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Abstract—Smart grids should efficiently integrate stochastic
renewable resources while effecting voltage regulation. Energy
management is challenging since it is a multistage problem
where decisions are not all made at the same timescale and
must account for the variability during real-time operation. The
joint dispatch of slow- and fast-timescale controls in a smart
distribution grid is considered here. The substation voltage, the
energy exchanged with a main grid, and the generation schedules
for small diesel generators have to be decided on a slow timescale;
whereas optimal photovoltaic inverter setpoints are found on a
more frequent basis. While inverter and looser voltage regulation
limits are imposed at all times, tighter bus voltage constraints
are enforced on the average or in probability, thus enabling
more efficient renewable integration. Upon reformulating the
two-stage grid dispatch as a stochastic convex-concave problem,
two distribution-free schemes are put forth. An average dispatch
algorithm converges provably to the optimal two-stage decisions
via a sequence of convex quadratic programs. Its non-convex
probabilistic alternative entails solving two slightly different con-
vex problems and is numerically shown to converge. Numerical
tests on real-world distribution feeders verify that both schemes
yield lower costs over competing alternatives.

Index Terms—Multistage economic dispatch, voltage regula-
tion, stochastic approximation, convex-concave problem.

I. INTRODUCTION

With increasing renewable generation, energy management
of power distribution grids is becoming a computationally
challenging task. Solar energy from photovoltaic (PV) units
can change significantly over one-minute intervals. The power
inverters found in PV units can be commanded to curtail
active power generation or adjust their power factor within
seconds [1], [2]. At a slower timescale, distribution grid
operators exchange energy with the main grid hourly or on
a 10-minute basis, and may experience cost penalties upon
deviating from energy market schedules [3]. Moreover, voltage
regulation equipment and small diesel generators potentially
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installed in microgrids respond at the same slower timescale.
As a result, comprehensive designs to optimize such diverse
tasks call for multistage smart grid dispatch solutions.

Spurred by demand-response programs and the use of PV
inverters to accomplish various grid tasks [4], single-stage
dispatch schemes for distribution grids have been an active
area of research. Power inverters can be controlled using
localized rules for voltage regulation, see e.g., [5], [6], [7],
[8]. Assuming two-way communication between buses and
the utility operator, dispatching a distribution system can be
posed as an optimal power flow (OPF) problem. Centralized
schemes use nonlinear program solvers [9]; or rely on convex
relaxations of the full AC model of balanced [10], [11],
or unbalanced grids [12]. Distributed solvers with reduced
computational complexity have been devised in [13], [14],
[15].

Nevertheless, the efficient and secure operation of dis-
tribution grids involves decisions at different timescales. A
dynamic programming approach for a two-stage dispatch is
suggested in [10]: The taps of voltage regulators are set on
a slow timescale and remain fixed for consecutive shorter
time slots over which elastic loads are dispatched; yet the
flexibility of loads is assumed known a priori. Alternatively,
centrally computed OPF decisions can be communicated to
buses at a slow timescale, while on a faster timescale, PV
power electronics are adjusted to optimally track variations
in renewable generation and demand [16], [17]. Relying on
approximate grid models and ignoring the effect of uncertainty
on the dispatch of slow-responding units, the latter schemes
yield a partially decentralized real-time allocation of the power
flows across fast-responding units.

Multistage dispatching under uncertainty is routinely used
in transmission systems and microgrids [18]. Robust ap-
proaches find optimal slow-timescale decisions for the worst-
case fast-timescale outcome; see [19] and references therein.
To avoid the conservativeness of robust schemes, probabilistic
approaches postulate a probability density function (pdf) for
demand, wind generation, and system contingencies to find
day-ahead grid schedules [20], [21]. The risk-limiting dispatch
framework adjusts multistage decisions as the variance of
the random variables involved decreases while approaching
actual time [3]. Decisions can be efficiently calculated only
for convenient pdfs for a network-constrained risk-limiting
dispatch and under congestion assumptions [22]. As a third
alternative, sample average approximation (SAA) approaches
yield optimal slow-timescale decisions using samples drawn
from the postulated pdf; see e.g., [23], [19]. Recent works
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impose limits on the probability of undesirable events, either
relying on convex approximation of chance constraints [24], or
via the (sample-based) scenario approximation approach [25]
to reduce computations; e.g., [26].

Focusing to distribution grids, PV inverters could be over-
loaded sporadically in time and across buses to accommodate
solar fluctuations and prevent overvoltages [27]. The spa-
tiotemporal overloading of power system components (such
as inverters, bus voltages, line flows) could thus constitute
an additional means for integrating renewables in smart
grids. Nonetheless, ensuring that overloading occurs sparingly
couples decisions across time. The single-stage scheme of
[28] finds optimal PV setpoints while limiting time averages
of overloaded quantities. The latter approach has been also
adopted in [29] for dispatching a transmission system in a
day-ahead/real-time market setup under load shedding.

Jointly dispatching slow- and fast-timescale grid resources
under average or probabilistic constraints over fast-timescale
decisions is considered here. Our contribution is three-fold.
First, Section III formulates a two-stage grid dispatch as
a convex-concave problem: The expected cost over a slow
control period is minimized, while looser voltage limits are
satisfied at all times and tighter voltage limits are enforced
on the average or in probability. Second, upon adapting the
stochastic saddle-point approximation scheme from [30], the
provably convergent algorithm in Sec. IV provides optimal
slow-timescale decisions for the average-constrained formu-
lation. Different from SAA approaches, this stochastic ap-
proximation (SA) scheme processes random samples one at
a time to improve computational efficiency. Third, in the case
of non-convex probabilistic constraints, an algorithm solving
two similar convex problems for each second stage is put
forth in Sec. V. Although the expected cost enjoys zero-
duality gap [31], the overall two-stage dispatch is not convex-
concave, which explains why the algorithm’s performance is
validated numerically. Both schemes require only samples of
loads and solar generation (rather than their joint pdfs), and
can rely either on an approximate, or a convexified grid model.
Numerical tests using the linearized distribution flow model on
56- and 123-bus feeders corroborate the validity of our findings
in Sec. VI.

Regarding notation, lower-(upper-)case boldface letters de-
note column vectors (matrices), with the only exception of the
power flow vectors, which are uppercase. Calligraphic letters
are used to denote sets. Symbol > denotes transposition, while
0 and 1 are the all-zeros and all-ones vectors of appropriate
dimensions. The indicator function 1{·} equals 1 when its
argument is true, and 0 otherwise. A diagonal matrix with
the entries of vector x on its main diagonal is denoted by
dg(x). The operator [·]+ projects its argument onto the positive
orthant; E[·] denotes expectation and Pr{·} probability.

II. PROBLEM FORMULATION

Consider a distribution grid whose energy needs are pro-
cured by distributed renewable generation, distributed con-
ventional (small diesel) generators, and the main grid. The
distribution grid operator aims at serving load at the min-
imum cost while respecting voltage regulation and network

constraints. Energy is exchanged with the main grid at whole-
sale electricity prices through the feeder bus. To effectively
integrate stochastic renewable generation, the focus here is on
short-term grid dispatch. To that end, the distribution grid is
operated at two timescales: a slower timescale corresponds
to 5- or 10-min real-time energy market intervals, while the
inverters found in PVs are controlled at a faster timescale of
say 10-sec intervals. One period of the slower timescale is
comprised by T faster time slots indexed by t = 1, . . . , T .

The grid is operated as a radial network with N + 1 buses
rooted at the substation bus indexed by n = 0. The distribution
line feeding bus n is also indexed by n for n = 1, . . . , N . Let
pn,t and qn,t denote respectively the net active and reactive
power injections at bus n and slot t; the N -dimensional vectors
pt and qt collect the net injections at all buses except for
the substation. Diesel generators are dispatched at the slower
timescale to generate pd throughout the subsequent T slots
at unit power factor. During slot t, PVs can contribute solar
generation up to prt that is modeled as a random process.
Smart inverters perform active power curtailment and reactive
power compensation by following the setpoints prt and qrt
commanded by the utility operator. Load demands plt and
qlt are also modeled as random processes. To simplify the
exposition, (plt,q

l
t) are assumed inelastic and known at the

beginning of slot t; although elastic loads can be incorporated
without any essential differences. The operator buys a power
block pa0 from the main grid at the slow timescale, which can
be adjusted to p0,t := pa0 + pδ0,t in actual time.

Voltage regulation is effected by controlling (re)active
power injections at slot t. Let vn,t denote the squared voltage
magnitude at bus n and slot t, and vt the vector collecting
{vn,t}Nn=1. The substation voltage va0 is controlled at the
slower timescale [10], while voltage magnitudes at all buses
must adhere to voltage regulation standards, e.g., ANSI C84.1
and EN50160 in [32], [33]. These standards differentiate
between a narrower voltage regulation range denoted here by
VA in which voltages should lie most of the time; and a wider
range VB (with VA ⊂ VB) whom voltages should not exceed
at any time. One of the goals of this work is to leverage this
flexibility to design dispatch schemes that: i) guarantee that
voltages lie in VB at all times, while ii) they belong to VA in
a stochastic fashion. To this end, two alternative schemes are
presented, the difference between them being how constraint
ii) is formulated. The first scheme guarantees that the average
voltage lies in VA, whereas the second one maintains the
probability of under-/over-voltage at a specified low value.

A. Grid modeling
To account for voltage and network limitations, the distri-

bution grid is captured by the approximate linear distribution
flow (LDF) model [34]. To briefly review this model, let
r and x be accordingly the vectors of line resistances and
reactances across lines. Define also the branch-bus incidence
matrix Ã ∈ RN×(N+1) whose (i, j)-th entry is

Ãij =


+1 , if j − 1 is the source bus of line i
−1 , if j − 1 is the destination bus of line i
0 , otherwise.

(1)
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Partition Ã into its first column and the reduced branch-bus
incidence matrix A as Ã = [a0 A]. Ignoring line losses, the
LDF model asserts that the vectors of active and reactive line
power flows at time t can be approximated by

Pt = F>pt and Qt = F>qt (2)

where F := A−1. Moreover, the squared voltage magnitudes
can be expressed as [34], [6]

vt = 2Rpt + 2Xqt + vd01 (3)

where R := Fdg(r)F> and X := Fdg(x)F>. The LDF
model applies to both radial and meshed networks and, dif-
ferent from the so termed DC power grid model, it does not
ignore line resistances [35]. It can be derived by assuming
that voltage magnitudes are close to unity and voltage angle
differences across neighboring buses are small. Alternatively,
it can be obtained upon linearizing power injections at the flat
voltage profile [36].

Let us define the voltage regulation regions

VA := {v : vA1 ≤ v ≤ vA1} (4a)
VB := {v : vB1 ≤ v ≤ vB1} (4b)

with vB ≥ vA and vB ≤ vA. Compliance with VA can
be imposed either on the average as Et [vt] ∈ VA, or in
probability as Pr{vt ∈ VA} ≥ 1 − α for some small α.
Either way, safe grid operation requires that vt ∈ VB at all
times t. Within the optimization horizon, the random processes
involved (demand and renewable generation) can be assumed
ergodic, i.e., their time averages converge to their ensemble
averages. For this reason, voltage constraints pertaining to VA
will be referred to as ergodic.

According to (2), if fn is the n-th column of F, the squared
power flow on line n can be written as P 2

n,t = p>t fnf
>
n pt

and Q2
n,t = q>t fnf

>
n qt. Imposing the upper limit Sn on

the apparent flow on line n is thus expressed as the convex
quadratic constraint

p>t fnf
>
n pt + q>t fnf

>
n qt ≤ S

2

n. (5)

Although losses have been dropped in (2), upon assuming that
voltage magnitudes are close to unity, active power losses can
be approximated as [37]

N∑
n=1

rn(P 2
n,t +Q2

n,t) = P>t dg(r)Pt + Q>t dg(r)Qt.

Using (2), the latter can be equivalently expressed as p>t Rpt+
q>t Rqt, so the active power injection at the substation is
approximately

p0,t = −1>pt + p>t Rpt + q>t Rqt (6)

Regarding smart inverters, the tuple (prn,t, q
r
n,t), which de-

notes the power injection from the inverter located on bus n
at slot t, should belong to the feasible set

Ωn,t :=
{

(prn,t, q
r
n,t) : 0 ≤ prn,t ≤ prn,t, (7a)

|qrn,t| ≤ φnprn,t, (7b)

(prn,t)
2 + (qrn,t)

2 ≤ s2n
}

(7c)

that is random and time-variant due to the variability of prn,t.
Constraint (7a) limits the active power generation according
to the available solar power; constraint (7b) enforces the
lower limit cos(arctan(φn)) on the power factor (lagging or
leading); and (7c) limits the inverter apparent power.

B. Operation costs

If PV owners are compensated at price π for the active
power surplus they inject into the distribution grid, the related
utility cost at slot t is CPV(prt ) := π>[prt −plt]+ with [·]+ :=
max{0, ·} applied entrywise on vector prt − plt. The diesel
generation cost is represented by CD(pd). Regarding energy
transactions with the main grid, the power block pa0 bought in
advance is charged at a fixed and known price β. Deviating
from pa0 by pδ0,t at slot t is charged at

Ct(pδ0,t) := γb[p
δ
0,t]+ − γs[−pδ0,t]+ (8)

for known prices (γb, γs). To avoid arbitrage, it is assumed
that 0 < γs < β < γb; see e.g., [3], [22]. Then,
the deviation charge can also be expressed as Ct(pδ0,t) =
max{γbpδ0,t, γspδ0,t}, which is certainly convex [19].

C. Optimal grid dispatch

Depending on the way compliance with voltage regulation
region VA is enforced, two grid dispatch formulations are
developed next. Commencing with the average dispatch, the
optimal grid operation is posed as

P∗a := min CD(pd) + βpa0 +Et

[
Ct(pδ0,t) + CPV(prt )

]
(9a)

s.to: pt = prt − plt + pd (9b)

qt = qrt − qlt (9c)

p0,t = pa0 + pδ0,t (9d)

p0,t ≥ −1>pt + p>t Rpt + q>t Rqt (9e)

p>t fnf
>
n pt + q>t fnf

>
n qt ≤ Sn, ∀n ∈ N (9f)

pd ≤ pd ≤ pd (9g)

(prn,t, q
r
n,t) ∈ Ωn,t, ∀n ∈ N (9h)

v0 ≤ va0 ≤ v0 (9i)
vt = 2Rpt + 2Xqt + va01 (9j)
vt ∈ VB (9k)
Et [vt] ∈ VA (9l)

over va0 , p
a
0 ,p

d, {pt,qt,vt,prt ,qrt , p0,t, pδ0,t}Tt=1.

The slow-timescale variables {va0 , pa0 ,pd} are set in ad-
vance, and remain fixed throughout the T subsequent
control slots over which the fast-timescale variables
{pt,qt,vt,prt ,qrt , p0,t, pδ0,t}Tt=1 are implemented. The latter
variables depend on the randomness of slot t as well as slow-
timescale decisions.

Alternatively to (9), optimal grid operation can be posed as a
probabilistic dispatch that is identical to (9) with the exception
that (9l) is replaced by the probabilistic constraint

Pr{vt /∈ VA} ≤ α (10)
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for some small parameter α > 0, say α = 0.05. The optimal
cost for the probabilistic dispatch will be denoted by P∗p.

The objective function in (9a) involves the cost of en-
ergy dispatched at the slow timescale plus the average fast-
timescale energy management cost. Nodal (re)active power
balance is ensured via (9b)–(9c). Constraint (9e) accounts for
active power losses. Since the cost in (9a) is non-decreasing
with respect to (pδ0,t, p

a
0), relaxing (6) to the convex inequality

in (9e) does not incur loss of optimality. Constraint (9f) limits
line apparent power flows based on (5). Constraints (9i)–
(9l) are voltage regulation constraints: In detail, (9j) relates
squared voltage magnitudes to power injections [cf. (3)]; (9i)
constraints the substation bus voltage; and (9k) constraints
voltages in VB . While (9l) maintains the average voltage
magnitudes in VA, its alternative in (10) limits the probability
of voltage magnitudes being outside VA.

A pertinent question is which of the two proposed dispatch
formulations is to be preferred. The probabilistic formulation
is more sophisticated and aligned with voltage regulation
standards, emerging as the default option. However, as it will
be explained in Section V, enforcing even the single grid-
level probabilistic constraint in (10) gives rise to a non-convex
problem, which comes with computational challenges. The
average dispatch does not suffer from these problems, which
can be critical in scenarios where the duration of the slow
period is short and the optimization has to be frequently re-
run. Furthermore, when renewable generation and loads vary
only slightly during a slow period and/or local control loops
are in place, enforcing probabilistic guarantees may not be
justified and the simpler average constraints suffice.

D. Convexified AC grid model

Although (9) relies on the approximate LDF model, it
can be readily customized to the exact AC power flow
model [34]. Upon introducing the optimization variable `t :=
[`1,t . . . `N,t]

> with the squared line current magnitudes,
constraints (9e)–(9f) should be substituted respectively by

p0,t ≥ −1>pt + 1>`t (11a)

P 2
n,t +Q2

n,t ≤ S̄n, ∀n ∈ N . (11b)

Constraint (9j) defining vt should be replaced by

vt = 2Fdg(r)Pt + 2Fdg(x)Qt + va01 (12)

and variable `t is linked to power flows and voltages through
the additional constraints:

Pt = F>pt + F>dg(r)`t (13a)

Qt = F>qt + F>dg(x)`t (13b)

P 2
n,t +Q2

n,t ≤ vπn,t`n,t, ∀n ∈ N (13c)

where πn is the parent bus of bus n. In fact, constraint (13c)
constitutes a relaxation, since in the actual grid model it is
satisfied with equality [10]. Nevertheless, the relaxation has
been shown to be exact in radial grids and under different con-
ditions; see [38] for details. Critical for the ensuing sections is
that the differences between the formulation in (11)–(13) and
that for the LDF model pertain to the fast-timescale operation,

whereas the slow-timescale formulation and the constraints
coupling slow with fast timescale variables remain intact.

III. PROBLEM ANALYSIS

To facilitate algorithmic developments, the problem in (9) is
expressed in a compact form next. Collect the slow-timescale
variables in vector z> := [va0 , p

a
0 ,p

d]; the fast-timescale
variables at slot t in y>t := [pt,qt,vt,p

r
t ,q

r
t , p0,t, p

δ
0,t]; and

the random variables involved at slot t in ξ>t := [prt ,p
l
t,q

l
t].

The constraints in (9) can be classified into four groups:
(i) Constraints involving fast-timescale variables only, such as
(9c), (9f), (9h), and (9k), that will be abstracted as yt ∈ Yt.
(ii) Constraints (9g) and (9i) that involve slow-timescale
variables only, and they will be denoted as z ∈ Z .
(iii) The linear constraints (9b), (9d), and (9j), coupling slow-
and fast-timescale variables as well as random variables. These
constraints are collectively expressed as Kz+Byt = Hξt for
appropriate matrices K, B, and H.
(iv) The ergodic constraints (9l) and (10) depend on the
voltage sequence {vt}Tt=1, hence coupling decisions across
time. A substantial difference between (9l) and (10) is that
the latter is a non-convex constraint.

If the exact grid model of Section II-D is used, the additional
variables Pt, Qt, and `t are added, and set Yt in (i) is modified
to incorporate (11)–(13). Under these considerations, the two
dispatch problems can be compactly rewritten as

P∗(a,p) := min
z,{yt}Tt=1

f(z) +Et [gt(yt)] (14a)

s.to: z ∈ Z (14b)
yt ∈ Yt ∀t (14c)
Kz + Byt = Hξt ∀t (14d)
Et [h(yt)] ≤ 0 (14e)

where f(z) := CD(pd) + βpa0 and gt(yt) := Ct(pδ0,t) +
CPV(prt ). For the average dispatch, the optimal cost in (14) is
P∗a and the function in (14e) is h(yt) = [vt−vA1, vA1−vt].
For the probabilistic dispatch, the optimal cost is P∗p and the
function in (14e) is h(yt) = 1{vt /∈ VA} − α.

The optimal values for the slow-timescale variables z
must be decided in advance. Once the optimal z is found,
it remains fixed over the slow-timescale interval. The fast-
timescale decisions yt(z) for slot t depend on z, while the
subscript t indicates their dependence on the realization ξt.
Both the average and the probabilistic dispatch are stochastic
programming problems with recourse [3]. Their costs can be
decomposed as P∗(a,p) = minz∈Z f(z) +G(a,p)(z), where the
so termed expected recourse function is defined as

G(a,p)(z) := min
{yt∈Yt}

Et [gt(yt)] (15a)

s.to: Kz + Byt = Hξt ∀t (15b)
Et [h(yt)] ≤ 0. (15c)

Since problem (15) depends on z, its minimizer can be written
as {y∗t (z)}Tt=1 and the recourse function as G(a,p)(z) =
Et[gt(y

∗
t (z))]. The ensuing two sections solve the average and

the probabilistic dispatches.
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IV. AVERAGE DISPATCH ALGORITHM

This section tackles problem (14) with the ergodic constraint
in (14e), for which h(yt) = [vA1− vt,vt − vA1]. Although
convex, problem (14) is challenging due to the coupling across
{yt}Tt=1 and between fast- and slow-timescale variables. Dual
decomposition is adopted to resolve the coupling across
{yt}Tt=1. The partial Lagrangian function for (15) is

La({yt},ν) := Et

[
gt(yt) + ν>h(yt)

]
(16)

with the entries of ν being the multipliers associated with the
upper and lower per-bus constraints in (14e). The correspond-
ing dual function is

Da(ν; z) := min
{yt∈Yt}

La({yt},ν) (17)

s.to: Kz + Byt = Hξt ∀t.

Observe that after dualizing, the minimization in (17) is sep-
arable over the realizations {ξt}. Precisely, the optimal fast-
timescale variable for fixed (ν, z) and for a specific realization
ξt can be found by solving:

y∗t (ν, z) ∈ arg min
yt∈Yt

gt(yt) + ν>h(yt) (18a)

s.to: Kz + Byt = Hξt. (18b)

For future reference, let us also define λ∗t (ν, z) as the optimal
Lagrange multiplier associated with (18b). If ν is partitioned
as ν> = [ν>,ν>] with ν corresponding to constraint Et[vt] ≥
vA1 and ν to Et[vt] ≤ vA1, then (18) simplifies to

y∗t (ν, z) ∈ argmin Ct(pδ0,t) + CPV(prt ) + (ν − ν)>vt (19)

s.to: (9b)− (9f), (9h), (9j), (9k)

over {pt,qt,vt,prt ,qrt , p0,t, pδ0,t}

and can be solved as a convex quadratic program. If the relaxed
AC grid model of Section II-D is used, then (19) becomes
a second-order cone program (SOCP) which is also convex.
Given the optimal pair (ν∗, z∗), the optimal fast-timescale
variables yt can be thus found for any ξt.

Back to finding the optimal primal and dual slow-timescale
variables, note that the dual problem associated with (17) is

ν∗ := arg max
ν≥0

Da(ν; z). (20)

Duality theory asserts that (20) is a convex problem. Moreover,
assuming a strictly feasible point exists for (15), strong duality
implies that Ga(z) = Da(ν∗, z). Due to the latter, the original
problem in (14) can be transformed to:

min
z∈Z

f(z) +Ga(z) = min
z∈Z
{f(z) + max

ν≥0
Da(ν; z)} (21a)

= min
z∈Z

max
ν≥0

f̃a(ν, z) (21b)

where the auxiliary function f̃a is defined as:

f̃a(ν, z) := f(z) +Da(ν; z). (22)

Being a dual function, Da(ν; z) is a concave function of ν.
At the same time, Da(ν; z) is a perturbation function with
respect to z; and hence, it is a convex function of z [39].
Recall that f(z) is a convex function of z too. Therefore,

Algorithm 1 Average Dispatch Algorithm (ADA)
1: Initialize (z0,ν0).
2: repeat for k = 0, 1, . . .
3: Draw sample ξk.
4: Find (y∗k(νk, zk),λ∗k(νk, zk)) by solving (18).
5: Update (zk+1,νk+1) via (25).
6: Compute sliding averages (z̃k, ν̃k) through (26).
7: until convergence of (z̃k, ν̃k).
8: Output z∗ = z̃k and ν∗ = ν̃k.

the auxiliary function f̃a(ν, z) is convex in z and concave in
ν. Because of the randomness of {ξt}, function Da(ν; z) in
(17) is stochastic. Consequently, problem (21b) is a stochastic
convex-concave saddle point problem [39], [30].

To solve (21b), we rely on the stochastic saddle-point
approximation method of [30]. The method involves the sub-
gradient of f̃a with respect to z, and its supergradient with
respect to ν. Upon viewing Da(ν, z) in (17) as a perturbation
function of z, the subgradient of f̃a with respect to z is [39]

∂zf̃a = ∂zf(z) + K>Et[λ
∗
t (ν, z)]. (23)

By definition of the dual function, the supergradient of f̃a with
respect to ν is

∂ν f̃a = Et[h(y∗t (ν, z))]. (24)

The stochastic saddle point approximation method of [30]
involves primal-dual subgradient iterates with the expectations
in (23)–(24) being replaced by their instantaneous estimates
based on a single realization ξk. Precisely, the method involves
the iterates over k:

νk+1 := [νk + dg(µk)h(y∗k(νk, zk))]+ (25a)

zk+1 := [zk − dg(εk)(∂zf(zk) + K>λ∗k(νk, zk))]Z (25b)

where the operator [·]Z projects its argument onto Z; and
vectors µk = µ0/

√
k and εk = ε0/

√
k collect respectively

the primal and dual step sizes for positive µ0 and ε0. At every
iteration k, the method draws a realization ξk and solves (18)
for the tuple (ξk,ν

k, zk) to acquire (y∗k(νk, zk),λ∗k(νk, zk))
and perform the primal-dual updates in (25). The method
finally outputs the sliding averages of the updates as:

z̃k :=
(∑k

i=dk/2e z
i/
√
i
)
/
(∑k

i=dk/2e 1/
√
i
)

(26a)

ν̃k :=
(∑k

i=dk/2e ν
i/
√
i
)
/
(∑k

i=dk/2e 1/
√
i
)
. (26b)

The proposed scheme converges to the value f̃a(ν∗, z∗) ob-
tained at a saddle point (ν∗, z∗) asymptotically in the number
of iterations k [30, Sec. 3.1].

Upon convergence of the iterates in (26), the slow-timescale
variables z∗ have been derived together with the optimal
Lagrange multiplier ν∗ related to constraint (15c). The grid
operator can implement z∗, and the fast-timescale decisions
y∗t for a realization ξt can be found by solving (19). The
average dispatch algorithm (ADA) is summarized as Alg. 1.
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V. PROBABILISTIC DISPATCH ALGORITHM

The probabilistic version of problem (14) is considered next.
Here, the ergodic constraint (14e) reads h(yt) = 1{vt /∈
VA} − α. Despite the non-convexity of the probabilistic con-
straint, (15) can still be solved optimally. However, optimality
for (14) cannot be guaranteed. A heuristic solution is detailed
next by adapting the solution of Sec. IV.

To that end, dual decomposition is used here as well. If ν is
the scalar Lagrange multiplier associated with constraint (14e),
the partial Lagrangian function for (15) is now Lp({yt}, ν) :=
Et [gt(yt) + ν(1{vt /∈ VA} − α)]. The corresponding dual
function, fast-timescale problem, and dual problem are defined
analogously to (17), (18), and (20). The indicator function
renders Lp({yt}, ν) non-convex. Surprisingly enough though,
under the practical assumption that {ξt} follows a continuous
pdf, problem (15) enjoys zero duality gap; see [31, Th. 1].

The additional challenge here is the non-convexity of the
Lagrangian minimization:

y∗t (ν, z) ∈ arg min
yt∈Yt

gt(yt) + ν1{vt /∈ VA} (27)

s.to: Kz + Byt = Hξt.

Because the indicator function takes only the values {0, 1}
however, the solution to (27) can be found by solving a pair
of slightly different convex problems. The first problem is

y∗t,A(z) ∈ arg min
yt∈Yt

gt(yt) (28a)

s.to: Kz + Byt = Hξt (28b)
vt ∈ VA (28c)

whereas the second problem ignores constraint vt ∈ VA as

y∗t,B(z) ∈ arg min
yt∈Yt

gt(yt) (29a)

s.to: Kz + Byt = Hξt. (29b)

From the point of view of (27), if the voltages in y∗t,B(z)
do not belong to VA, the solution to the second problem
will incur an additional cost quantified by ν. Observe that
neither problem (28) nor (29) depend on ν, while their
complexity is similar to the one problem (18). Suppose that
(28) and (29) have been solved and let λ∗t,A(z) and λ∗t,B(z)
denote the optimal multipliers associated with (28b) and (29b),
respectively. Then, problem (27) can be neatly tackled by
identifying two cases:

(c1) If gt(y∗t,A(z)) > gt(y
∗
t,B(z)) + ν, then y∗t,B(z) is

a minimizer of (27) as well and voltages are allowed to
lie outside VA. In this case, set y∗t (ν, z) := y∗t,B(z) and
λ∗t (ν, z) := λ∗t,B(z). This case includes instances where
problem (28) is infeasible for which gt(y∗t,A(z)) =∞.

(c2) If gt(y∗t,A(z)) ≤ gt(y
∗
t,B(z)) + ν, then y∗t,A(z) min-

imizes (27) too and voltages lie within VA. In this case, set
y∗t (ν, z) := y∗t,A(z) and λ∗t (ν, z) := λ∗t,A(z).

Case (c2) covers also instances where v∗t,B(z) happens to
lie in VA. In these particular instances, y∗t,B(z) serves as a
minimizer of (28) too. Then, it follows that gt(y∗t,A(z)) =
gt(y

∗
t,B(z)) ≤ gt(y

∗
t,B(z)) + ν for ν ≥ 0. This implies that

one can solve (29) first and, if v∗t,B(z) ∈ VA, there is no need
to solve problem (28).

Algorithm 2 Probabilistic Dispatch Algorithm (PDA)
1: Initialize (z0, ν0).
2: repeat for k = 0, 1, . . .
3: Draw sample ξk.
4: Find (y∗k,B(νk, zk),λ∗k,B(νk, zk)) by solving (29).
5: Set y∗t (ν, z) := y∗t,B(z) and λ∗t (ν, z) := λ∗t,B(z).
6: if v∗k,B(z) /∈ VA, then find y∗k,A(νk, zk) and
λ∗k,A(νk, zk) by solving (28).

7: if gt(y
∗
t,A(z)) ≤ gt(y

∗
t,B(z)) + ν, then set

y∗t (ν, z) := y∗t,A(z) and λ∗t (ν, z) := λ∗t,A(z).
8: end if
9: end if

10: Update (zk+1, νk+1) via (30).
11: Compute sliding averages (z̃k, ν̃k) through (26).
12: until convergence of (z̃k, ν̃k).
13: Output z∗ = z̃k and ν∗ = ν̃k.

To find the optimal slow-timescale variables under the
probabilistic dispatch, the stochastic primal-dual iterations of
Sec. IV are adapted here as

νk+1 := [νk + µk(1{v∗k(νk, zk) /∈ VA} − α)]+ (30a)

zk+1 := [zk − dg(εk)(∂zf(zk) + K>λ∗k(νk, zk)]Z . (30b)

The probabilistic dispatch algorithm (PDA) is tabulated as
Alg. 2. At every fast-timescale iteration, PDA solves (29)
and possibly (28). Since the optimizations tasks (28)–(29) are
structurally similar to (18), PDA has at most twice the per-
iteration complexity of ADA. Because function Gp(z) is not
necessarily convex, the iterates in (30) are not guaranteed to
converge to a minimizer of (14). The practical performance of
PDA in finding z∗ is numerically validated in Sec. VI.

VI. NUMERICAL TESTS

The proposed grid dispatches were tested on a 56-bus
Southern California Edison (SCE) distribution feeder [11].
5-MW PVs were added on buses 44 and 50; both with 6-
MVA inverters enabling power factors as low as 0.83 (lead-
ing or lagging) at full solar generation. The prices for the
energy exchange with the main grid were β = 37 $/MWh;
γb = 45 $/MWh, and γs = 19 $/MWh. Diesel generators
with capacity pdn = 0.5 MW were sited on buses 10, 18, 21,
30, 36, 43, 51, and 55. The cost of diesel generation was
CD(pd) =

∑N
n=1(30pdn + 15(pdn)2) $/h with pd expressed

in MW. Apparent power flows were limited to 7 MVA. The
voltage operation limits were set to vA = 0.982, vA = 1.022,
vB = 0.972, and vB = 1.032, expressed in pu with respect to
a voltage base of 12 kV. (Re)active nodal loads were Gaussian
distributed with the nominal load of the SCE benchmark as
mean value, and standard deviation of 0.2 times the nominal
load. The solar energy generated at each PV was drawn
uniformly between 0.5 and 1 times the actual power PV rating.

The simulations presented next have been run using the
LDF model. The LDF model is computationally less complex
than the relaxed AC grid model of Section II-D, which is
advantageous when many instances of the fast-variation scale
have to be solved. Our tests show the LDF model is 33%
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Fig. 1. Convergence of primal variables for ADA: (top) diesel generation;
(bottom) substation voltage v0 (left y-axis) and energy exchange pa0 (right
y-axis). Sliding averages of optimization variables are depicted too.

faster, while it incurs 10% higher cost compared to the SOCP
relaxation. Such numbers are consistent with those observed
for other problems [6], [28]. In any case, the findings presented
next are valid for both models and also for cases where the
LDF model is adopted only for finding the slow-timescale
variables, while the exact/relaxed AC grid model is employed
during the actual fast-timescale dispatch.

ADA was run with step sizes proportional to 1/
√
k with

initial values εv00 = 4·10−5, εp00 = 4·10−1, εpd0 = 6·10−3, and
µ0 = 225, to account for different dynamic ranges. The iterates
for primal and dual variables as well as their corresponding
sliding averages are depicted in Figs. 1 and 2. Primal and
dual slow-timescale variables hover in a small range whose
width diminishes with time. Their sliding averages converge
asymptotically. The algorithm reaches a practically meaningful
solution within 5,000 iterations. Buses 44 and 50 are prone to
overvoltages since they host PVs, and buses 2 and 15 are prone
to under-voltages; thus yielding non-zero dual variables for the
average upper and lower voltage constraints, respectively.

PDA was tested using the same simulation setup for α =
0.05 and µ0 = 1. Figure 3 shows the convergence of primal
and dual variables, and the probability of voltages deviating
from VA. Since we know that the per-iteration computation of
PDA is at most twice that of ADA and the simulations show
that the number of iterations required for PDA and ADA is
similar, it then follows that the total computation time for PDA
is at most twice that for ADA. Granted that the probabilistic
constraint in (10) applies collectively to all buses, the under-
/over-voltage probabilities on a per-bus basis is depicted in
Fig. 4. The occurrences of overvoltage seem to be shared
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Fig. 2. Convergence of dual variables for ADA: (top) dual variables associated
with average lower voltage limits for all buses; and (bottom) dual variables
associated with average upper voltage limits for all buses. Sliding averages
of optimization variables are depicted too.

primarily among buses 40–56 which are neighboring to the
PV buses 40 and 55. On the contrary, buses 10–16 being
electrically far from both the substation and PVs, experience
under-voltage with a small probability.

The effect of the average versus the probabilistic con-
straint on voltage magnitudes was evaluated next. After slow-
timescale variables z had converged, fast-timescale variables
yt were calculated for 6,000 instances of ξt using both ADA
and PDA. The histograms of the voltage magnitudes on two
representative buses are presented in Fig. 5. Under PDA, the
average voltage on bus 15 is slightly higher than the average
voltage obtained by ADA. In exchange, the instantaneous
value of the voltage on bus 15 stays within VA with higher
probability. A similar behavior is observed for the overvoltage
instances on PV bus 40.

ADA and PDA were finally compared to three alternative
schemes. The first two, henceforth called approximate average
and approximate probabilistic dispatches, obtained z by setting
loads and solar generation to their expected values, while
variables ν were calculated via dual stochastic subgradient,
and {yt}Tt=1 were found by solving either (18) or (27),
depending on whether the setting is average or probabilistic.
The third deterministic dispatch found z as the approximate
schemes do, and {yt}Tt=1 by enforcing vt ∈ VA at all times.
Note that the three proposed alternatives provide feasible
solutions satisfying voltage regulation constraints. The five
dispatches were tested under five scenarios: Scenario 1 is
the setup described earlier. Scenario 2 involved the tighter
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voltage limits vA = 0.992 and vA = 1.012. Scenarios 3,
4, and 5 were generated by scaling the mean value and the
standard deviation for loads of scenario 1 by 0.5, 1.5, and 2,
respectively. Figure 6 shows the expected operation costs for
all five scenarios. ADA (PDA) yielded the lowest cost under
all scenarios in the average (probabilistic) setting as expected.
In all test cases, ADA yielded a slightly lower objective than
PDA for α = 0.05. The loss of optimality entailed by the
approximate average and probabilistic schemes is due to the
suboptimal choice of z. The deterministic scheme entailed
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Fig. 6. Performance for ADA, PDA, approximate average, approximate
probabilistic, and deterministic scheme.

an additional loss of optimality by preventing the occasional
violation of VA.

To gain insights on the algorithm scalability, numerical tests
were also performed using the IEEE 123-bus feeder [40].
PV systems were added at buses 92, 103, 119 and 122; and
diesel generators at buses 3, 7, 32, 37, 39, 44, 51, 54, 56,
70, 74, 85, 92, 103, 119, and 122. Diesel generation costs
and limits, and PV generation pdfs remained similar to the
previous test. The nominal (re)active loads were perturbed
by zero-mean Gaussian random variables having a standard
deviation of 0.2 times the nominal value. The voltage operation
limits were set to vA = 0.992, vA = 1.012, vB = 0.982, and
vB = 1.022 (pu). ADA was run with step sizes proportional
to 1/

√
k, εv00 = 10−4, εp00 = 2 · 10−2, εpd0 = 10−3, and

µ0 = 400. Figs. 7 and 8 show the convergence of the primal
and dual variables. For this larger feeder, the algorithm reaches
a practically meaningful solution after around 10,000 iterations
and the average per-iteration computation increases by 90%.

VII. CONCLUSIONS

By nature of renewable generation, electromechanical com-
ponent limits, and the manner markets operate, energy man-
agement of smart distribution grids involves decisions at
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Fig. 7. Convergence of primal variables for ADA on the IEEE 123-bus feeder:
(top) diesel generation; (bottom) voltage v0 (left y-axis) and energy exchange
pa0 (right y-axis). Sliding averages of optimization variables are depicted too.

slower and faster timescales. Since slow-timescale controls
remain fixed over multiple PV operation slots, decisions are
coupled across time in a stochastic manner. To accommo-
date solar energy fluctuations, voltages have been allowed
to be sporadically overloaded; hence introducing coupling
of fast-timescale variables on the average or in probability.
Average voltage constraints have resulted in a stochastic
convex-concave problem, whereas non-convex probabilistic
constraints were tackled using dual decomposition and convex
optimization. Efficient algorithms for finding both slow and
fast controls using only random samples have been put forth.
Our two novel solvers converge in terms of the primal and dual
variables, and have attained lower operational costs compared
to deterministic alternatives. Although probabilistic constraints
have been applied grid-wise, voltages on individual buses
remained within limits. Enforcing probabilistic constraints on
a per-bus basis, developing decentralized implementations, and
including voltage regulators are interesting research directions.
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