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Abstract—Grid security and open markets are two major
smart grid goals. Transparency of market data facilitates a
competitive and efficient energy environment. But it may also
reveal critical physical system information. Recovering the grid
topology based solely on publicly available market data is
explored here. Real-time energy prices are typically calculated
as the Lagrange multipliers of network-constrained economic
dispatch; that is, via a linear program (LP) typically solved every
5 minutes. Since the grid Laplacian matrix is a parameter of this
LP, someone apart from the system operator could try inferring
this topology-related matrix upon observing successive LP dual
outcomes. It is first shown that the matrix of spatio-temporal
prices can be factored as the product of the inverse Laplacian
times a sparse matrix. Leveraging results from sparse matrix
decompositions, topology recovery schemes with complementary
strengths are subsequently formulated. Solvers scalable to high-
dimensional and streaming market data are devised. Numerical
validation using synthetic and real load data on the IEEE 30-bus
grid provide useful input for current and future market designs.

Index Terms—Online convex optimization; compressive sens-
ing; alternating direction method of multipliers; economic dis-
patch; locational marginal prices; graph Laplacian.

I. INTRODUCTION

An independent system operator collects energy offers and
bids, and dispatches power by maximizing the social welfare
while meeting physical grid limitations. To guarantee com-
petitive market operation, multiple data are communicated to
market participants or are openly publicized, either in real-time
or with certain delay [1]. Such market data may involve energy
prices, bids and offers, congestion information, demand, and
renewable generation. Looking forward, the smart grid vision
calls for energy markets reaching the distribution level to
promote participation, accounting for increased stochasticity
at a finer time resolution [2]. New reliable market designs are
hence to be developed.

From state estimation to load prediction, inference using
data has been a major grid operation component. Facing
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smart grid challenges and opportunities, grid analytics are
now extending to price and renewable forecasting, consumer
preference learning, and cyber-physical attack detection [3].
Among grid learning tasks, monitoring the transmission net-
work topology is critical for security, market clearing, and
billing. Currently, system operators have a precise knowledge
of the grid topology using historical data, measurements,
and the generalized state estimator [4]. Detecting topological
changes from the operator’s perspective has been studied in
[5], [6]; while transmission line outages can be efficiently
revealed via the sparse overcomplete representation of [7].

Nonetheless, third parties other than the system operator
may be interested in tracking transmission network topologies.
There has been an increasing concern lately regarding cyber
attacks on critical power grid operations. Stealth data attacks
were first recognized in [8], while their impact on state
estimation and market outcomes was characterized in [9], [10].
The possibility of data framing attacks deceiving the bad data
processor was explored in [11]. Attacks and countermeasures
on power system controllers have been studied in [12]. Pro-
cedures for detecting and identifying cyber-physical attacks
have been also reported; see e.g., [13]. In most of these
scenarios, designing cyber-physical attacks generally presumes
the grid topology to be (locally) known [14], [15]. Apart from
data attacks, knowing which transmission lines are (currently)
congested could assist in informed bidding or market manipu-
lation [16]. Further, line reactances could be used as a measure
of electrical distance to cluster buses, reveal influential nodes,
or characterize the performance of decentralized algorithms.
Finally, the graph Laplacian of a grid could capture the
correlation across pricing nodes [17]. Therefore, recovering
this matrix could be capitalized in price forecasting tasks.

Apart from conventional topology tracking via general-
ized state estimation, alternative schemes have been recently
proposed. Grid topology recovery is cast as a blind fac-
torization on the matrix of spatio-temporal power injections
in [18]. Even though building on the sparsity and positive
semidefiniteness of the grid Laplacian, [18] relies on linear
independence across voltage phases. Considering a power
line communication network, time delays of communication
signals are leveraged to unveil the microgrid structure in [19].
By postulating a Gaussian Markov random field over bus
voltage phases, transmission network faults could also be
localized [20]. Likewise for distribution grids, the topology
recovery method of [21] exploits the sample covariance matrix
of bus voltage magnitudes.

All in all, existing topology recovery schemes rely on
two presumptions: (a) access to a physical system quantity
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(power injections, voltage phases or magnitudes, commu-
nication delays); and (b) this quantity is measured across
all buses. Nevertheless, these two assumptions are hard to
be satisfied in practice unless the recovery scheme is run
by the system operator. In contrast, this work targets grid
topology recovery using readily available market data. The
idea here is that real-time energy prices are found by the
system operator as the Lagrange multipliers of the network-
constrained economic dispatch, which is a linear program (LP)
typically solved every 5 minutes. Dispatch decisions are the
primal variables of this LP, while grid topology and electricity
offers/bids are its parameters. Observing the dual variables
(prices) related to multiple offer/bids instances, the crux is to
recover the quasi-stationary topology underlying this LP. Our
first contribution is recognizing that properties of the Laplacian
matrix and sparsity in congested lines could be exploited:
The matrix of spatio-temporal prices can be factorized as
the product of a doubly positive matrix with sparse inverse
times a sparse matrix. Novel blind recovery schemes of
complementary strengths constitute the second contribution:
Different from [22], the low-rank property of one of the matrix
factors is not regularized here, thus significantly simplifying
the problem. As our third contribution, algorithms handling big
market data are developed based on the alternating direction
method of multipliers and its online version. Advancing tools
from online optimization, an algorithm handling streaming
market data is devised. Distinct from the static approach in
[22], this novel online approach is pertinent to future smart
grid market designs. Experiments with market data obtained
using synthetic prices as well as real load data over the IEEE
30-bus benchmark corroborate the validity of our findings.

Outline. Section II reviews real-time energy markets and
elaborates on the data model. Structural properties and the
novel topology recovery are presented in Section III, where
two models for energy prices are introduced. Batch solvers for
tackling both models are presented in Section IV. Sequential
recovery schemes where market data are processed as soon as
they are announced are derived in Sec. V. Section VI shows
numerical tests and the paper is concluded in Sec. VII.

Notation. Lower- (upper-) case boldface letters denote col-
umn vectors (matrices); 1 and 0 denote the all-ones and all-
zeros vectors. Symbols X′, tr(X), and |X|, stand for matrix
transposition, trace, and determinant, respectively. Symbol SN
(SN+ ) is the set of real N×N symmetric (positive semidefinite)
matrices. Regarding matrix norms, ‖A‖∗ is the nuclear norm
(sum of matrix singular values); ‖A‖F is the Frobenius norm;
and ‖A‖1 :=

∑
m,n |Am,n|.

II. ENERGY PRICE DATA MODEL

Before delineating our price data model, this section reviews
linear DC power flows and real-time energy markets.

A. Power Grid Modeling

Consider a power grid represented by the graph G = (V, E),
where the set of nodes V corresponds to N + 1 buses, and
the edges in E to L transmission lines. The grid topology is
captured via the L × (N + 1) branch-bus incidence matrix

Ã [3]. For a connected grid, the nullity of Ã is one; and by
definition, Ã1 = 0. If xl > 0 is the reactance of line l and D
an L×L diagonal matrix with [D]l,l = x−1

l , the bus reactance
matrix can be defined as B̃ := Ã′DÃ. Given that B̃ is the
weighted Laplacian of G, it is positive semidefinite, and 1 is
an eigenvector corresponding to B̃’s zero eigenvalue.

The DC power flow model can now be expressed in matrix-
vector form. The active power flow from bus n to bus m over
line l can be approximated as fl = (θn− θm)/xl, where θn is
the voltage phase at bus n; while the power injection at bus
n is pn =

∑
l:(n,m) fl. By stacking {θn, pn}N+1

n=1 and {fl}Ll=1

in θ̃, p̃ ∈ RN+1 and f ∈ RL, respectively; it follows that
f = DÃθ̃ and p̃ = Ã′f = B̃θ̃. By eliminating θ̃, the flows f
can be linearly expressed in terms of p̃; yet B̃ is non-invertible.

To resolve the singularity of B̃, partition Ã into the first
and the rest of its columns as Ã = [ã A]. For a connected G,
the reduced branch-bus incidence matrix A has full column-
rank. Thus, the reduced bus reactance matrix B := A′DA, is
strictly positive definite. Setting θ1 = 0, it readily follows

f = Tp̃. (1)

where T := [0 DAB−1] ∈ RL×(N+1).

B. Modeling of Real-Time Energy Markets

Building on this model, let us now review real-time energy
markets. Energy markets determine the price for electricity
by matching supply and demand. Due to time-varying de-
mand and transmission grid limitations, the electricity cost
varies across time and space (buses), giving rise to locational
marginal prices (LMPs) [1]. Real-time markets are spot mar-
kets where hourly power schedules determined over the previ-
ous day are adjusted every five minutes to accommodate real-
time deviations. Specifically, real-time LMPs are found via the
network-constrained economic dispatch, typically formulated
as the following LP [23]

p̃∗t ∈ arg min
p̃t

c̃′tp̃t (2a)

s.to p
t
≤ p̃t ≤ pt (2b)

p̃′t1 = 0 (2c)

− f ≤ Tp̃t ≤ f . (2d)

Problem (2) determines the incremental power injections p̃∗t
for the upcoming 5-min interval indexed by t. The optimum
dispatch p̃∗t is found by minimizing the electricity cost in
(2a); while satisfying the power limits in (2b), achieving the
supply-demand balance via (2c), and confining line flows
approximated by (1) to lie within a secure range [cf. (2d)].
The power injection bounds in (2b) model bid blocks.

By solving (2), the operator not only determines p̃?t , but also
calculates the LMPs as follows [23]. Let λ0,t be the optimal
Lagrange multiplier associated with the supply-demand equal-
ity in (2c); and (µ

t
,µt) ∈ RL+×RL+ be the optimal Lagrange

multipliers related to the lower and upper flow limits in (2d).
By duality and upon defining µt := µ

t
−µt, problem (2) can
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be equivalently expressed as

p̃∗t ∈ arg max
p̃t

(λ0,t1 + T′µt − c̃t)
′
p̃t (3)

s.to p
t
≤ p̃t ≤ pt.

If λ0,t1 + T′µt is selected as the vector of bus electricity
prices at time t and assuming c̃t are the actual marginal costs,
then (3) reveals that p̃?t maximizes the sum of individual
profits. Note that if a different bus is selected as reference,
the corresponding Lagrange multipliers will be different from
(λ0,t,µt,µt). However, the value of the equivalent vector to
λ0,t1 + T′µt will be the same; thus indicating that the price
vector λ0,t1 + T′µt is invariant to the reference bus choice.

Recall that the approximate DC model ignores the heat
losses dissipated on transmission lines. Once the operator has
found λ0,t1 + T′µt via (2), it modifies prices to account for
the cost of power losses. Thus, LMPs are finally calculated as

π̃t := λ0,t1 +

[
0

B−1A′Dµt

]
+ ˜̀

t (4)

where ˜̀
t is a loss correction [23]. The LMPs in (4) consist of

three summands: the marginal energy component (MEC) λ0,t;
the marginal congestion component (MCC) [0 µ′tDAB−1]′;
and the marginal loss component (MLC) ˜̀

t. Starting from
the last, the MLC is currently calculated in different ways
by different system operators. Nonetheless, given that heat
losses in transmission grids are typically 3-5% of energy
consumption, the component ˜̀

t is relatively small compared to
the other two. For example, for the Mid-continent Independent
System Operator (MISO) market in March 11, 2015 at 6pm
the network-averaged absolute LMP was 24$/MWh, whereas
the network-averaged absolute MLC was only 0.7$/MWh.

According to (3), the MEC is the energy price at the
reference bus. When the power flow on line l reaches the
upper or lower limit at time t, that is fl,t = f l or fl,t = −f l,
then line l is termed congested. The ensuing fact for the µt’s
follows trivially from complementary slackness.

Proposition 1. If transmission line l is not congested at time
t, then the l-th entry of µt is zero.

Apparently, if there are no congested lines and losses were
ignored, all nodes would enjoy the same energy price λ0,t.

C. Problem Statement

Depending on the market, the LMP components are an-
nounced either separately or collectively as a sum. In the
former case, the MCC is readily available. If the sum of MEC
and MCC is publicized, the effect of MEC can be isolated by
subtracting the price of the first entry of π̃t from all entries of
π̃t. It can be argued that subtracting the first entry does not
harm the generality of this preprocessing step regarding the
sum of MEC and MCC, even if the reference bus is not bus
1, since the assumed model λ0,t1 + T′µt still holds. Either
way, collect all but the first bus prices in πt ∈ RN , for which
we postulate:

πt = B−1st + nt (5)

where st := A′Dµt and nt captures the MLC (in its original
or its preprocessed form). Slightly abusing terminology, πt
will be henceforth termed the LMPs.

Market clearing occurs every five minutes, and market bids
{c̃t,pt,pt} change partially over time, adapting to demand
and generation fluctuations. Consider collecting the LMPs of
(5) over the horizon T := {t : t = 1, . . . , T} of T consecutive
market intervals, and suppose grid topology remains invariant
over T . Upon stacking {πt, st,nt}t∈T as columns of the N×
T matrices Π, S, and N, respectively, it follows from (5):

Π = B−1S + N. (6)

Model (6) asserts that if N is ignored, the price matrix Π
can be factorized as the product of the inverse grid Laplacian
B−1 times matrix S. With (6), topology recovery can be now
formulated as the problem of finding (B,S) given {πt}t∈T .
Remark 1. Having multi-block offers and several bidders per
bus does not harm generality of (4)-(6). Specifically, electricity
offers and bids oftentimes consist of multiple blocks: For
example, a generator may offer to produce the first 20MWh
for at least 20$/MWh and the next 5MWh for at least
23$/MWh at the same bus. In this case, the corresponding pn,t
should be decomposed as the sum of two extra optimization
variables as pn,t = p1

n,t + p2
n,t with 0 ≤ p1

n,t ≤ 20 and
20 ≤ p2

n,t ≤ 25; while the summand cn,tpn,t in (2) is
replaced by 20p1

n,t+23p2
n,t. Having multiple generators and/or

consumers at the same bus is handled similarly. Either way,
constraints (2c)-(2d) apparently remain unaltered. Hence, even
though simplifying, (2) is sufficiently representative. Actually,
Section VI involves tests with multi-block offers.

III. TOPOLOGY RECOVERY APPROACHES

A. Noiseless Price Model

If the MCCs are announced separately from the MLCs,
matrix Π satisfies the noiseless counterpart of model (6):

Π = B−1S. (7)

Decomposing Π into (B,S) constitutes a blind matrix fac-
torization problem. To uniquely recover the factors, their rich
structure delineated next should be properly exploited.

Recall that B is positive definite. Once B has been recov-
ered, the original grid Laplacian B̃ can be trivially found in
light of the property B̃1 = 0. Note further that the (n,m)-th
entry of B equals −x−1

nm, if there is a line between buses m
and n; and zero otherwise. Granted power grids are sparingly
connected, B is not only sparse, but its off-diagonal entries
are non-positive. Having positive eigenvalues and non-positive
off-diagonal entries implies B is an invertible M-matrix [24,
Sec. 2.5]. Hence, B−1 has positive entries, i.e., B−1 > 0.

As far as S is concerned, its columns can be expressed as
st =

∑
l∈E µt,lx

−1
l al. Since many of the {µt,l}l in (8) are

expected to be zero [cf. Prop. 1], st can be also written as

st =
∑
l∈Ct

µt,l
xl

al (8)

where Ct ⊆ E is the subset of congested lines at time t. In
other words, st is a linear combination of few al’s. Given
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that al are sparse, matrix S is expected to be sparse too.
Typically, only a few transmission lines become congested
over a short market period (say one day): In the California
ISO (CAISO) for example, only two transmission lines are
typically congested [25]. Hence, it can be assumed that the
{Ct}Tt=1 overlap significantly, or that the locations of the non-
zero entries of {µt}Tt=1 remain relatively time-invariant. Since
st’s are linear combinations of those few al’s corresponding
to congested lines, S is expected to exhibit low rank. The
invertibility of B implies Π should have low rank too.

It will be useful also to recognize that the factorization in
(7) is scale-invariant: If (B,S) satisfies (7), so does the pair
(αB, αS) for all α > 0. To waive this inherent ambiguity, the
maximum diagonal entry of B is assumed to be unity. Due to
this normalization, matrix B should satisfy B � 0 and B ≤ I.

Leveraging these properties, one could recover (B,S) by
solving the optimization problem:

min
B,S

‖S‖0 + κ0‖B‖0 (9a)

s.to BΠ = S, B � 0, B ≤ I (9b)

where ‖X‖0 is the `0-(pseudo)norm of a matrix counting
its non-zero entries, and κ0 > 0 is a parameter balancing
the sparsity between the two matrices. Problem (9) finds the
sparsest pair (B,S) that satisfies model (7) and the structural
constraints of B. Different from [22], the rank of S is not
penalized here, since the constraint BΠ = S and the non-
singularity of B imply rank(S) = rank(Π) anyway.

Minimizing the `0-norm is in general NP-hard [26]. Follow-
ing advances in compressive sensing [27], the `0-norm will be
surrogated by the `1-norm to yield the convex problem

min
B,S

‖S‖1 + κ1 tr(PB)− κ2 log |B| (10)

s.to BΠ = S, B ∈ B.

where P := I−11′, B := {B : B � 0, B ≤ I}, and κ1, κ2 >
0. Two observations are in order regarding (10).

First, since that the diagonal entries of B are strictly
positive, ‖B‖0 in (9a) has been replaced by the sum of the
off-diagonal entries of B in their absolute values, that is∑

n,m:n 6=m

|Bn,m| =
∑
n

Bn,n −
∑
n,m

Bn,m

= tr(B)− 1′B1 = tr(PB)

where the first equality comes from the non-positive off-
diagonal entries of B, and the rest from properties of the trace.

Second, ideally B should be enforced to be strictly positive
definite, i.e., B � 0. Nonetheless, current optimization algo-
rithms cannot guarantee the minimizer to lie in the interior of
the feasible set. On the other hand, imposing B � 0 admits
the trivial solution (B,S) = (0,0). As a remedy, the term
− log |B| has been added in the cost of (10) to confine B in
the interior of the positive semidefinite cone B � 0.

By eliminating S, (10) can be equivalently transformed to

min
B∈B

‖BΠ‖1 + κ1 tr(PB)− κ2 log |B|. (11)

The strict convexity of −κ2 log |B| guarantees that (11) and
hence (10) have unique minimizers.

B. Noisy Price Model

In practice, the price model in (6) may be more pertinent
than the exact model of (7). That is the case for example when
{πt}t∈T comprise of both the congestion (MCC) and loss
(MLC) components. Furthermore, model (6) captures pertur-
bations in B, which could be attributed to the linearization
of the original AC power flow model or to time-varying
transformer settings. Either way, the non-zero entries of B are
perturbed according to the instantaneous grid operating point.

Rather than enforcing the constraint BΠ = S, the idea
here is to look for sparse and non-zero (B,S) that yield a
small least-squares error ‖BΠ−S‖2F . Hence, the non-convex
problem in (9) is replaced by

min
B,S

1
2‖BΠ− S‖2F + κ0‖B‖0 + κ′0‖S‖0 (12)

s.to B � 0, B ≤ I

for κ0, κ
′
0 > 0. In the same spirit (9) was surrogated by (10),

the hard problem in (12) is approximated by the convex one

min
B∈B,S

1
2‖BΠ−S‖2F +κ3‖S‖1 +κ1 tr(PB)−κ2 log |B| (13)

for some κ3 > 0. Actually, after minimizing over S, the last
problem can be shown to be equivalent to

min
B∈B

h̃κ3
(BΠ) + κ1 tr(PB)− κ2 log |B| (14)

where h̃κ3
(X) :=

∑
m,n hκ3

(Xm,n), and hκ3
is the so termed

Huber function

hκ3(x) :=

{
1
2x

2 , |x| ≤ κ3

κ3|x| − κ2
3

2 , |x| > κ3

. (15)

Comparing (11) with (14), the entries of BΠ in (11) are
arguments of the absolute value cost. On the other hand,
the objective in (14) penalizes small entries of BΠ with a
quadratic cost, and large ones with the absolute value cost
[cf. (15)].

IV. BATCH TOPOLOGY RECOVERY SCHEMES

Although (10) and (13) could be solved by commercial
software for relatively small problems, interior point-based
solvers cannot handle N and T larger than a few hundreds.
There are two main optimization challenges here: the non-
differentiable objective terms ‖BΠ‖1 or ‖S‖1, and the feasible
set B. Note that B is the intersection of the positive definite
cone and a shifted version of the nonnegative orthant. Albeit
projection over each of these convex cones is relatively easy,
there is no closed-form solution for projecting on B.

Given these challenges, an algorithm based on the alternat-
ing direction method of multipliers (ADMM) is derived next.
ADMM targets solving problems of the form [28]

min
x∈X ,z∈Z

{f(x) + g(z) : Fx + Gz = c} (16)

where f(x) and g(z) are convex functions; X and Z are con-
vex sets; and (F,G, c) model the linear equality constraints
coupling variables x and z. In its normalized form, ADMM
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assigns a Lagrange multiplier y for the equality constraint and
solves (16) by iterating over the recursions

xi+1 := arg min
x∈X

f(x) + ρ
2‖Fx + Gzi − c + yi‖22 (17a)

zi+1 := arg min
z∈Z

g(z) + ρ
2‖Fxi+1 + Gz− c + yi‖22 (17b)

yi+1 := yi + Fxi+1 + Gzi+1 − c. (17c)

for some ρ > 0. The generic algorithmic steps of (17) are
engaged in solving (10) and (13) next.

A. Batch Solver for the Noiseless Model

To apply ADMM and end up in efficient updates for (10),
we first replace variable B with three copies B1, B2, and B3,
to yield the equivalent problem

min
B1,B2≤I,B3�0,S

‖S‖1 + κ1 tr(PB1)− κ2 log |B3| (18a)

s.to B1 = B2 (18b)
B1 = B3 (18c)
B1Π = S (18d)

Let M12, M13, and M, denote the Lagrange multipliers
corresponding to (18b), (18c), and (18d), respectively. Parti-
tioning variables into B1 and (B2,B3,S), ADMM iterates
through the next three steps.

At the first step of iterate i, the variable B1 is updated given
(Bi

2,B
i
3,S

i) and (Mi
12,M

i
13,M

i) by solving

min
B1

{
κ1 tr(PB1) + ρ

2‖B1 −Bi
2 + Mi

12‖2F (19)

+ ρ
2‖B1 −Bi

3 + Mi
13‖2F + ρ

2‖B1Π− Si + Mi‖2F
}
.

The solution of (19) is provided in closed form as Bi+1
1 =

(Bi
2−Mi

12+Bi
3−Mi

13+(Si−Mi)Π′− κ1

ρ P) (2I + ΠΠ′)
−1.

During the second step, ADMM updates the second block of
variables (B2,B3,S) given Bi+1

1 and (Mi
12,M

i
13,M

i). Yet
the optimization decouples over the three variables. Specifi-
cally, variable B2 is updated as the solution of

min
B2≤I

ρ
2‖B

i+1
1 −B2 + Mi

12‖2F (20)

whose minimizer is Bi+1
2 = min

{
Bi+1

1 + Mi
12, I

}
, where the

minimum operator is understood entry-wise.
Variable B3 is updated as the minimizer of

min
B3�0

1
2‖B

i+1
1 −B3 + Mi

13‖2F − κ2

ρ log |B3| (21)

which can be readily found as follows [22, Lemma 1]: Define
the operator Pα : RN×N → SN+ for some α > 0 as

Pα (X) = 1
2V
(
Ξ +

(
Ξ2 + 4αI

)1/2)
V′ (22)

where VΞV′ is the eigenvalue decomposition of the symmet-
ric matrix 1

2 (X + X′). Then, the solution to (21) is

Bi+1
3 = Pκ2/ρ

(
Bi+1

1 + Mi
13

)
. (23)

Variable S is updated by solving

min
S

1
2‖B

i+1
1 Π− S + Mi‖2F + 1

ρ‖S‖1. (24)

Algorithm 1 Batch Topology Recovery (Noiseless Model)
Require: Price matrix Π and (κ1, κ2, ρ).

1: Initialize B0
1 = B0

2 = B0
3 = IN and S0 = Π.

2: Initialize M0
12 = M0

13 = 0N and M0 = 0N×T .
3: for i = 1, 2, . . . , do
4: Update Bi+1

1 from (19).
5: Update Bi+1

2 from (20).
6: Update Bi+1

3 from (23).
7: Update Si+1 from (25).
8: Update multipliers (Mi+1

12 ,Mi+1
13 ,Mi+1) from (26).

9: end for

Problem (24) is separable across the entries of S, admitting
the closed-form minimizer:

Si+1 = Sρ−1

(
Bi+1

1 Π + Mi
)

(25)

where Sβ(x) is the soft thresholding operator defined as

Sβ(x) :=

{
x− β sign(x), |x| > β

0, |x| ≤ β
applied entry-wise in (25).

In the third step, the Lagrange multipliers are updated as

Mi+1
12 = Mi

12 + Bi+1
1 −Bi+1

2 (26)

Mi+1
13 = Mi

13 + Bi+1
1 −Bi+1

3

Mi+1 = Mi + Bi+1
1 Π− Si+1.

The algorithm is summarized as Algorithm 1, and its con-
vergence is guaranteed for all ρ > 0 [28]. Its computational
complexity per ADMM iteration is O(N3 +N2T ).

B. Batch Solver for the Noisy Model

Finding an efficient ADMM solver for (13) proceeds in
a similar manner. To decouple the constraints and the non-
differentiable summands in the cost, introduce three copies
for variable B and two for S to transform (13) into

min
B1,B2≤I,B3�0,S1,S2

1
2‖B1Π− S2‖2F + κ3‖S1‖1 (27a)

+ κ1 tr(PB1)− κ2 log |B3|
s.to B1 = B2, (27b)

B1 = B3 (27c)
S1 = S2 (27d)

Define the Lagrange multipliers M12, M13, and N12,
related to equality constraints (27b), (27c), and (27d), respec-
tively; and partition variables as (B1,S1) and (B2,B3,S2).
Following similar steps as in Section IV-A, the ADMM itera-
tions listed in Algorithm 2 can be derived. Its computational
complexity per ADMM iteration is O(N3 +N2T ).

V. GRID TOPOLOGY TRACKING

The topology recovery scheme of Section IV presumes
that: (c1) the power system topology remains unchanged, and
(c2) prices are available over the entire period T . Yet future
power grids may be reconfigured frequently for dispatching
and maintenance, while real-time LMPs over thousands of
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Algorithm 2 Batch Topology Recovery (Noisy Model)
Require: Price matrix Π and (κ1, κ2, κ3, ρ).

1: Initialize B0
1 = B0

2 = B0
3 = IN and S0

1 = S0
2 = Π.

2: Initialize M0
12 = M0

13 = 0N and N0
12 = 0N×T .

3: for i = 1, 2, . . . , do
4: Bi+1

1 := (Si2Π
′+ρ(Bi

2−Mi
12)−κ1P) (ΠΠ′+ρIN )

−1.
5: Si+1

1 := Sκ3/ρ

(
Si2 −Ni

12

)
.

6: Update Bi+1
2 from (20).

7: Update Bi+1
3 from (23).

8: Si+1
2 := 1

ρ+1

(
Bi+1

1 Π + ρ(Si+1
1 + Ni

12)
)

9: Mi+1
12 := Bi+1

1 −Bi+1
2

10: Mi+1
13 := Bi+1

1 −Bi+1
3

11: Ni+1
12 := Si+1

1 − Si+1
2

12: end for

buses are expected to be announced at a fast rate, which render
conditions (c1)-(c2) unrealistic. Even for contemporary energy
markets, one would like to update an existing grid topology
estimate every time a new LMP vector πt arrives. Such a
sequential scheme not only waives a multiple-period delay T ,
but it further relaxes the stationary topology assumption, thus
enabling topology tracking.

Solvers for streaming rather than batch pricing data are
developed next. The desiderata here is online schemes where
topology estimates Bt are updated every time a price vector
πt is publicized. Advances from online optimization are
particularly suitable for this task [29]. Tailored to big data
processing, many online convex optimization algorithms aim
at solving problems of the form

min
x∈X

T∑
t=1

(ft(x) + g(x)) (28)

where ft(x) depends on the t-th datum, and g(x) is a
regularizer, i.e., a function leveraging prior information on x.

Tailoring our topology recovery task to the online optimiza-
tion setup, consider the general problem

min
B∈B

T∑
t=1

(
fπt

(B) + κ1

T tr(PB)− κ2

T log |B|
)
. (29)

By selecting fπt
(B) := ‖Bπt‖1, problem (29) yields (11);

whereas, for fπt(B) := h̃κ3(Bπt), (29) is equivalent to (14).
Apparently, the term fπt(B) depends market data πt and can
be thought of as a data fittng term. The other two terms in the
objective of (29) can be interpreted as regularizers for B.

To solve (29) in an online fashion, we resorted to the online
ADMM algorithm of [28] that cycles through:

xt+1 := arg min
x∈X

ft(x) + ρ
2‖Fx + Gzt − c + yt‖22 (30a)

+ η
2‖x− xt‖22

zt+1 := arg min
z∈Z

g(z) + ρ
2‖Fxt+1 + Gz− c + yt‖22 (30b)

yt+1 := yt + (Fxt+1 + Gzt+1 − c). (30c)

Comparing (30) with its batch counterpart in (17), the iteration
index i in (30) coincides with the data index t, while the first
step in (30a) entails only the current ft(x) together with the

proximal term η
2‖x − xt‖22 for some η > 0. Regarding its

convergence, the algorithm attains sublinear regret in terms of
both the cost and the constraint violation [28, Th. 4].

Building on (18), introduce copies of B to express (29) as

min
B1,B2,B3

T∑
t=1

(
fπt(B1) + κ1

T tr(PB1)− κ2

T log |B3|
)

(31a)

s.to B1 = B2 (31b)
B1 = B3 (31c)
B3 � 0, B2 ≤ I. (31d)

It is worth stressing that even though the batch ADMM solvers
of Section IV addressed problems (10) and (13), our approach
in (31) reformulates the problem versions (11) and (14) where
variable S has been eliminated. This is possible only because
the online version of ADMM treats each fπt

(B) separately.
This critical feature enables neat closed-form updates for B
without having to deal with S as detailed next.

Similarly to (18), let M12 and M13 be the Lagrange
multipliers corresponding to constraints (31b) and (31c), re-
spectively. As soon as πt is announced, a cycle of the online
ADMM of (30) is initiated. In its first step, B1 is updated via
(30a), which upon completing the squares yields

Bt
1 := arg min

B1

1
2ρ+ηfπt

(B1) + 1
2‖B1 − B̌t−1

1 ‖2F (32)

where B̌t−1
1 := ρ

2ρ+η (Bt−1
2 + Bt−1

3 − Mt−1
12 − Mt−1

13 ) +
η

2ρ+ηBt−1
1 − κ1

2T (2ρ+η)P. Problem (32) could be reformulated
and solved as a linearly-constrained quadratic program.

Interestingly enough though, the minimizer of (32) can be
found in closed form for both choices of fπt

(B1). Specifically,
if fπt(B1) = ‖B1πt‖1, the next claim is shown in the
Appendix:

Proposition 2. Given (Y, z) ∈ RM×N×RN , the minimizer

X̂ := arg min
X
‖Xz‖1 + 1

2‖X−Y‖2F (33)

is given by X̂ = Y − Sz (Yz) z′, where z := ‖z‖22, and
the operator Sz (x) : RN → RN is defined as Sz(x) :=

sign(x) ·min
{
|x|
z , 1

}
applied entry-wise.

By Prop. 2, Bt
1 can be found as a rank-one update of B̌t−1

1

Bt
1 = B̌t−1

1 − S‖π̌t‖22

(
B̌t−1

1 π̌t
)
π̌′t (34)

where π̌t := 1
2ρ+ηπt. The key observation here is that

having a single `1-norm ‖B1πt‖1 rather than ‖B1Π‖1 =∑T
t=1 ‖B1πt‖1 [cf. (11)] led to the simple update of (34).
For the Huber cost, the next claim is proved in the Ap-

pendix:

Proposition 3. Given (Y, z) ∈ RM×N×RN , the minimizer

X̂ := arg min
X

αh̃κ (Xz) + 1
2‖X−Y‖2F (35)

for α > 0 is given by X̂ = Y −Hz,α,κ (Yz) z′, where z :=
‖z‖22, and Hz,α,κ (x) : RN → RN is defined as

Hz,α,κ(x) :=


x

α−1+z , |x| ≤ κ(1 + αz)

ακ , x > κ(1 + αz)
−ακ , x < −κ(1 + αz)

(36)
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Algorithm 3 Topology Recovery Tracking Scheme
Require: (κ1, κ2, κ3, ρ, η).

1: Initialize B0
1 = B0

2 = B0
3 = IN .

2: Initialize M0
12 = M0

13 = 0N .
3: for t = 1, 2, . . . , T do
4: Acquire price vector πt.
5: Update Bt+1

1 using (34) or (37).
6: Update (Bt+1

2 ,Bt+1
3 ) from (38) and (39), respectively.

7: Update (Mt+1
12 ,Mt+1

13 ) from (40) and (41), respectively.
8: end for
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Fig. 1. Computational complexity of Alg. 1 for price matrices Π ∈ RN×5N .

applied entry-wise.

Based on Proposition 3, when fπt
(B1) = h̃κ3

(B1πt), the
minimizer of (32) is

Bt
1 = B̌t−1

1 −H‖πt‖22,(2ρ+η)−1,κ3

(
B̌t−1

1 πt
)
π′t. (37)

During the second step of iteration t, matrices (B2,B3) are
updated similarly to (20)-(23) as

Bt+1
2 = min

{
Bt+1

1 + Mt
12, I

}
(38)

Bt+1
3 = Pκ2/(Tρ)

(
Bt+1

1 + Mt
13

)
. (39)

At the third step, the Lagrange multipliers are updated as

Mt+1
12 = Mt

12 + Bt+1
1 −Bt+1

2 (40)

Mt+1
13 = Mt

13 + Bt+1
1 −Bt+1

3 . (41)

To summarize, grid topology recovery using inexact streaming
pricing data can be performed using Algorithm 3. Its complex-
ity per time instance is dominated by the O(N3) computations
needed for the eigenvalue decomposition in (39).

VI. EXPERIMENTAL VALIDATION

The computational complexity of the novel scheme was first
verified using synthetic market data. Instances of the price
matrix Π of dimension N × 5N were generated by inde-
pendently drawing its entries from the standardized Gaussian
distribution. All experiments were run on a 2.4 GHz Intel
Core i7 (4GB RAM) laptop computer using MATLAB. The

Fig. 2. Topology of the IEEE 30-bus system [30].

TABLE I
GENERATION OFFERS

Generator Block offers [MWh,$/MWh]
1 (30,26) (20,36) (20,44) (10,50)
2 (20,21) (20,28) (20,35) (20,43)

13 (15,38) (15,42) (10,47)
22 (10,16) (10,27) (10,41) (10,54) (10,66)
23 (15,34) (15,40)
27 (30,35) (15,39)

number of ADMM iterations and execution times for Alg. 1
with κ1 = κ2 = 0.5N are shown in Fig. 1. For N larger than
1000, execution times exceeded the level of hours, and thus,
they were not tested here. In such cases, parallel computing,
variable initialization, and custom-made routines for ADMM
updates could be pursued. Alternatively, the online solvers
tested later in this section become practically relevant.

To evaluate the recovery capabilities of the novel ap-
proaches, we then experimented with real load data on the
IEEE 30-bus benchmark [30]. The latter comprises 18 load
buses, 6 generators, and 6 zero-injection buses. The transmis-
sion network consists of 41 lines with ratings ranging from 16
to 130 MVA as listed in [30].

Regarding offers, the benchmark provides generation ca-
pacities and quadratic generation costs [30]. To comply with
market practices, the generation costs were first approximated
by convex piece-wise linear functions yielding the block offers
of Table I. The original costs were scaled up by 10 to
reflect current wholesale electricity cost levels. To model small
fluctuations in costs, the nominal offers of Table I were shifted
by a deviation uniformly distributed in [−2.5, 2.5] $/MWh.

For consumption, apart from the 18 load buses, generator
buses 2 and 23 have load demands too, resulting in a total
of 20 loads. The IEEE 30-bus benchmark provides a single
realization of load demands. To simulate multiple realistic
demands, we used the actual load data publicized for the
Global Energy Forecasting (GEF) competition 2012 [31].
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TABLE II
AVERAGE BUS DEGREE ATTAINED FOR (κ1, κ2)

κ1 \ κ2 0.001 0.01 0.1 1 10

0.001 0.9 1.2 1.5 2.5 5.9
0.01 0.9 1.0 1.4 2.5 5.9
0.1 0.8 1.0 1.6 2.4 5.9
1 0.4 2.8 1.9 2.7 5.9
10 6.5 5.6 5.9 6.0 6.0

These data are the hourly energy consumptions over 20 sites.
To match the load levels of the IEEE 30-bus grid, all loads
were scaled down by a factor of 7. The 20 demand sequences
from December 23, 2007, were assigned to buses so that the
average consumption per bus matched the demand specified by
the benchmark. Hourly loads were perturbed by a zero-mean
Gaussian variation having standard deviation 10 times smaller
than the nominal value to account for 5-min load fluctuations.

Real-time prices were generated by solving (2) for one
day, i.e., 288 5-min intervals, and MCCs were announced
separately. Lacking any day-ahead market information, the
system was assumed to be dispatched entirely through the
real-time market. Out of the 288 dispatches, 3 were infeasible
and 45 experienced no congestion (occurred primarily over
nighttime). Our experimental validation utilized the remaining
T = 240 MCC price vectors. It is worth stressing that only
lines (1,2), (15,23), and (6,28) became congested.

Upon collecting prices over an entire day, parameters
(κ1, κ2) were selected. Although such parameters are typically
tuned using cross-validation, this methodology becomes cum-
bersome for our problem. Assuming the average node degree
for the grid of interest to be known, (κ1, κ2) were tuned so
that the estimate B̂ had the same average degree. Given the
scale ambiguity, the algorithm outcome B̂ was normalized by
its maximum diagonal entry, and entries with absolute value
smaller than 0.01 were set to zero.

Algorithm 1 was run for (κ1, κ2) taking the values
{10−3, 10−2, 10−1, 1, 10}. Regarding ρ, the convergence rate
for the objective (constraint violation) is proportional (in-
versely proportional) to ρ [28]. For the problem at hand, setting
ρ = 104 was empirically observed to provide a good trade-off.
Since the average degree of the IEEE 30-bus grid is 2.68, the
estimated node degrees obtained in Table II hint that (κ1, κ2)
could be both set to 1. The actual and the recovered Laplacian
matrix for the IEEE 30-bus benchmark are shown in Fig. 3.

We next simulated a longer observation interval: Consump-
tion data were generated by scaling GEF competition loads
over January 2008 so that the maximum daily per-site value
was 1.6 times the benchmark demands [31]. The precision-
recall tradeoff of the topology recovery scheme was evaluated
in terms of the true positive and false positive rates. The true
positive rate was empirically calculated as the number of lines
correctly identified over the total number of lines (39 for the
reduced 30-bus grid). The false positive rate was measured as
the ratio of transmission lines incorrectly identified as active
over the number of bus pairs without a direct line connection
(367 here). After ignoring market periods without congestion,
Algorithm 1 was tested using successive observation intervals
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Fig. 3. Laplacian matrix for the IEEE 30-bus system.

of varying lengths for different values of κ1 = κ2. Figure 5
demonstrates that the precision-recall behavior of the scheme
improves with increasing observation intervals as expected.

The method’s tracking ability was tested by simulating a
grid reconfiguration on January 15: lines (2,6) and (23,24)
were exchanged for lines (2,7) and (23,26), respectively.
Among the 8,928 intervals, infeasible dispatches and dis-
patches without congestion were ignored yielding 7,220 ef-
fective clearings. Algorithm 3 with the update of (37) was
initialized to the batch solution obtained from Alg. 1. Param-
eters ρ and η were set to

√
T yielding sublinear regret [28],

while κ3 was set to 1. Figure 4 depicts the tracking behavior
of Alg. 3. The estimated normalized reactance for line (10,17),
i.e., entry B̂9,16, remained relatively invariant. Line (2,7) was
initially erroneously detected as active, yet it was adjusted after
Jan. 15, while reactance (2,6) approached zero. Interestingly,
the replacement of line (23,24) by (23,26) was promptly
detected. Regarding computational complexity, one update
needed 0.5 msec for N = 30 buses and scaled up to 5 sec for
N = 2, 000, deeming the online ADMM scheme pertinent for
real-world energy markets.
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VII. CONCLUSIONS

Grid topology recovery using publicly available energy
prices was the subject of this work. Upon exploiting the
way real-time LMPs are obtained, recovery approaches with
complementary strengths were developed. Advances in com-
pressive sampling and online convex optimization proved to
be useful for grid topology tracking. Experimental validation
using real consumption data on a benchmark grid corroborated
the risk of unveiling the power network structure. Numerical
tests using a month-long price dataset showed the possibility of
tracking grid reconfigurations too. The recovery performance
could be enhanced further in envisioned smart grids: In
competitive markets, rapidly changing offers and bids could
probe the dispatch linear program in a richer way, while
market data announced at higher rates could provide even more
information. Characterizing identifiability is a challenging yet
interesting research direction. Moreover, leveraging heteroge-
neous market data, such as prior knowledge on transmission

lines, local congestion information and schedules, and histor-
ical global congestion and schedule information are expected
to improve the recovery results.

APPENDIX

Proof of Proposition 2: Strict convexity of 1
2‖X−Y‖2F

implies that (33) admits a unique minimizer. First-order opti-
mality conditions assert that 0 belongs to the subdifferential
of ‖Xz‖1 + 1

2‖X −Y‖2F evaluated at X̂. By definition, the
subdifferential of ‖Xz‖1 at X̂ is ĝz′, where

ĝ′n :=

{
sign(x̂′nz) , x̂′nz 6= 0
sn : |sn| ≤ 1 , otherwise (42)

is the n-th entry of ĝ, and x̂′n denotes the n-th row of X̂.
Hence, the first-order optimality condition implies that

X̂ = Y − ĝz′. (43)

Unless z = 0 and trivially X̂ = Y, the minimizer X̂ is a rank-
one update of Y granted ĝ is known. To find ĝ, post-multiply
(43) by z to get X̂z = Yz− ĝz whose n-th entry reads

x̂′nz = y′nz− ĝnz (44)

with z := ‖z‖22 and yn being the n-th row of Y. Given (42)
and depending on y′nz, three cases can be identified for (44):
(c1) If y′nz > z, then ĝn = +1 and x̂′nz > 0; (c2) if y′nz <
−z, then ĝn = −1 and x̂′nz < 0; and (c3) if |y′nz| ≤ z, then
ĝn = y′nz/z and x̂′nz = 0; thus proving the claim.

Proof of Proposition 3: Similar to Prop. 2, first-order
optimality conditions imply that

X̂ = Y − αĝz′. (45)

where the n-th entry of ĝ is defined as

ĝ′n :=

{
x̂′nz , |x̂′nz| ≤ κ
κ sign(x̂′nz) , otherwise (46)

and x̂′n is the n-th row of X̂. To find ĝ, post-multiply (45) by
z to obtain X̂z = Yz− αĝz, whose n-th entry reads

x̂′nz = y′nz− αĝnz (47)

with z := ‖z‖22 and yn being the n-th row of Y. Based on
(46), three cases can be distinguished for (47): (c1) If |y′nz| ≤
κ(1 + αz), then ĝn = x̂′nz; (c2) if y′nz > κ(1 + αz), then
ĝn = κ; and (c3) if y′nz < −κ(1 + αz), then ĝn = −κ. Note
that for (c1), ĝn depends on the unknown x̂n. By substituting
ĝn back into (45) and focusing on the n-th row of X̂, we
arrive at (I + αzz′)x̂n = yn. Invoking the matrix inversion
lemma yields x̂n = yn −

(
y′nz/(α−1 + z)

)
z.
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