
the reactive power setpoint q(t) at time t depends on voltage
v(t) as well as the previous setpoint q(t−1). These so-termed
incremental rules have been studied and designed in [17],
[18], [19], [20], [21]. Here we focus on non-incremental
Volt/VAR curves to be compliant with the IEEE 1547.8
Standard. Reference [22] designs stable Volt/VAR curves to
minimize the worst-case voltage excursions when loads and
solar generation lie within a polyhedral uncertainty set. This
design task can be approximated by a quadratic program;
however, Volt/VAR rules are oversimplified as affine, ignor-
ing their deadband and/or saturation regions. For example,
reference [23] simultaneously optimizes affine Volt/VAR and
nonlinear (polynomial) Volt/Watt rules. The proposed opti-
mization program incorporates stability and adopts a robust
uncertainty set design. Reference [24] considers the detailed
model of Volt/VAR curves and integrates them into a higher-
level OPF formulation to properly capture the behavior of
Volt/VAR-driven DERs; nevertheless, here curve parameters
are assumed fixed and are not designed.

This work considers the optimal design of Volt/VAR control
rules in single-phase distribution grids. Using a dataset of
grid loading scenarios anticipated for the next 2-hr period,
the goal is to centrally and optimally design Volt/VAR con-
trol curves to attain a desirable voltage profile across a
feeder. The contributions are on three fronts: i) Develop a
scalable projected gradient descent algorithm to find near-
optimal Volt/VAR control curves. The computed curves are
customized per inverter location, comply with the detailed
form and constraints provisioned by the IEEE 1547 Standard,
and ensure stable Volt/VAR dynamics (Section IV); ii) Provide
a polytopic representation for the dynamic stability region
of Volt/VAR control rules (Section II-C); and iii) Select a
proper representation of the Volt/VAR rule parameters so that
stability and the IEEE 1547-related constraints are expressed
as a convex feasible set (Section III). The proposed design
scheme is evaluated using numerical tests using real-world
load and solar generation data on the IEEE 141-bus feeder.

The paper is organized as follows. Section II reviews an
approximate feeder model, the IEEE 1547 Volt/VAR rules,
their steady-state properties, and expands upon their stability.
Section III states the task of optimal rule design and selects
a proper parameterization of the rules. Section IV presents an
iterative algorithm based on projected gradient descent to cope
with the optimal rule design task. Numerical tests are reported
in Section V and conclusions are drawn in Section VI.

Notation: Column vectors (matrices) are denoted by lower-
(upper-) case letters. Operator dg(x) returns a diagonal matrix
with x on its diagonal. Symbol (·)⊤ stands for transposition;
and IN is the N ×N identity matrix.

II. FEEDER AND CONTROL RULE MODELING

A. Feeder Modeling

Consider a single-phase radial distribution feeder with N+1
buses hosting a combination of inelastic loads and DERs.
Buses are indexed by set N := {1, . . . , N}. Let vn denote
the voltage magnitude at bus n, and pn + jqn the complex
power injected at bus n ∈ N . Let vectors (v,p,q) collect the
aforesaid quantities across all buses. To express the depen-
dence of voltages on power injections, we adopt the widely
used linearized grid model [25]

v ≃ Rp+Xq+ v01 (1)

where v0 is the substation voltage. Matrices (R,X) are sym-
metric positive definite with positive entries. They depend on
the feeder topology and line impedances, which are assumed
fixed and known for the control period of interest. Symbol 1
denotes a vector of all ones and of appropriate length.

The vectors of power injections can be decomposed as

p = pg − pℓ and q = qg − qℓ

where pg + jqg is the complex power injected by inverter-
interfaced DERs, and pℓ+jqℓ is the complex power consumed
by uncontrollable loads.

Volt/VAR control amounts to adjusting qg with the goal
of maintaining voltages around one per unit (pu) despite
fluctuations in (pg,pℓ,qℓ). With this control objective in
mind, let us rewrite (1) as

v = Xqg + ṽ = Xq+ ṽ (2)

where with a slight abuse in notation, we will henceforth
denote qg simply by q. Moreover, vector ṽ := R(pg −
pℓ) − Xqℓ + v01 captures the effect of current grid loading
conditions on voltages, and will be referred to simply as the
vector of grid conditions.

B. Volt/VAR Rules

The IEEE 1547 standard provisions DERs to provide re-
active power support according to four possible modes: i)
constant reactive power; ii) constant power factor; iii) active
power-dependent reactive power (watt-var); and iv) voltage-
dependent reactive power (volt-var) mode. Mode i) is invariant
to grid conditions. Modes ii) and iii) do adjust reactive injec-
tions, yet adjustments depend solely on the active injection
of the individual DER. On the contrary, mode iv) adjusts the
reactive power injected by each DER based on its voltage
magnitude. Albeit measured locally, voltage carries non-local
grid information and constitutes the quantity of control interest
anyway. Hence, our focus is on Volt/VAR control rules.

Per the IEEE 1547 standard [1], a Volt/VAR control rule is
described by the piecewise affine function shown on Fig. 1(a).
This plot shows the dependence of reactive injection on local
voltages over a given range of operating voltages [vℓ, vh]. The
curve is described by voltage points (v1, v2, vr, v3, v4) and
reactive power points (q1, q4). To simplify the presentation,
let us suppose the Volt/VAR curve is odd symmetric around
the axis v = v̄ = vr. The simplified rule shown in Fig. 1(b)
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Fig. 1. (a) IEEE 1547 Volt/VAR rule [1]; and (b) its symmetric version.

can be described by four parameters: the reference voltage v̄;
the deadband voltage v̄+ δ; the saturation voltage v̄+ σ; and
the saturation reactive power injection q̄. Per the standard, the
tuple (v̄, δ, σ, q̄) expressed in pu is constrained as

0.95 ≤ v̄ ≤ 1.05 (3a)
0 ≤ δ ≤ 0.03 (3b)

δ + 0.02 ≤ σ ≤ 0.18 (3c)
0 ≤ q̄ ≤ q̂. (3d)

Constraint (3d) ensures the extreme reactive setpoints are
within the reactive power capability q̂ of the DER. It is worth
emphasizing here that the Volt/VAR curve can be designed
to saturate at q̄ that can be lower than q̂. The standard also
specifies default settings as δ = 0.02, σ = 0.08, v̄ = 1, and
q̄ = q̂ = 0.44p̄, where p̄ is the per-unit kW rating of the DER.

The rule segment over [v̄+ δ, v̄+ σ] can also be written as

q = −α(v − v̄ − δ) where α =
q̄

σ − δ
> 0. (4)

The rule segment over [v̄ − σ, v̄ − δ] is q = −α(v − v̄ + δ).
We will see later that the slope α is crucial for stability.

Although the standard offers flexibility in the design of
Volt/VAR curves, it is not clear to utilities and software
vendors how to optimally tune such control settings. The
tuple (v̄, δ, σ, q̄) can be customized on a per bus basis. Let
qn = fn(vn) denote the Volt/VAR rule for bus n. The rule
for DER n is parameterized by (v̄n, δn, σn, q̄n). Let vectors
(v̄, δ,σ, q̄) collect the rule parameters across all buses.

When Volt/VAR-controlled DERs interact with the electric
grid, they give rise to the nonlinear dynamical system [14]

vt = Xqt + ṽ (5a)

qt+1 = f(vt). (5b)

where the n-th entry of (5b) denotes the Volt/VAR rule qn =
fn(vn) for DER n. Given the nonlinear dynamics of (5), three

questions arise: q1) Is the system stable? In other words, if
initiated at some v0 for t = 0, DERs run Volt/VAR rules qn =
fn(vn) for all n, and grid experiences loading conditions ṽ,
do the nonlinear dynamics of (5) reach an equilibrium where
vt = veq and qt = qeq for all t > T for some T ? During the
interval t ∈ [0, T ], the grid loading conditions ṽ are assumed
time-invariant assuming Volt/VAR dynamics are faster than
load/solar variations. q2) If stable, what is its equilibrium? and
q3) Is that equilibrium useful for voltage regulation? These
questions have been addressed in [14], [15]. We review and
build upon those answers.

C. Stability of Volt/VAR Rules

Regarding q1), let vector α collect all slope parameters αn

and define the diagonal matrix A := dg(α). The nonlinear
dynamics in (5) are stable if ∥AX∥2 < 1, where ∥AX∥2 is
the maximum singular value of AX; see [14], [15], [16] for
proofs of local and global exponential stability. If DERs are
installed only on a subset G ⊆ N of buses, the condition
becomes ∥AXGG∥2 < 1, where XGG is obtained from X by
keeping only its rows/columns associated with the buses in
G. To simplify the presentation, we will henceforth assume
G = N , and elaborate when needed otherwise.

Because it is hard to satisfy ∥AX∥2 < 1 as a strict
inequality, one may want to tighten the constraint as [22]

∥AX∥2 ≤ 1− ϵ (6)

for some positive ϵ. Constraint (6) can be expressed as a linear
matrix inequality (LMI) on α as[

(1− ϵ)I AX
XA (1− ϵ)I

]
≻ 0.

This is because by Schur’s complement, the LMI is equiv-
alent to (1 − ϵ)2I ⪰ XA2X, or equivalently, ∥AX∥2 =√
λmax(XA2X) ≤ 1−ϵ. To avoid the computational complex-

ity of an LMI, reference [14] surrogated the LMI for ϵ = 0
by the linear inequality ∥α∥∞ · ∥X1∥∞ < 1. This inequality
may be conservative as it upper bounds all slopes αn by the
same constant ∥X1∥−1

∞ . We next propose a tighter restriction
of the LMI involving only linear inequality constraints.

Lemma 1. The dynamical system in (5) is stable if

Xα ≤ (1− ϵ) · 1 (7a)

α ≤ (1− ϵ) · [dg(X1)]
−1

1 (7b)

with the inequalities understood entrywise.

Proof: Matrices A and X have non-negative entries. By
a rendition of Hölder’s inequality, it holds that

∥AX∥22 ≤ ∥AX∥1 · ∥AX∥∞

where ∥AX∥1 is the maximum column-sum and ∥AX∥∞
is the maximum row-sum of matrix AX. It is not hard to
verify that (7a) implies ∥AX∥1 ≤ 1 − ϵ, while (7b) implies
∥AX∥∞ ≤ 1− ϵ, so (6) follows.

Note that previous works have suggested that (7b) alone is
sufficient to ensure stability [15], [21]. The next counterexam-
ple shows that (7a) is needed as well. Suppose a toy feeder
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with three buses. Bus 1 is connected to the substation, and
bus 2 is connected to bus 1. Both lines have 1-pu reactance.
Matrix X can be found to be

X =

[
1 1
1 2

]
.

The slope vector α1 = (1−ϵ)[ 12
1
3 ]

⊤ satisfies (7b) with equal-
ity. Nonetheless, it does not satisfy (6) as ∥dg(α1)X∥2 =
(1 − ϵ) · 1.014 ≥ 1 − ϵ. Indeed, vector α1 violates (7a) as
Xα1 = (1− ϵ) · [0.833 1.1167]⊤.

D. Equilibrium Voltages and VAR Injections

Regarding question q2), if stable, the dynamics of (5) reach
the equilibrium

veq = Xqeq + ṽ (8a)
qeq = f(veq). (8b)

Interestingly, the equilibrium qeq actually coincides with the
unique minimizer of the convex quadratic program [15], [14]

qeq = argmin
q

V (q) + C(q) (9)

s.to − q̄ ≤ q ≤ q̄

with the two components in the cost of (9) being defined as

V (q) :=
1

2
q⊤Xq+ q⊤(ṽ − v̄) and (10a)

C(q) :=
∑
n∈G

1

2αn
q2n + δn|qn|. (10b)

Let us elaborate on (9): Under grid conditions ṽ and if the
DERs implement the Volt/VAR rules described by (v̄, δ, q̄,α)
under (6), the reached equilibrium qeq is the q that minimizes
V (q) + C(q) subject to −q̄ ≤ q ≤ q̄. Because X is positive
definite, the minimizer of (9) and thus the equilibrium qeq, are
unique [14, Th. 4]. Are DER injections qeq and the associated
equilibrium voltages veq = Xqeq+ ṽ desirable? The fact that
qeq constitutes the minimizer of (9) provides useful intuition
as suggested in [15], [26], [19]. Component C(q) in the
objective penalizes excessive reactive power injections that can
increase power losses. Component V (q) on the other hand can
be shown to be equal to [15]

V (q) =
1

2
(v − v̄)⊤X−1(v − v̄) + constants.

Because X−1 ≻ 0, this is a rotated ℓ2-norm of voltage
deviations from reference voltages v̄. For voltage regulation
purposes, one would prefer minimizing ∥v − 1∥22 rather than
V (q). Even if V (q) was a reasonable proxy for voltage regu-
lation, problem (9) includes also C(q) in its objective. Then,
to minimize V (q), the component C(q) should be diminished
by sending δ to zero and α to infinity as commented in [15],
[21]. That would cancel deadbands and cause stability issues
as α is upper bounded by (6).

When DERs are placed on a subset of buses, the objective
component V (q) in (9) should be altered as

VG(q) :=
1

2
q⊤XGGq+ q⊤(ṽG − v̄)

=
1

2
(vG − v̄)⊤X−1

GG(vG − v̄) + constants (11)

where (qG ,vG , ṽG) are the subvectors of (q,v, ṽ) correspond-
ing to buses with inverters comprising G. Again, the objective
component VG(q) may not be good proxy for ∥v − 1∥22. In
a nutshell, the equilibrium veq reached by Volt/VAR rules
may not be a desirable voltage profile. In essence, this is
the price to be paid for allowing local Volt/VAR rules, i.e.,
rules driven exclusively by local voltages rather than global
information [15], [26]. Due to this locality, Volt/VAR rules
can respond to solar/load fluctuations in real time without
communicating with the operator. To improve the voltage
profile, the operator can carefully design stable control rules
so that the minimizer of (9) yields a more desirable voltage
profile. Control rule parameters can be customized per bus
and optimized centrally on quasi-static basis (e.g., every two
hours). The optimal design of Volt/VAR curves should be
solved centrally as the operator knows the feeder model and
has estimates or historical data on the load/solar conditions to
be experienced over the next hour.

III. PROBLEM FORMULATION

This section tackles optimal rule design in three steps: s1)
It first selects a convenient representation for the Volt/VAR
rule parameters; s2) It then defines the feasible set for these
parameters; and s3) Defines the cost to be optimized.

Starting with step s1), let vector z collect some parameter-
ization of the Volt/VAR rules. The rule parameters z should
satisfy the IEEE 1547 and stability constraints of (3) and (7),
respectively. All these constraints create the feasible set Z for
z. We would like to parameterize z in a way so that Z is con-
vex. This would be useful later when we would like to project
iterates of z onto Z . The rule for each DER has essentially four
degrees of freedom. For example, the description in (3) sets
(v̄, δ,σ, q̄) as the free parameters, whereas problem (9) uses
(v̄, δ,α, q̄) instead. These parameterizations are equivalent as
(δn, σn, αn, q̄n) are related via (4). To end up with a convex
Z , we will use yet another third equivalent parameterization.
Specifically, we introduce variable

cn :=
1

αn
∀n ∈ G (12)

per DER n. Let vector c collect all cn’s. The control rules can
then be parameterized by

z := (v̄, δ,σ, c). (13)

Under the parameterization of (13), we proceed with step
s2) of defining feasible set Z . If we translate the IEEE and
stability constraints of (3) and (7) over z, we can see that Z
is described by constraints

0.95 · 1 ≤ v̄ ≤ 1.05 · 1 (14a)
0 ≤ δ ≤ 0.03 · 1 (14b)

δ + 0.02 · 1 ≤ σ ≤ 0.18 · 1 (14c)
σ − δ ≤ dg(q̂) · c (14d)

c ≥ 1

1− ϵ
X1 (14e)
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∑
m∈G

Xnm
1

cm
≤ 1− ϵ, ∀n ∈ G. (14f)

Note constraint (14d) is equivalent to (3d) since [cf. (4)]

cn =
σn − δn

q̄n
> 0.

Moreover, constraint (14e) ensures c is positive as matrix X
has positive entries.

With the exception of (14f), the constraints in (14) are linear.
Albeit convex, constraint (14f) cannot be directly expressed in
convex conic form. We introduce a set of auxiliary variables
an collected in vector a, and replace (14f) by constraints

Xa ≤ (1− ϵ) · 1 (15a)
ancn ≥ 1, ∀ n ∈ G. (15b)

Evidently, if 1/cm ≤ am for all m from (15b) and be-
cause X has positive entries, we get that

∑
m∈G Xnm

1
cm

≤∑
m∈G Xnmam ≤ 1 − ϵ for all n. Therefore, the constraints

in (15) imply (14f). Constraint (15a) is linear, while (15b) can
be expressed as a second-order cone (SOC) constraint. Notice
each an may not necessarily be equal to αn; it only holds that
an ≥ αn = 1/cn. The feasible set Zϵ is finally described as

Zϵ := {z : (z,a) satisfying (14a)–(14e) and (15)} (16)

where the subscript ϵ indicates the dependence of Zϵ on ϵ.
The stability condition in (6) could have been handled as

∥AX∥F ≤ 1−ϵ since ∥AX∥2 ≤ ∥AX∥F as in [22]. Although
∥AX∥F ≤ 1− ϵ can be imposed as a single convex quadratic
constraint in α, having α rather than c in the parameterization
would have rendered Zϵ non-convex due to (14d).

We continue with step s3) to select a proper objective.
To optimally select z, the operator samples S scenarios of
load/solar injections (pg

s ,p
ℓ
s,q

ℓ
s) for s = 1, . . . , S, which are

representative of the grid conditions to be experienced over
the next two hours. Each tuple (pg

s ,p
ℓ
s,q

ℓ
s) yields the non-

controllable voltage term of (2)

ṽs = R(pg
s − pℓ

s)−Xqℓ
s + v01. (17)

Given ṽs and applying stable Volt/VAR control rules param-
eterized by z, the feeder reaches the equilibrium of (8) for
which we use the notation

vs = Xqs + ṽs (18a)
qs = f(vs). (18b)

Rule parameters z can then be selected as the minimizer of

min
z∈Zϵ

F (z) :=
1

2S

S∑
s=1

∥vs(z)− 1∥22. (19)

The objective sums up the squared voltage deviations from
unity at equilibrium across all buses and scenarios. Parameter
ϵ > 0 can be varied to find the desirable trade-off between
voltage profile and stability considerations [22], [23]. Notation
vs(z) captures the dependence of the equilibrium voltage vs

for scenario s on parameters z. Different from VG(q) in (11),
problem (19) aims at minimizing voltage deviations across all
buses, not only the buses equipped with inverters. Section IV

puts forth an iterative algorithm for solving (19). Before doing
so, a discussion on how the proposed methodology can be
extended to non-symmetric Volt/VAR curves is due.

A. Non-symmetric Volt/VAR Rules

It should be noted that the Volt/VAR rules provisioned by
the IEEE Standard 1547 do not need to be odd symmetric
around the reference voltage. We next sketch how the analysis
and optimization models presented so far can be extended to
accommodate non-symmetric Volt/VAR rules.

Non-symmetric rules can be described by a tuple of seven
parameters per DER n as (v̄n, δ

+
n , α

+
n , q̄

+
n , δ

−
n , α−

n , q̄
−
n ). The

superscripts + and − refer to the curve for vn > v̄n and
vn < v̄n, respectively. Similar to (4), parameters σ+

n and σ−
n

can be derived as

σ+
n =

q̄+n
α+
n

+ δ+n and σ−
n =

q̄−n
α−
n

+ δ−n .

It is trivial to extend constraints (14a)–(14d) to the non-
symmetric setting using the newly introduced variables. We
expound on the non-trivial modifications.

For stability, according to [15], [14], condition ∥AX∥2 < 1
ensures non-symmetric Volt/VAR rules are stable if the αn’s
on the diagonal of A are defined as αn := max{α+

n , α
−
n }.

We next translate that result to the polytopic restriction of
∥AX∥2 < 1− ϵ. Introduce c+n = 1/α+

n and c−n = 1/α−
n , and

collect them in vectors c+ and c−, accordingly. Stability can
be enforced by: i) duplicating (14e) with c being replaced by
c+ and c−; and ii) substituting (15b) by

anc
+
n ≥ 1 and anc

−
n ≥ 1 ∀n.

Regarding the equilibrium of Volt/VAR dynamics with non-
symmetric rules, it can be shown to be unique and provided
as the minimizer of the convex program

min
q

V (q) + Cns(q) (20)

s.to − q̄− ≤ q ≤ q̄+

where V (q) is exactly as in (10a), while Cns(q) is defined as

Cns(q) :=
∑
n∈G

1

2α+
n
[qn]

2
++δ+n [qn]++

1

2α−
n
[qn]

2
−+δ−n [qn]−

for the convex functions

[qn]+ := max{qn, 0} and [qn]− := max{−qn, 0}.

The proof is similar to those in [15], [14], [26], and is therefore
omitted.

IV. SOLUTION METHODOLOGY

Problem (19) is non-convex. In fact, it can be interpreted
as a bilevel optimization problem as vs(z) = Xqs(z) + ṽs

and qs(z) is the minimizer of the inner problem in (9). More
specifically, problem (19) can be expressed as

min
z∈Zϵ

F (z) :=
1

2S

S∑
s=1

∥Xqs(z) + ṽs − 1∥22 (21)

s.to qs(z) minimizes (9) for vs and z, ∀s.
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This bilevel program can be reformulated and solved as a
mixed-integer program. To avoid the involved computational
complexity, we resort to tackling the outer problem via gradi-
ent descent approach. More precisely, to find a stationary point
of (21), we propose applying the projected gradient descent
iterates

zi+1 :=
[
zi − µgi

]
Zϵ

(22)

where µ > 0 is a step size; gi is the gradient of F with respect
to z evaluated at zi; and [·]Zϵ denotes the projection operator
onto set Zϵ. We next elaborate on the projection onto Zϵ, and
on computing the gradient gi.

The projection [x]Zϵ can be seen as an operator which takes
a vector argument x and returns the minimizer

[x]Zϵ
:= arg min

z∈Zϵ

∥x− z∥22. (23)

Here [x]Zϵ
is the projection of x onto set Zϵ defined in

(16). Note that for the iterations in (22), the argument of the
projection would be (zi − µgi) at iteration i.

Since Zϵ has been selected to be a convex set, the projection
step in (23) can be formulated as a second-order cone program
(SOCP) per iteration i. We next compute the gradient gi. The
gradient of function F defined in (19) with respect to z is

∇zF =
1

S

S∑
s=1

(∇zvs)
⊤
(vs − 1) . (24)

The Jacobian ∇zvs can be computed via the chain rule as

∇zvs = X · ∇zqs. (25)

Note that qs = f (vs, z) depends both on voltages
and Volt/VAR parameters. Moreover, voltages depend on qs

through the equilibrium of the Volt/VAR dynamics of (5).
Therefore, to compute the Jacobian matrix ∇zqs, we need
to compute total derivatives as

∇zqs =
∂f

∂vs
· ∇zvs +

∂f

∂z
· ∇zz

=
∂f

∂vs
·X · ∇zqs +

∂f

∂z
.

The second step follows from (25) and ∇zz = I. Then, we
get that

∇zqs =

(
I− ∂f

∂vs
·X

)−1

· ∂f
∂z

(26)

Let us now compute the Jacobian matrices ∂f
∂vs

and ∂f
∂z ap-

pearing in the previous formula. The control rule qn = fn(vn)
of DER n depends on the Volt/VAR parameters and the voltage
at this specific bus n. It does not depend on the Volt/VAR
parameters or voltages at other buses. Therefore, to compute
∂f
∂vs

and ∂f
∂z , it suffices to find

∂fn
∂vn

,
∂fn
∂v̄n

,
∂fn
∂δn

,
∂fn
∂σn

,
∂fn
∂cn

for all n.

The remaining entries of ∂f
∂vs

and ∂f
∂z would be zero.

To compute the aforesaid partial derivatives, let us express
the control rule in a more convenient form. Recall that if u(v−
v0) is the Heaviside step function for voltage v shifted by some

Algorithm 1 PGD for Optimal Volt/VAR Control Rule Design
Input: Load/solar scenarios {(pg

s ,p
ℓ
s,q

ℓ
s)}Ss=1

Output: Near-optimal Volt/VAR rule parameters z
1: Compute ṽs from (17) for s = 1 : S
2: Find initial feasible z1 by solving SOCP in (23) for x = 0

3: while |F (zi)−F (zi−1))|
F (zi−1) > 10−6 do

4: Solve the QP in (9) to find qs for s = 1 : S
5: Compute vs from (18a) for s = 1 : S
6: Compute gradient gi from (24)–(27)
7: Update zi+1 via (22) by solving the SOCP in (23)
8: end while

parameter v0, then r(v−v0) := (v−v0) ·u(v−v0) is a shifted
ramp function. We also know that

∂r(v − v0)

∂v
= u(v − v0) and

∂r(v − v0)

∂v0
= −u(v − v0).

These partial derivatives are undefined when v = v0.
Building on the above, heed that the control rule can be

expressed as the sum of four ramp functions

fn(vn) =
1

cn

[
(r(vn − v̄n − σn)− r(vn − v̄n − δn)

]
+

1

cn

[
r(−vn + v̄n − δn)− r(−vn + v̄n − σn)

]
.

It is then easy to compute the sought derivatives as

∂fn
∂vn

=
1

cn

[
u(vn − v̄n − σn)− u(vn − v̄n − δn)

]
(27a)

+
1

cn

[
− u(−vn + v̄n − δn) + u(−vn + v̄n − σn)

]
∂fn
∂v̄n

=
1

cn

[
− u(vn − v̄n − σn) + u(vn − v̄n − δn)

]
(27b)

+
1

cn

[
u(−vn + v̄n − δn)− u(−vn + v̄n − σn)

]
∂fn
∂δn

=
1

cn

[
u(vn − v̄n − δn)− u(−vn + v̄n − δn)

]
(27c)

∂fn
∂σn

=
1

cn

[
u(−vn + v̄n − σn)− u(vn − v̄n − σn)

]
(27d)

∂fn
∂cn

= −fn(vn)

cn
= −qn

cn
. (27e)

Each one of the first four partial derivatives is not defined at
two or four of the breakpoints {v̄n ± δn, v̄n ± σn}. Landing
on those points during the iterative process however is a zero-
measure event.

Evaluating gradient gi at zi requires computing the equilib-
rium injections {qs(z

i)}Ss=1 for zi at iteration i. These equilib-
rium injections can be computed either as the minimizer of (9),
or by simulating the grid dynamics in (5) until convergence.
The dynamics are guaranteed to converge as zi ∈ Zϵ, and
thus, yield stable rules for all PGD iterations i. Nonetheless,
the settling time for the dynamics varies with ϵ. The algorithm
is summarized as Alg. 1.

V. NUMERICAL TESTS

The proposed Volt/VAR design was numerically evaluated
using the IEEE 141-bus feeder converted to single-phase [27].
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Fig. 2. IEEE 141-bus feeder with 30 PVs added at highlighted green buses.

Since the original feeder had no solar generation units, we
added 26 0.5MW PVs, and four 2MW PVs at buses 126, 127,
128, 129 as shown in Fig. 2. All tests were run on an Intel Core
i7–10700F CPU at 2.90 GHz, 32 GB RAM desktop computer
with a 64-bit operating system. We used MATLAB 2022a and
MATPOWER 7.1 for AC PF tests, and YALMIP and Gurobi
9.5.1; the code is available online at https://github.
com/IlgizMurzakhanov.

Regarding data generation, real-world one-minute active
load and solar generation data were extracted for April 2,
2011 from the Smart* project [28]. For active loads, homes
with indices 20-369 were used. For each one of the 84 non-
zero injection buses of the IEEE 141-bus system, the load was
obtained upon averaging active loads of every 4 consecutive
homes of the Smart* project. The values of active loads were
subsequently scaled, so that maximum active load values per
bus were 2.5 times the benchmark value. As the Smart* project
does not provide reactive loads, reactive loads were syntheti-
cally generated from active loads using the power factors of the
IEEE 141-bus benchmark. Active solar generation values were
scaled, so the maximum value per PV matched its benchmark
value. Volt/VAR rules were designed based on scenarios during
the periods 09:00–11:00 and 13:30–15:30. For each of these
two periods, the 120 one-minute data points were averaged
per 5-minute intervals to produce a total of S = 24 scenarios.

For our tests, the Volt/VAR parameters z were designed
using Algorithm 1. It is worth stressing the difference between
the time steps of the dynamical system indexed by t in (5),
and the PGD iterations indexed by i in (22). The former
characterizes the number of time steps needed for the physical
system to settle after changing ṽ; the latter determines the
computational time needed for finding the optimal z.

Influence of Parameter ϵ. First, we experimented with the

Fig. 3. Voltage magnitudes during the 09:00–11:00 interval for optimized
curve parameters using ϵ = 0.01 [top panel]; ϵ = 0.9 [middle panel]; and
unit power factor (i.e. no reactive power support [bottom]. Voltages are shown
on a subset of buses obtained upon sampling one every 15 buses. The different
colors correspond to the 24 load and PV generation scenarios studied.

stability margin constant ϵ. It is obvious from constraints (14e)
and (15a) that larger values of ϵ yield a smaller feasible set
Zϵ for z. In other words, for larger ϵ the operator puts more
emphasis on stability at the expense of attaining a possibly
higher voltage regulation cost. This trade-off is supported
by Fig. 3 showing feeder voltages sampled every 15 buses
computed by the linearized grid model across all S = 24
scenarios. Parameter ϵ = 0.01 achieves a better voltage profile
compared to the profile obtained with ϵ = 0.9. Either options
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Fig. 4. Cost convergence of PGD iterations during the 9:00–11:00 interval.
The option of ϵ = 0.01 entails that the optimal curve parameters z are selected
from a larger feasible set compared to the option ϵ = 0.9; and it can hence
attain a smaller optimal voltage regulation cost.

attain improved voltage profiles compared to the profile shown
at the bottom panel corresponding to inverters operating at unit
power factor. The latter option of no reactive power support
leads to voltage violations exceeding 5% at various buses and
different scenarios.

Fig. 4 shows the convergence of the PGD iterations in terms
of the cost function of (21). Of course, smaller values of ϵ may
lead to control rules that are closer to instability and experience
longer settling times. In our tests, Volt/VAR dynamics settled
in 8-9 time steps for ϵ = 0.01, and 2-3 steps for ϵ = 0.9.
Considering the previous discussion, we fixed ϵ = 0.01 for
the remaining tests.

Running Time. The most time consuming steps of Alg. 1 are:
Step 4 where the QP of (9) is solved S times per PGD iteration;
and Step 7 where the SOCP of (23) is solved once per PGD
iteration. The QP took roughly TQP = 0.0029 sec per scenario,
and the SOCP took approximately TSOCP = 0.0593 sec. All
other steps had comparatively negligible times. The com-
putation times for QP/SOCP were relatively invariant to ϵ.
Assuming no parallelism (the QPs can be solved in parallel),
each PGD iteration took 0.13 sec. As PGD was terminated
after about 500 iterations (cf. Fig. 4), it took roughly 1 minute.

Linearized vs. AC Grid Model. Thus far, the feeder has
been modeled using the linearized model of (1). The next set
of tests intends to evaluate the designed control rules using
the actual AC grid model. To this end, we first found the
optimal z for the rules of Fig. 1 using the PGD algorithm.
Then, the rules were applied iteratively on the AC grid model,
i.e., equation (5a) was replaced by a power flow solver. Fig. 5
shows the error in voltages between the linearized and the
AC grid model at equilibrium. As in Fig. 3, voltages are
shown at a subset of 10 buses obtained by sampling one
every 15 buses. As demonstrated by the plotted error, the
linearized model provides a reasonable approximation with
the largest deviation across buses and scenarios being less than
5 ·10−5 pu. And this despite the fact that under the considered
scenarios, the grid was heavily loaded and away from the
unloaded conditions around which the linearized model has
been derived. Beyond equilibrium voltages, an example of

Fig. 5. Error between voltage magnitudes at equilibrium obtained by the
linearized and the AC grid model over S = 24 scenarios during the 09:00–
11:00 interval. Voltage are shown on a subset of buses obtained upon sampling
one every 15 buses.

Fig. 6. Error in dynamic voltages during Volt/VAR transients between the
linearized and AC grid models over one scenario of the 9:00–11:00 period.

which we showed in Fig. 3, Volt/VAR dynamics also exhibited
similar transient behavior under the linearized and the AC
models: Fig. 6 depicts the error in the dynamic evolution
of voltages between the two models under one representative
scenario. Similar behavior in terms of error and convergence
within 5-10 steps was observed across scenarios. These two
tests on equilibrium and dynamic voltages corroborate that the
feeder can be well approximated by the linearized model.

Comparison with Alternatives. The proposed Volt/VAR ap-
proach is compared numerically to four inverter-based voltage
regulation alternatives, which are detailed next.

a1) Unit power factor operation under which inverters do not
provide reactive power compensation.

a2) Per-scenario optimal operation: Inverter setpoints are
optimized per scenario by solving the problems

min
−q̂≤qs≤q̂

∥Xqs + ṽs − 1∥22 for s = 1, . . . , S.

This scheme requires frequent two-way communication
between the utility and DERs, but serves as a benchmark.
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Fig. 7. Boxplots of voltages during the 13:30–15:30 interval across all 140
buses and 24 scenarios using the four voltage regulation alternatives and
the proposed customized Volt/VAR rules. Voltage regulation alternatives: a1)
unit power factor operation, a2) per-scenario optimal operation, a3) optimal
stochastic operation across scenarios, a4) default Volt/VAR settings.

a3) Optimal stochastic operation across scenarios: Inverter
setpoints are updated once every two hours and they are
determined as the minimizers of the stochastic problem

min
−q̂≤q≤q̂

S∑
s=1

∥Xq+ ṽs − 1∥22.

As with Volt/VAR rules, here the utility communicates
with DERs only once over the 2-hr period to com-
municate the setpoint q. Different from the Volt/VAR
rules however, setpoints here are not adaptive to grid
conditions.

a4) Default Volt/VAR settings. Here we implement the default
settings of the IEEE 1547.8 Standard for DERs of Type
B, which are recommended under high DER penetration
with frequent large variations [1, Table 8].

Apparently, scheme a2) should attain lower voltage devia-
tion metric (VDM)

VDM :=
1

2S

S∑
s=1

∥vs − 1∥22

than scheme a3). The metric VDM is equivalent to the cost
F (z) the ORD task is trying to minimize over z. Our goal is
for the optimized Volt/VAR curves to perform better than a3)
and a4), thus, hitting the sweet spot between communication
and voltage regulation performance.

Fig. 7 depicts the distribution of voltages across all N = 140
buses and S = 24 scenarios using the four alternatives and the
optimized Volt/VAR rules. Voltage profiles under a1) exhibit
unacceptable deviations. Scheme a2) offers acceptable voltage
regulation at the expense of increased communication and

Fig. 8. Voltages experienced under unseen or out-of-sample loading scenarios,
that is scenarios not used while designing the Volt/VAR control curves in (19).
Rules here were trained using scenarios drawn from the 13:30–15:30 period.
Unseen scenarios were drawn from the same period (top), and the period
19:00-20:00 (bottom).

computation overhead. Scheme a3) violates the 5% voltage
limits. Scheme a4) provides acceptable voltages, yet it attains
higher VDM. It is should also be noted that for this partic-
ular setup, the default Volt/VAR settings did not satisfy the
stability constraint (7), but did satisfy the stability constraint
∥AX∥2 < 1− ϵ relying on the spectral norm. This shows that
the restriction of (6) by (7) is not tight as expected. Despite this
particular setup, the default are not necessarily stable under
all setups. For example, if thirty 1 MW-solar PV units are
installed on buses 20, 122, 50, 84, 67, and downwards towards
the leaves, they do violate the stability condition of (6) and
consequently (7). The customized Volt/VAR curves provide
practically relevant solutions, offering more concentrated volt-
age profiles than a3)-a4) due to their scenario-adaptive nature.
The same figure also reports the VDM for all four schemes,
and corroborates the superiority of Volt/VAR curves over a3)
and a4).

Out-of-Sample Loading Scenarios. How do the designed
rules perform under unseen or out-of-sample loading scenarios,
that is scenarios not used while solving (19)? To answer this
question, we designed the rules using a subset of scenarios, and
evaluated their voltage regulation performance on a different
subset of scenarios. We conducted two tests. In the first test, we
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Fig. 9. Tested IEEE 141-bus benchmark feeder with added 5 PV units
at depth-10 (highlighted red), depth-15 (highlighted green), depth-20 (high-
lighted orange), and 15 PVs continuously operating at unit power factor
(highlighted black).

designed rules using S = 16 scenarios drawn from the 13:30–
15:30 control period, and evaluated voltage profiles under
another sample of 8 scenarios from the same control period;
see top panel of Fig. 8. In the second test, rules were trained
again using scenarios from the 13:30–15:30 control period, but
tested on the 19:00–20:00 control period; see bottom panel of
Fig. 8. The tests show that the designed rules perform well
under same-period scenarios, where voltages are maintained
within ±5%. On the contrary, the rules perform poorly under
scenarios drawn from another control period. This proves the
necessity for redesigning the control rules periodically through
the day to adjust to different loading conditions.

Effect of Inverter Positions. This last test aimed at evaluating
the effect of Volt/VAR control by inverters placed at different
locations. The motivation is that an operator may want to
have most inverters operating at unit power factor and only
a handful of them being upgraded to support the functionality
of Volt/VAR control. The goal of this test is not to optimally
place smart inverters, but rather, to infer some qualitative
conclusions on how the location and the number of inverters
affects the performance and possibly the shape of optimal
Volt/VAR curves. The conjecture is that inverters located at
buses further away from the substation could have higher
impact on voltage regulation. This is because the columns of
sensitivity matrix X in (1) have larger values for buses further
away from the substation. Nonetheless, for the exact same
buses, slopes are most limited by stability constraint (7b). In
particular, the curve slope αn at bus n is upper bounded at least
by the inverse of the sum

∑
m∈G Xnm as dictated by (7b). To

Fig. 10. Convergence in terms of the cost function (21) for the 13:30–15:30
control interval under ϵ = 0.01 after placing 5 upgraded inverters at different
depths. Placing smart inverters further away from the substation seems to be
offering better voltage regulation performance (lower VDM).

Fig. 11. Designed Volt/VAR rules for the 13:30–15:30 interval under ϵ = 0.01
for 3 buses with upgraded inverters, placed at different depths.

explore this issue, we conducted tests where again 30 inverters
have been installed on the IEEE 141-bus feeder as before, but
now only 5 of them provide the Volt/VAR functionality and
the remaining 25 operate at unit power factor. Note that these
25 PVs include 15 PVs which continuously operate at unit
power factor, and two sets of 5 PVs which operate at unit
power factor only within the current test and provide Volt/VAR
functionality when selected. We tested three setups, where the
5 smart inverters were placed at depths of 10, 15, and 20.
Placing an inverter at depth 10 means that it is sited at a bus
that is 10 buses away from the substation; see Fig. 9.

Tests illustrated on Fig. 10 suggest that upgrading first
inverters further away from the substation is preferable as it
provides better voltage profile. Note that the runtime per PGD
iteration in Fig. 10 is comparable to the earlier system with
30 upgraded PVs (0.13 seconds). Fig. 11 shows the optimal
curves for three inverters sited at different depths. Several
conclusions can be made.

First, due to local generation and reduced local load, buses
at greater depths experience higher voltages. As a result, the
optimal v̄ for those Volt/VAR-enabled inverters is further to the
left compared to inverters closer to the substation in Fig. 11.
An additional interesting observation about the optimal v̄ is
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Fig. 12. Designed Volt/VAR rules for the 13:30–15:30 interval under ϵ = 0.01
for 4 inverters in the IEEE 141-bus feeder with 30 PVs.

related to inverters at the same depth, such as at buses 72 and
99 shown in Fig. 12. While buses 72 and 99 are at the same
depth, they have different v̄ values. This is related to the fact
that bus 99 has no load, while bus 72 has a load. As a result,
bus 99 experiences higher voltage, and its v̄ shifts more to the
left compared to bus 72. Second, inverters at greater depth are
slightly further away from saturating q̂ limits, which could be
attributed to the tighter stability constraints as well as the fact
that buses at larger depths correspond to larger entries of X.
Third, inverters at smaller depths have wider deadband (i.e.
larger δ). Compare for example the inverter in bus 40 (depth-
10) versus bus 67 (depth-20) in Fig. 11, or the inverters on
buses 72 and 99 (depth-12) vs bus 129 (depth-27) in Fig. 12;
δ for bus 129 is almost 0.

Inverters at smaller depths have wider deadband for two
reasons. First, they wait for the inverters at larger depths to
react first, as this is more effective for the voltage regulation.
This confirms our conjecture that inverters located at buses
further away from the substation have higher impact on voltage
regulation. A similar observation was made in [22], which
further strengthens the proposed premise. Second, by waiting
to react a bit later, they can cover a wider range of voltages.
This is clearer in Fig. 11, where all inverters have the same
nominal capacity, and we observe they have the same slope.
Indeed, in the case where only 5 inverters are equipped with
Volt/VAR functionality, the optimizer requires σ − δ to be as
small as possible, and q̂ to be as high as possible in order to
regulate voltage effectively. This means that for all 5 inverters
(14c) is binding at the lower bound. In such a case, a larger δ
and a similar σ − δ means larger σ, i.e. wider voltage range.
As a result, inverters at smaller depths have a wider voltage
range. In case all 30 inverters were equipped with Volt/VAR
functionality, shown in Fig. 12, we not only observe that the
slopes are no longer the same, but also not all inverters set
q̂ close to their nominal capacity. This happens because in
such a case there are enough control resources available, so
the optimizer does not need to “max-out” the settings of the
available controls as in the case with 5 inverters. Still, we
continue to observe that inverters at smaller depths, e.g. at
buses 72 and 99, have wider voltage ranges than inverters at
larger depths, such as at buses 115 and 129.

VI. CONCLUSIONS

We have proposed a novel methodology for designing
Volt/VAR control rules. Different from existing alternatives,
the designed rules are compliant with the IEEE 1547 and
ensure grid dynamic stability. Using the proposed PGD-based
algorithm, utilities can adjust Volt/VAR controls per bus and
predicted grid scenarios. Our numerical tests have corrobo-
rated that: i) the designed rules can effectively respond to
varying conditions; ii) linearized dynamics behave sufficiently
close to AC dynamics; iii) the margin ϵ relates to settling times
and optimality; iv) the designed rules perform better than an
one-size-fits-all inverter dispatch and worse than per-scenario
optimal dispatches; v) PGD iterations can be completed within
minutes thus offering a lucrative solution; and vi) upgrading
inverters towards the feeder ends seems to be more effective.
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