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Abstract—How much data is needed to optimally schedule dis-
tributed energy resources (DERs)? Does the distribution system
operator (DSO) have to precisely know load demands and solar
injections at each bus of the feeder to solve an optimal power flow
(OPF)? This work exploits redundancies in OPF’s structure and
data to avoid communicating such data deluge, and explores the
trade-off between data compression and grid’s performance. We
propose an OPF data distillation framework involving two steps.
The DSO first collects OPF data from only a subset of nodes. The
DSO subsequently reconstructs the complete OPF data from the
partial ones, and feeds them into the OPF solver. Selecting and
reconstructing OPF data may be performed to either maximize
the fidelity of reconstructed OPF data, or maximize the fidelity
of OPF solutions corresponding to reconstructed data. Under
the first objective, OPF data distillation is posed as a sparsity-
regularized convex problem. Under the second objective, it is
posed as a sparsity-regularized bilevel program. Both problems
are solved using accelerated proximal gradient (PGD) algorithms.
Numerical tests corroborate that the bilevel formulation enhances
fidelity and feasibility of reconstructed OPF solutions, and that
OPF solutions can be approximated reasonably well even from
partial data.

Index Terms—Linearized distribution flow, optimal meter
placement, smart meter data compression, group lasso.

I. INTRODUCTION

With the rampant integration of DERs, distribution system
operators (DSOs) need to dispatch resources optimally at
increasingly finer spatiotemporal scales. Solving the OPF
requires collecting a large amount of data in near real-time.
Currently, smart meters report packetized load demand data
hourly or daily. Nonetheless, to control DERs effectively, the
DSO may have to communicate with all customers and collect
their active and reactive power demands every few minutes.
This technical specification may be hard to meet due to
communication, data privacy, and cyber-attack considerations.
This work leverages redundancies in OPF features and the
structure of the OPF to approximately solve the OPF using
only a carefully selected subset of load demands.

In transmission systems, the operator estimates voltages
from grid measurements, infers loads by plugging voltages
into the power flow equations, and feeds the inferred load
values into real-time market operations. This workflow may
not be replicated in real-time distribution systems operations
due to a lack of observability at the grid edge. Under this
setting, can DSOs control DERs based on partial grid data?
The OPF can be viewed as a parametric optimization problem:
Given load demands at all buses captured by vector θ, the OPF
returns the optimal DER dispatch denoted by vector x(θ). A
key challenge in real-time DSO operations is that θ may be
uncertain or incomplete. The OPF mapping θ → x has been
extensively studied in the literature; see [1], [2] and references

therein. Uncertainty quantification studies how a probabilis-
tic characterization postulated on θ propagates through the
OPF [3]. Sensitivity analysis computes the Jacobian matrix
of x with respect to θ; see [4, Ch. 6]. Stochastic or robust
programming aims at securing system’s performance when θ
is not precisely known [5]. Reference [6] studies the value of
data in grid operations and how obfuscation to preserve privacy
can affect OPF solutions. Schemes for securing customer’s
private load demand information are devised in [7].

The focus here is on compressing θ to approximately solve
the OPF. Kron/Ward reduction techniques from the 1950’s and
more recent ones aim at compressing the OPF problem itself
via a reduced network model [8], [9], [10]. However, mapping
results back to the actual system is non-trivial. Reference [11]
applies principal component analysis (PCA) to a dataset of
OPF solutions x so that a learning-to-optimize deep neural
network (DNN) is trained to learn only a limited subspace
of x. Instead of x, we aim to compress θ. References [12]
and [13] suggest a joint learning and optimization approach,
according to which OPF data are unknown and can only be
predicted from primitive features ϕ, such as weather forecasts,
historical trends, or partial OPF data. Rather than first inferring
θ from ϕ and then mapping θ to x via the OPF or an ML
model, [12] and [13] advocate learning the mapping from ϕ
to x. In our setting, the DSO has no access to ϕ and needs
to decide which OPF data should be sampled in real time.
Keeping the OPF module in the workflow ensures that data
distillation does not affect the OPF solver so that the same
OPF solver is reused regardless of whether the DSO collects
more or less data.

The task of selecting relevant OPF data is reminiscent of
sparse learning or feature selection in machine learning [14],
wherein given feature vector θ, one tries to infer a target
variable x(θ) using only a subset of features. Although feature
selection and reconstruction have been extensively studied in
the ML context, we revisit them with a fresh look under the
OPF lens. Clearly, selecting OPF data is closely related to
the optimal placement of meters [15], [16], or actuators [17].
Rather than improving the grid’s observability or controllabil-
ity, we select data to support OPF operations.

The technical contributions of this work are on three fronts:
i) We formulate the task of OPF data distillation to select

the most influential data to optimally schedule DERs on
a data budget (Section II);

ii) If the goal is to improve the fidelity of OPF data, we
adopt a greedy algorithm based on the discrete empirical
interpolation method (DEIM) and a proximal gradient
algorithm for solving a group-lasso-type convex optimiza-
tion problem (Section III); and
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iii) If the goal is to improve the fidelity of OPF solutions,
we put forth a bilevel optimization program and develop
a proximal gradient algorithm for solving it (Section IV).

The developed methods are evaluated on a single-phase sim-
plification of the IEEE 37-bus benchmark feeder and the IEEE
123-bus multiphase feeder. We solved prototypical examples
of the OPF that control reactive power injections from DERs
to minimize losses while maintaining bus voltages within
allowable limits. Grid loading conditions were simulated using
a combination of synthetic and real-world load, solar, and
electric vehicle data. The tests corroborate that fidelity im-
proves when selecting more OPF features, OPF-aware data
distillation yields better results in terms of approximating
optimal DER schedules and complying with constraints, and
OPF solutions can be approximated reasonably well given
only a relatively small subset of OPF data. Conclusions and
exciting open research directions are presented in Section VI.
Partial preliminary results have been reported in the conference
precursor of this work [18].

II. PROBLEM STATEMENT

A distribution system operator (DSO) wants to decide the
optimal setpoints for reactive power injections by inverter-
interfaced DERs. To this end, the operator routinely collects
data across a feeder, which are subsequently used as parame-
ters in an OPF. Such data may be of sizable volume as they
include active injections by DERs as well as active and reactive
demands from inflexible loads. Such data may be aggregated
at the level of primary network buses. Under limited commu-
nication and/or sensing capabilities, the operator may not be
able to possess all such data promptly to solve the OPF in
real-time. In other words, if the OPF has to be solved every
few minutes, the operator may be unable to communicate and
read out data from every single bus of the primary network.
A more realistic setup is that the operator can afford to install
sensors only at K out of the N buses of a feeder. Hence, in
real-time, the operator would communicate only with these K
sensors and rely solely on their data feeds to solve the OPF.
Under this setup, two questions arise: i) How to sample data
optimally? and ii) How to solve the OPF using partial data?

To address these questions, we deal with a prototypical OPF
version. Consider the task of optimally deciding the reactive
power setpoints by DERs. Given re/active loads and active
solar generation on each bus, the DSO intends to decide
optimally on DER reactive power setpoints. Such setpoints
could be found by solving an OPF that minimizes ohmic
power losses on distribution lines while ensuring bus voltages
lie within allowable limits. The OPF considers a linearized
grid model of a single-phase radial feeder. Although the
technical exposition considers this stylized version of the OPF,
our proposed methodology applies readily to other settings;
Section V includes numerical tests on a multiphase feeder.

Consider a single-phase feeder with N+1 buses, indexed by
n = 0, . . . , N . The substation bus is indexed by n = 0. Let vn
be the voltage magnitude, and pn + jqn the complex power
injection at bus n. Collect all but the substation injections
and voltages in the N -length vectors (p,q,v). Vectors (p,q)

can be decomposed into inverter injections (pg,qg) and load
withdrawals (pℓ,qℓ) as

p = pg − pℓ (1a)

q = qg − qℓ. (1b)

Without loss of generality, each bus is assumed to host at most
one (aggregate) load and at most one DER.

We adopt an approximate grid model rather than the exact
AC power flow equations. Modeling inaccuracies can be
justified due to the planning rather than operational nature
of our OPF data distillation task: The goal at this point is not
to schedule DERs, but to find which data are most valuable
for scheduling DERs. The approximate grid model is obtained
upon linearizing the power flow equations at the flat voltage
profile of unit magnitudes and zero angles [19]. Then, nodal
voltage magnitudes depend linearly on power injections as

v(p,q) ≃ Rp+Xq+ v01 (2)

where matrices (R,X) depend on the feeder topology and line
impedances; v0 is the substation voltage; and 1N is the vector
of all-one entries.

To formulate the OPF, we would also need to express
ohmic losses on lines as functions of (p,q). If we use the
flat voltage profile again as the linearization point and pursue
a first-order Taylor’s series expansion, ohmic losses take the
constant value of zero. If we use a second-order Taylor’s series
expansion, ohmic losses on all lines can be expressed as a
convex quadratic function of power injections as [19]

L(p,q) ≃ 2p⊤Rp+ 2q⊤Rq. (3)

Based on (2) and (3), the optimal DER setpoints can be
found as the solution to a convex quadratic program as

min
qg

q⊤Rq (4a)

subject to (s.to) − v̄ ≤ Rp+Xq ≤ v̄ (4b)
− q̄g ≤ qg ≤ q̄g and (1) (4c)

where v̄ = 0.031. Problem (4) minimizes losses with respect
to DER reactive setpoints qg . Constraint (4b) maintains volt-
age deviations within the allowable range of ±3% per unit
(pu). To derive (4b), it has been tacitly assumed that the
substation voltage is v0 = 1 pu, so that v− v01 ≃ Rp+Xq
from (2). Alternatively, the substation voltage v0 could be
included as a decision variable, in which case, constraint (4b)
should be replaced by 0.97 · 1 ≤ Rp+Xq+ v01 ≤ 1.03 · 1.
Moreover, voltage regulators (either remotely controllable or
operating autonomously driven by local settings) can also be
included in the OPF as in [20]. We skip both extensions to
keep the presentation succinct. Constraint (4c) limits inverter
setpoints within reactive power ratings collected in vector q̄g ,
assumed known to the DSO and fixed.

Under extreme loading conditions, limited VAR capacity,
and/or imprecise OPF data (pg,pℓ,qℓ), problem (4) may
become infeasible. In other words, it may be impossible for
DERs to maintain voltages within the specified limits. To
deal with this possibility and comply with industry practice,
voltage constraints can be converted to soft constraints: A
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slack variable s ≥ 0 is added on voltage constraints and is
penalized in the objective as

min
qg,s

q⊤Rq+ νs2 + ρs (5a)

s.to − s1− v̄ ≤ Rp+Xq ≤ v̄ + s1 (5b)
− q̄g ≤ qg ≤ q̄g. (5c)

If the positive constants (ν, ρ) are selected sufficiently large,
problem (5) exhibits the following neat property [19]. For
feasible instances of (4), problem (5) yields optimal s∗ = 0
and the q-minimizers of the two problems coincide. On the
other hand, for infeasible instances of (4), problem (5) returns
s∗ > 0 and its q-minimizer satisfies voltage limits stretched
out by s∗. In this way, problem (5) deals with feasible and
infeasible instances of the OPF systematically. Reference [19]
provides analytical bounds and practical heuristics on how to
select ρ and ν appropriately.

Substituting (1) into (5) yields an optimization problem
over qg and s. For simplicity, the minimizer of (5) will be
henceforth denoted by x = [qg; s] using a MATLAB-like
notation. The OPF depends on (R,X) and OPF data vector

θ =
[
pg − pℓ; qℓ

]
. (6)

The DSO would like to solve (5) for different values of
θ and/or (R,X). To keep the exposition uncluttered, we
assume the feeder topology to remain fixed, and vary only
the grid loading conditions θ. Either way, it is reasonable
to assume (R,X) to be known to the DSO, whereas θ is
the communication-intensive component of (5). Even though
θ in (6) has been defined to be of dimension 2N , some of
the buses may be zero-injection buses, or their entries may
be already known to the operator through other means. We
will henceforth denote the actual length of θ by P , where
P ≤ 2N . We slightly abuse notation and index the entries of
θ by subscript p as θp. We often denote the OPF minimizer as
x(θ) to emphasize its dependence on θ. To put it differently,
the OPF is a parametric optimization problem and can be
interpreted as a mapping from θ to x; see Fig. 1(a).

To solve (5), the DSO needs to know θ in nearly real-time.
This requirement may be impractical due to communication
or privacy concerns. As a remedy, the operator may install
sensors reading injections on a subset K out of P data sources.
If a bus is instrumented with a sensor, it is reasonable to
assume the operator has real-time access to the corresponding
entries of (pg − pℓ) and qℓ. The pertinent questions are:
q1) How to select K out of P OPF data sources?
q2) Once K data sources have been selected, how to recon-

struct a P -dimensional vector to feed into problem (5)?
This task of OPF data distillation is visualized in Fig. 1(b).

The operator selects K out of P entries of θ to create vector
θ̃. Given the selected OPF data θ̃, the DSO reconstructs
a data vector θ̂ to feed into the OPF. The reconstructed
vector θ̂ should be of the original dimension P . This ensures
backward compatibility with the OPF solver and keeps the
solver independent of the data distillation scheme.

An OPF data distillation scheme involves data selection and
data reconstruction. The selection step can be expressed as

θ̃ = S⊤θ, where S is a selection matrix with a single one-
entry per column and zeros elsewhere. Vector θ̃ is a subvector
of θ. If we limit ourselves to linear schemes, the reconstruction
step can be expressed with the help of a P ×K matrix C as
θ̂ = Cθ̃. Combining the two steps into W = CS⊤ yields:

θ̂ = Cθ̃ = CS⊤θ = Wθ. (7)

OPF data distillation amounts to finding (C,S). These two
matrices can be designed offline using a dataset of T grid
loading scenarios of OPF data, arranged as columns of the
P × T matrix

Θ = [θ1 θ2 · · · θT ]. (8)

Once designed, matrices (C,S) can be held constant over a
longer operational period depending on the application or until
the statistics of OPF data change from the statistics of Θ.

The training OPF data have been centered and scaled so
each row of Θ is zero-mean and unit-variance. Such pre-
processing is necessary to render all data sources tentatively
equally important. Otherwise, an almost time-invariant load
demand of 1 pu may seem more important than a highly time-
variable load demand of 0.5 pu. All subsequent approaches
operate on the preprocessed normalized OPF data Θ. Once
normalized OPF data have been distilled, the data fed into the
OPF are returned to their original (non-normalized) form.

Matrices (C,S) can be selected to optimize a meaning-
ful metric. One idea is to seek (C,S) so θ̂ is a good
approximation of θ. Such distillation schemes focus on the
fidelity of OPF data and will be henceforth termed Type-1
schemes. Taking an end-to-end vantage point, a second idea
seeks (C,S) so that x(θ̂) is a good approximant of x(θ).
Such schemes focus on the effect of distilled data on OPF
decisions and will be termed Type-2 schemes. Type-1 schemes
are developed in Section III and Type-2 schemes in Section IV.

III. TYPE-1 OPF DATA DISTILLATION

This section presents Type-1 schemes so that distilled data
θ̂ approximates well original data θ in the training dataset.

A. OPF Data Compression using PCA

Given dataset Θ, the first attempt could be to apply a
dimensionality-reduction technique, such as principal compo-
nent analysis (PCA). This seems intuitive as some entries of θt

may exhibit linear dependencies, e.g., due to solar irradiance.
To this end, we perform an eigenvalue decomposition (EVD)
on the data covariance matrix

Cθ =
1

T
ΘΘ⊤ = UΛU⊤ (9)

and collect the eigenvectors related to the largest K eigenval-
ues as columns of matrix UK . A ‘compressed’ version of θt

can be obtained as θ̃ = U⊤
Kθt, and a reconstructed one as

θ̂t = UK θ̃t = UKU⊤
Kθt = WPCAθt (10)

where WPCA = UKU⊤
K is a projection matrix and is known

to be the minimizer of

min
W

{f1(W) : rank(W) = K} (11)
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Fig. 1. (a) OPF mapping: The OPF as a parametric optimization problem. The OPF maps input data θ ∈ RP to minimizers x ∈ RN . (b) OPF data
distillation: The operator first selects K out of P data to form θ̃ ∈ RK . The entries of θ̃ are communicated from each selected bus to the operator over a
communication network. The operator uses θ̃ to reconstruct an OPF parameter vector θ̂ of length P , equal to the original parameter vector θ. The operator
feeds θ̂ into the OPF solver to find the DER dispatch x(θ̂). The OPF solver remains the same. How to optimally design the selection function (green) and the
reconstruction function (blue)? These two functions are designed once and offline, and then used in real time. Should they be designed to minimize ∥θ− θ̂∥
or ∥x(θ)− x(θ̂)∥? See Sections III and IV, respectively.

where f1(W) is the data fitting cost over the training dataset

f1(W) =
1

2T

T∑
t=1

∥θt −Wθt∥2 =
1

2T
∥Θ−WΘ∥2F . (12)

Although WPCAΘ is the best rank-K approximation of Θ
in the Frobenius norm, matrix U⊤

K cannot be used for data
selection because it is dense in general. Then, computing
θ̃t = U⊤

Kθt would require knowing the entire θt. To put
it differently, matrix WPCA does not comply with the format
CS⊤ of (7). However, the reconstruction error WPCA attains

f1(WPCA) =
1

2T
∥Θ−WPCAΘ∥2F (13)

serves as a benchmark for Type-1 data distillation schemes as
PCA minimizes f1(W) over all rank-K matrices.

B. OPF Data Selection using DEIM

To achieve data selection, we propose using the discrete em-
pirical interpolation method (DEIM) [21]. By design, DEIM
complies with the format of (7). Given a selection matrix S,
DEIM sets matrix C in (7) as C = UK(S⊤UK)−1, where
UK carries again the top-K eigenvectors of Cθ from (10) and
assuming S⊤UK is invertible. DEIM reconstructs data as

θ̂t = UK(S⊤UK)−1θ̃t = WDEIMθt

where WDEIM = UK(S⊤UK)−1S⊤ is a projection matrix
as W2

DEIM = WDEIM. Although both WPCA and WDEIM
are rank-K projection matrices, the latter comes with the
neat feature that θ̂t is computed using only K entries of
θt. Moreover, for every vector in the dataset, it holds that
S⊤θ̂t = S⊤θt. In other words, the reconstructed θ̂t perfectly
matches (interpolates) θt at the K selected entries. On the
other hand, matrix WDEIM is clearly suboptimal in terms of
solving (11). Therefore, its data fitting cost is lower bounded
as f1(WDEIM) ≥ f1(WPCA). Interestingly enough, DEIM’s
data fitting cost is also upper bounded as [21]

f1(WPCA) ≤ f1(WDEIM) ≤ ∥(S⊤UK)−1∥2 · f1(WPCA)

where ∥ · ∥ is the spectral matrix norm. This bound holds for
all selection matrices S with invertible S⊤UK . Since UK

is found via EVD, matrix S can be selected to minimize
∥(S⊤UK)−1∥ and bring f1(WDEIM) closer to f1(WPCA).

Nonetheless, minimizing ∥(S⊤UK)−1∥ over S is non-
trivial. As a practical solution, DEIM has a greedy algorithm
for selecting S to minimize approximately ∥(S⊤UK)−1∥;

see [21] for details. Bounds on the suboptimality of DEIM’s
greedy algorithm have been derived in [21]. Empirical tests on
different application domains demonstrate that DEIM performs
significantly better than the analytically derived bounds. Heed
that DEIM’s greedy algorithm first requires computing UK by
applying an EVD on Cθ. Critically, the computational com-
plexity of the greedy algorithm does not exceed the complexity
of EVD. Therefore, DEIM has the same complexity order as
computing the leading K EVD components.

C. OPF Data Selection using Group Lasso

As an alternative to DEIM, we next formulate OPF data
distillation as a type of a group lasso (GL) problem [14].
The reason for introducing yet another method is to bring
more flexibility to Type-1 and Type-2 designs, as will be clear
soon. Our GL-based, Type-1 data distillation entails solving
the convex program:

WGL = argmin
W

f1(W) + λ1g(W) (14)

where g(W) =
∑P

p=1 ∥wp∥, vector wp is the p-th column of
W, and λ1 > 0 is a tunable parameter.

The cost in (14) consists of two terms. The first term is
the data fitting cost of PCA. The second term g(W) is a reg-
ularization term that promotes column-sparse solutions [14].
In other words, the minimizer WGL will have many zero
columns with increasing λ1. Expanding (7), we get that the
reconstructed vector is

θ̂ =

P∑
p=1

θpwp.

If column wp = 0, OPF feature θp does not contribute to θ̂.
GL offers more flexibility over DEIM. According to (6),

active injection pn = pgn−pℓn at bus n corresponds to the n-th
entry of θ, while its reactive injection qn = −qℓn corresponds
to the (n+N)-th entry of θ. Designing W according to (14)
may give us wn ̸= 0 and wn+N = 0. The same could happen
with DEIM. Such design means the operator collects pn, but
not qn. This may be impractical. If the operator is to install
a sensor and communicate with bus n, they might as well
either select both (pn, qn) or none. This specification can be
satisfied by GL (yet not DEIM) by simply placing columns
wn and wn+N into the same group and replacing norms

∥wn∥+ ∥wn+N∥ −→
∥∥∥∥[ wn

wn+N

]∥∥∥∥
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Algorithm 1 APG for Type-1 OPF Data Distillation
Input: OPF input data {θt}Tt=1 stored in matrix Θ.
Output: OPF data distillation matrix W.

1: Initialize W1 = W0 from standard normal distribution.
2: Initialize α1 = 1 and α0 = 0; set µ and λ1.
3: for i = 1, 2, . . . , do
4: Compute Yi from (15a)–(15b) via (16).
5: Compute the groups of Wi+1 from (15c) via (17).
6: Compute αi+1 from (15d).
7: end for

in g(W). GL offers additional flexibility as it can be modified
to yield Type-2 designs, as discussed later in Section IV.

Although (14) can be solved using interior point-based
solvers as a second-order cone program (SOCP), such solvers
do not scale favorably with the problem size. To improve
computational complexity, we devise a first-order algorithm
called accelerated proximal gradient (APG) to solve (14).
Even though an APG algorithm has been developed for the
general GL problem before [22], it is adopted to (14) and
reviewed here to ease the exposition of Type-2 schemes.

APG is an extension of accelerated gradient descent when
the cost of an optimization problem consists of a differentiable
and a non-differentiable term [23]. For our task in (14), the
differentiable term is f1(W), and the non-differentiable term
is g(W). Let APG iterations be indexed by i and Wi denote
the estimate of minimizer W at iteration i. Each iteration
involves four steps [23]:

W̄i = Wi +
αi−1 − 1

αi

(
Wi −Wi−1

)
(15a)

Yi = W̄i − µi∇Wf1(W̄
i) (15b)

Wi+1 = argmin
W

λ1g(W) +
1

2µi
∥W −Yi∥2F (15c)

αi+1 =
1 +

√
4α2

i + 1

2
(15d)

Step (15b) coincides with a gradient descent step if we were
to minimize f1(W) alone. It uses µi > 0 as a step size.
However, the gradient descent step is not performed at Wi but
W̄i, computed as a linear combination of Wi and Wi−1 in
step (15a). The linear combination coefficients change across
iterations according to (15d). After some mundane algebra,
the gradient needed in (15b) can be found to be

∇Wf1(W) = (W − I)Cθ (16)

where Cθ is the OPF data covariance defined in (9).
The output Yi of the gradient descent step is then applied

to the proximal operator on Yi to get Wi+1. The proximal
operator is defined as the solution to the optimization in (15c).
Problem (15c) can be solved separately for each wp. In fact,
each block wp can be updated in closed form as [22]:

wi+1
p = prox

(
yi
p;λ1µi

)
. (17)

Operator prox takes a vector x and a scalar β, and returns:

prox (x;β) =

{ (
1− β

∥x∥

)
x , ∥x∥ ≥ β

0 , otherwise.
(18)

From (17)–(18), if ∥yi
p∥ ≥ λ1µi, vector wi+1

p is set to
a scaled-down version of yi

p; otherwise, it is set to zero.
This hints at why g(W) effects group sparsity on WGL.
Step (15b) applies regardless of whether the entries of W
are grouped in columns or other groups as long as groups do
not share common entries. The APG algorithm is tabulated as
Algorithm 1. If ∇Wf1 is L-smooth, the APG iterations with
constant step size µi = µ ≤ 1/L converge to the minimum
cost at a rate of O(1/i2); see [23].

Some comments on λ1 are due. For λ1 = 0, the GL solution
WGL coincides with WPCA, which is dense in general. As λ1

increases, more columns of WGL become zero monotonically.
Lemma 1 provides an upper bound λ̄1 on λ1 beyond which
the minimizer of (14) becomes zero; see the appendix for a
proof. By solving (14) for varying λ1 ∈ [0, λ̄1], we can make
WGL have exactly K non-zero columns using bisection.

Lemma 1. Let λ̄1 = maxp ∥cp∥, where cp is the p-th column
of covariance matrix Cθ. The zero matrix is a minimizer of
(14) if and only if λ1 ≥ λ̄1.

The GL approach is known to successfully identify the
sparsity support (non-zero columns) of W. It is nonetheless
also known that the GL solution is a biased estimate of the
column-sparse W yielding the minimum fitting cost f1(W)
alone. This is well understood for the general GL setting; our
numerical tests indicate that the claim carries over to the OPF
distillation task. As a remedy, we can employ a two-stage
GL approach: First, use GL only to select K OPF features
(columns of W). Based on the sparsity pattern of WGL, we
determine the selection matrix S in (7) to the value of SGL.
Second, design the reconstruction matrix C via a standard
least-squares fit as:

CGL2 = argmin
C

∥Θ−CS⊤
GLΘ∥2F

= ΘΘ⊤SGL(S
⊤
GLΘΘ⊤SGL)

−1

= CθSGL(S
⊤
GLCθSGL)

−1.

The two-stage GL (GL2) returns the distillation matrix:

WGL2 = CGL2S
⊤
GL = CθSGL(S

⊤
GLCθSGL)

−1S⊤
GL.

Type-1 methods are agnostic to the fact that distilled OPF
data will eventually be used to produce OPF solutions and that
we are primarily interested in OPF solutions rather than OPF
data per se. To this end, we next explore Type-2 approaches.

IV. TYPE-2 OPF DATA DISTILLATION

The ultimate goal of replacing θ by θ̂ = Wθ is not to
approximate θ closely. The goal is to design θ̂ so that when fed
into the OPF, it yields an OPF minimizer close to the original
minimizer. To develop Type-2 designs, suppose the operator
has access to a dataset D = {(θt,xt)}Tt=1 of T representative
OPF scenarios paired with their OPF minimizers.

We use the shorthand notation xt = x(θt) to denote the
OPF minimizer of (5) given θt. We use a similar notation for
the OPF minimizer given the reconstructed data as

x̂t = x(θ̂t) = x(Wθt) for t = 1, . . . , T. (19)
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We seek a column-sparse W so that x̂t is close to xt for
all t. Paralleling (12), we define the OPF fitting error:

f2(W) =
1

2T

T∑
t=1

∥xt − x̂t(W)∥2. (20)

Minimizing f2(W) over a column-sparse W is not amenable
to a DEIM-type approach, but to a GL-type approach. We
propose a Type-2 GL approach that we term bilevel group
lasso (BGL) that finds W as the minimizer of:

WBGL = argmin
W

F2(W) = f2(W) + λ2g(W) (21a)

s.to x̂t minimizes (5) for θ̂t = Wθt ∀t.
(21b)

Like GL, the minimizer WBGL becomes more column-sparse
for larger values of λ2 > 0. The fitting term f2(W) aims at
bringing x̂t close to xt. Recall that xt’s have been already
computed and given as part of dataset D. On the other hand,
each x̂t is the minimizer of the OPF fed by θ̂t = Wθt, and
so x̂t depends on W. This is a bilevel optimization program.
The total cost F2(W) of the outer optimization over W is de-
termined by the minimizers of T inner optimization problems
over xt’s. Each inner problem depends parametrically on W.

Problem (21) is non-convex. Bilevel programs are often
handled by replacing every inner problem with its optimality
conditions [24]. Unfortunately, such an approach would lead to
a large-scale mixed-integer nonlinear program (MINLP) that
scales unfavorably with N and T . Motivated by advancements
in meta-learning, we solve (21) using an APG algorithm.
Unfortunately, when it comes to non-convex problems, the
standard APG algorithm is not guaranteed to converge to a
critical point, that is a point where the cost subdifferential
contains zero (zero-gradient point if the cost is differentiable).
To resolve this issue, we use a modification of APG proposed
in [23, Alg. 2]. Although the modified APG algorithm is
slightly more complex, it is guaranteed to converge to a critical
point even for non-convex problems. The method is tabulated
as Algorithm 2. Its differences to Alg. 1 are discussed next.

Compared to Algorithm 1, Algorithm 2 first updates W̄i

using three rather than two points as shown in Step 5. It then
performs a gradient descent step based on ∇Wf2 evaluated at
W̄i. The gradient ∇Wf2 can be computed as explained next
and established in the appendix.

Lemma 2. Let ∇θ̂t
x̂t be the Jacobian of the OPF minimizer

x̂t given reconstructed OPF data θ̂t = Wθt for all t, then

∇Wf2(W) =
1

T

T∑
t=1

(∇θ̂t
x̂t)

⊤(x̂t − xt)θ
⊤
t .

To take the gradient descent step, Algorithm 2 needs to
solve T OPFs using the reconstructed data θ̄i

t = W̄iθt

computed from Step 6. Along with the minimizer, for each
OPF, Algorithm 2 must compute the Jacobian matrix of the
OPF minimizer with respect to the given OPF data. For
Step 6, the minimizer is x̄t = x(θ̄t) and the OPF data is θ̄t.
Matrix ∇θ̄t

x̄t is an N × P matrix carrying the sensitivities
(partial derivatives) of x̄t with respect to θ̄t. Given the optimal

Algorithm 2 APG for Type-2 OPF Data Distillation
Input: Dataset of OPF input/minimizers D = {(θt,xt)}Tt=1.
Output: OPF data distillation matrix W.

1: Initialize Z1 = W1 = W0 and evaluate c1 = F2(W
1).

2: Initialize α1 = 1, α0 = 0, η ∈ [0, 1), δ > 0, and q1 = 1.
3: Select step sizes µ and µ̄, and parameter λ2.
4: for i = 1, 2, . . . , do
5: Update W̄i = αi−1

αi
Wi + αi−1

αi
Zi − αi−1−1

αi
Wi−1.

6: Run the OPF for reconstructed data Θ̄i = W̄iΘ.
7: Update Ȳi as Ȳi = W̄i − µ̄i∇W̄f2(W̄

i).
8: Update blocks of Zi+1 as zi+1

p = prox
(
ȳi
p;λ2µ̄i

)
.

9: if F2(Z
i+1) ≤ ci − δ∥Zi+1 − W̄i∥2F , then

10: Wi+1 = Zi+1.
11: else
12: Run the OPF for reconstructed data Θ̂i = WiΘ.
13: Update Yi as Yi = Wi − µi∇Wf2(W

i).
14: Update blocks of Z̄i+1 as z̄i+1

p = prox
(
yi
p;λ2µi

)
.

15: Wi+1 =

{
Zi+1 , if F2(Z

i+1) ≤ F2(Z̄
i+1)

Z̄i+1 , otherwise.
16: end if
17: Update αi+1 =

(
1 +

√
4α2

i + 1
)
/2.

18: Update qi+1 = ηqi + 1.
19: Update ci+1 = ηqici+F2(W

i+1)
qi+1

.
20: end for

primal/dual solutions of the OPF, matrix ∇θ̄t
x̄t can be readily

computed by solving of system of linear equations [25], [1].
Subsequently, Algorithm 2 applies the proximal operator on

Ȳi to compute Zi+1 in Step 8. Algorithm 1 would complete
the iteration here and return Zi+1 as Wi+1. Algorithm 2
does so only if Zi+1 attains a sufficient decrease in total cost
as detailed in Step 9. Note that evaluating F2(Z

i+1) entails
solving another batch of T OPFs given data Zi+1θt for all t. If
Zi+1 does not achieve sufficient decrease in F2, the algorithm
tests if a proximal gradient step on the original Wi would
offer a lower total cost than Zi+1. To this end, the algorithm
reconstructs data using Wi, takes a gradient descent step on
Wi to find Yi, and applies the proximal operator on Yi to
find Z̄i+1 in Steps 12–14. Step 13 does not require solving
another batch of T OPFs because the OPFs corresponding to
Wi have already been solved in the previous APG iteration,
when the current Wi was then termed Wi+1. On the other
hand, to evaluate F2(Z̄

i+1) in Step 15, the algorithm does
have to solve another batch of T OPFs corresponding to data
Z̄i+1θt for all t. Sequence αi is updated in Step 17 exactly
as in Algorithm 1. The sequence ci needed in the sufficient
decrease condition of Step 9 is updated in Steps 18–19.

Algorithm 2 solves three batches of T OPFs, one for each
one of Steps 7, 9, and 15. Interestingly, if the OPF is a
linear/quadratic program as in (4), techniques from multipara-
metric programming (MPP) can speed up the tasks of finding
the minimizers and their sensitivities for a batch of T OPF
problem instances. For example, in [19], we were able to speed
up the running times of OPF batches by an order of magnitude.
Details on sensitivity analysis of the OPF and MPP are omitted
as they are quite technical and fall beyond this work’s scope.
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The next lemma (shown in the appendix) provides a neces-
sary condition on λ2 for a critical point of BGL to be zero.

Lemma 3. Let λ̄2 = maxp ∥kp∥, where kp is the p-th column
of matrix K = 1

T (∇θx(0))
⊤ ∑T

t=1(x(0) − xt)θ
⊤
t and x(0)

is the solution of (5) for θ = 0. The zero matrix is a critical
point of (21) if and only if λ2 ≥ λ̄2.

Similar to GL, we can also pursue a two-stage BGL ap-
proach. First, use BGL to select K OPF features and determine
a selection matrix SBGL from (7) based on the sparsity pattern
of WBGL. Second, design the reconstruction matrix C as:

CBGL2 = argmin
C

1

2T

T∑
t=1

∥xt − x̂t(CS⊤
BGL)∥2.

The two-stage BGL (BGL2) returns the distillation matrix:

WBGL2 = CBGL2S
⊤
BGL.

V. NUMERICAL TESTS

The proposed OPF data distillation approaches were numer-
ically evaluated using a single-phase rendition of the IEEE
37-bus benchmark feeder and the original, multiphase version
of the IEEE 123-bus feeder. Optimal DER reactive power
injections xt and x̂t were obtained by solving (5) using
YALMIP and Sedumi in MATLAB. For the multiphase grid,
the objective cost in (5) was modified to ∥q∥2. All tests were
run on a MacBook laptop computer with an M3 Pro chip and
36 GB of RAM. Type-1 methods took less than a few minutes
to run. Type-2 methods took from seconds to a few minutes
to run for larger K and a few hours for smaller K.

A. Single-phase 37-bus system

Data generation. Active power demand and solar generation
data were collected from the Pecan Street dataset [26]. We
collected minute-based kW load and solar generation data
from 25 households between 8 AM and 5 PM during the entire
year of 2019. We also collected synthetically generated electric
vehicle (EV) profiles over a year from [27]. Among the 37
feeder buses, only 25 correspond to non-zero injections and
were simulated to host loads. These 25 buses correspond to
medium-voltage nodes, serving multiple residential customers
each. To simulate aggregate load profiles, for each one of
the medium-voltage nodes, we randomly sampled 5 out of
the 25 Pecan Street households and added their profiles. The
obtained load profiles were scaled to match twice the kW
benchmark load. Because the original dataset does not include
reactive power demands, lagging power factors were simu-
lated by randomly drawing them uniformly within [0.85, 1.00]
across time and nodes. We simulated 10 PVs installed on
buses {2, 4, 7, 9, 11, 14, 17, 20, 22, 25}. Solar profiles from 5
randomly selected Pecan Street households were aggregated to
generate the solar profile for each of the 10 medium-voltage
nodes. Solar profiles were scaled to match twice the peak
kW benchmark load. We randomly sampled 25 EV profiles
from [27] and assigned each to the aggregate load profiles.

Fidelity in OPF data under single-phase system. The first
test compares the developed methods in terms of fidelity
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Fig. 2. Normalized data reconstruction error f1(W)/∥Θ∥2F = ∥Θ −
Θ̂∥2F /∥Θ∥2F obtained by OPF data distillation methods for increasing
numbers of OPF features for the single-phase 37-bus system.
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Fig. 3. Normalized minimizer error f2(W)/X∥2F = ∥X − X̂∥2F /∥X∥2F
obtained by OPF data distillation methods for increasing numbers of OPF
features for the single-phase 37-bus system.

in reconstructing OPF data. The test involved four Type-
1 approaches (PCA, DEIM, GL, and GL2) and one Type-
2 approach (BGL). We used the normalized squared error
f1(W)
∥Θ∥2

F
as a data fidelity metric. This metric was evaluated

for an increasing number K of selected OPF features. Data
reconstruction errors are expected to decrease for increasing
K. Parameter K is entered explicitly for PCA and DEIM. For
GL-type approaches, we can obtain K non-zero groups in W
by varying parameters λ1 and λ2. Figure 2 illustrates the data
reconstruction error for varying K. PCA serves only as a lower
bound as it does not offer data selection. Although DEIM
does select data, its performance is unpredictable and exhibits
no clear trend. The errors attained by plain GL decrease
only marginally as K increases. On the contrary, the GL2
reduces errors more dramatically and follows the trend set by
PCA while featuring data selection. BGL behaves similarly
to GL and bears no meaningful improvement. Overall, the
GL2 approach is the best method to approximate Θ when
considering sensor selection.

Fidelity in OPF solutions. The second test compares four



IEEE TRANSACTIONS ON POWER SYSTEMS (SUBMITTED FEBRUARY 9, 2025) 8

Fig. 4. Violin plots of voltage magnitudes for the single-phase network
experienced under all OPF methods for K = 7 (top panel) and K = 16
(bottom panel) OPF features. Violin plots are computed across all buses and
time instances. The violin plots obtained using both BGL and two-stage BGL
for K = 16 are almost identical to that of the original OPF method.

Type-1 approaches to two Type-2 approaches (BGL and
BGL2) in terms of fidelity in finding OPF minimizers X.
Figure 3 illustrates the normalized squared error f2(W)

∥X∥2
F

for
increasing K. PCA attains the smallest error across all Type-
1 designs except for a few cases where GL2 attains smaller
errors. DEIM does not show a clear trend and GL shows slight
improvement for increasing K. Although the errors attained
by GL2, BGL and BGL2 decrease when K increases, BGL2
achieves smaller errors. The tests corroborate that BGL2 is the
preferred method for approximating OPF solutions X.

Feasibility of OPF solutions. In addition to minimizing
f2(W), it is critical that x̂t = x(θ̂t) does not violate voltage
constraints when applied to the grid under actual loading θt.
We computed the nodal voltages obtained by all OPF data
distillation methods according to (2). Regardless of how DER
setpoints were obtained, their voltage effect on the grid was
computed using the actual loading conditions. Figure 4 depicts
the violin plots of all bus voltages across all instances for each
method and two values of K = 7 and K = 16. Note that even
the OPF fed with the original data experiences voltages outside
the ±3% range because voltage constraints are treated as soft.
The tests show that voltage magnitudes are more concentrated

Fig. 5. OPF features selected by BGL for K = 7 and K = 16.

under both BGL and BGL2 for both values of K. Interestingly,
the voltage distributions attained by BGL and BGL2 using
only K = 16 OPF features are almost identical to those
achieved by the original OPF fed by all P = 50 OPF features.

Selected OPF features. We next observed which features
were selected for different values of K. Figure 5 shows that
when K = 7, only active power demands at seven different
nodes were selected. However, when K = 16, both active and
reactive power demands were selected for some nodes, and for
other nodes either active or reactive demands were selected.

B. Multiphase 123-bus system

Data generation. We also ran tests on the IEEE 123-bus
multiphase distribution feeder [28]. Out of its 262 nodes
(combinations of phases and buses excluding the substation),
only 95 host non-zero injections. We obtained active power
demand and solar generation data at one-minute intervals from
the Smart* project [29]. The dataset contained active loads
from 444 homes and solar generation from 45 PVs between
5:00 AM and 9:30 PM. We aggregated load demands from
multiple homes to simulate 95 active load profiles for the 95
non-zero injection nodes of the tested feeder. Load profiles
were scaled to match the kW benchmark load. Reactive load
profiles were simulated by drawing power factors uniformly
at random within [0.85, 0.99] across time and nodes. We also
added 95 EV profiles by randomly sampling from [27]. We
simulated 10 PVs by aggregating the solar generation from the



IEEE TRANSACTIONS ON POWER SYSTEMS (SUBMITTED FEBRUARY 9, 2025) 9

TABLE I
FIDELITY IN OPF SOLUTION FOR THE IEEE 123-BUS SYSTEM

# selected features K
Normalized error in OPF solutions [%]

PCA GL GL2 BGL BGL2
3 63.62 64.77 65.23 64.72 54.94
26 52.18 64.73 58.10 63.99 31.27
32 46.96 64.72 51.30 63.98 27.59
53 35.03 64.64 42.69 62.80 24.67

Fig. 6. Violin plots of voltages for the multiphase system for K = 26 and
53. BGL2 is almost identical to the original method for K = 53.

45 PVs from [29] and installed them on nodes 2a, 10b, 34a,
46c, 51c, 65a, 76b, 93a, 103b, and 118c.

Fidelity. The first test for the multiphase network compares
GL/GL2 and BGL/BGL2 in terms of reconstructing the OPF
minimizers X. Table I shows the normalized squared errors for
4 different values of K. Similar to the single-phase network,
PCA attains the smallest errors among all Type-1 designs in
the multiphase network. Again, BGL2 is the best method for
approximating OPF solutions. The reported errors verify the
importance of the two-stage approach.

Feasibility. We simulated the approximate OPF solutions
along with the true loading conditions to compute nodal
voltages per (2). Figure 6 shows the violin plots across all
nodes and scenarios for all methods. The tests show that the
voltage magnitudes are more concentrated for BGL2 and that
by using only K = 53 OPF features, we can achieve voltage
distributions almost identical to those achieved by the original
OPF fed by all P = 190 OPF features.

VI. CONCLUSIONS

We have proposed an OPF data distillation framework to
improve the fidelity of either OPF features or OPF mini-
mizers. Type-2 OPF data distillation gives rise to a non-
convex program, solved by a proximal gradient algorithm. To
alleviate the computational burden of finding the minimizers
and their sensitivities for a batch of OPF instances, we have
leveraged results from multiparametric programming. Exten-
sive numerical tests using synthetic data on a single-phase
and real-world data on a multiphase feeder demonstrate the
advantages of Type-2 over Type-1 methods in approximating
the minimizer and satisfying network constraints at the ex-
pense of increased complexity. Numerical tests have shown
that optimal DER schedules can be approximated reasonably
well upon collecting only K = 16 rather than P = 50
OPF features for the IEEE 37-bus single-phase feeder. For
the multiphase system, DER schedules can be approximated
within 25% error with K = 53 out of P = 190 features while
nearly matching the voltage distribution of the exact OPF
solutions. The proposed framework sets a solid foundation
for exciting research directions: i) Extending data distillation
to AC-OPF formulations or other OPF variants; ii Pursuing
stochastic variants of APGD that process one or a few OPF
instances per iteration to reduce the computational cost; iii)
Leveraging OPF data distillation tools towards optimal meter
placement to support OPF operations; iv) Upgrading the linear
to a nonlinear reconstruction module (deep neural network);
v) Pursuing unsupervised counterparts of OPF data distillation
to waive the need of generating a labeled OPF dataset; and
vi) Identifying the most influential OPF features so their
communication to the DSO is protected against cyber-attacks.

APPENDIX

Proof of Lemma 1: The subdifferential of g(W) with
respect to the p-th column of W is

∂wp
g(W) =

{
wp

∥wp∥ , if wp ̸= 0{
gp ∈ RP : ∥gp∥ ≤ 1

}
, if wp = 0

(22)

for all p. Function g(W) is differentiable with respect to wp

for all wp ̸= 0. Its subdifferential at wp = 0 can be defined
as the set of all vectors having ℓ2-norm not larger than one.

Optimality conditions for subdifferentiable functions pred-
icate that a matrix WGL is a minimizer of (14) if and only
if the zero matrix belongs to the subdifferential of f1 + λ1g
evaluated at WGL. Therefore, the minimizer of (14) satisfies:

0 ∈ ∇Wf1(WGL) + λ1∂Wg(WGL).

Substituting ∇Wf1(W) from (16) above yields

0 ∈ (WGL − I)Cθ + λ1∂Wg(WGL). (23)

If WGL = 0, the optimality condition of (23) provides:

λ1

[
g1 g2 · · · gP

]
= Cθ or λ1gp = cp ∀p

where gp is defined by the lower branch of (22) as it evaluates
∂wpg at WGL = 0. Since ∥gp∥ ≤ 1 for all p by the definition
of the subgradient at zero, it follows that ∥cp∥ = λ1∥gp∥ ≤ λ1
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for all p. This establishes that λ1 ≥ λ̄1. Conversely, if λ1 ≥ λ̄1,
matrix WGL = 0 can be shown to satisfy (23) by selecting
gp = 1

λ1
cp so that ∥gp∥2 ≤ 1 for all p.

Proof of Lemma 2: We first compute the gradient of
f2 defined in (20) with respect to vector w = vec(W). This
is a P 2-long vector wherein all columns of W are stacked
vertically. We will use the property that for any three matrices
(A,B,C) of conformable dimensions, it holds that:

vec(ABC) = (C⊤ ⊗A) vec(B) (24)

where ⊗ is the Kronecker product.
The gradient of the t-th summand of f2 is

∇w∥xt − x̂t∥2 = 2(∇wx̂t)
⊤(x̂t − xt).

The Jacobian ∇wx̂t can be found using the chain rule as

∇wx̂t = ∇θ̂t
x̂t · ∇wθ̂t.

Thanks to (24), we can express data θ̂t = Wθt as

θ̂t = vec(θ̂t) = vec(Wθt) = (θ⊤
t ⊗ IP )w

from which it follows that ∇wθ̂t = ∇wθ̂t = θ⊤
t ⊗ IP .

Substituting the latter into the gradient of ∥xt − x̂t∥2 yields:

∇w∥xt − x̂t∥2 = 2(θt ⊗ IP )(∇θ̂t
x̂t)

⊤(x̂t − xt).

Therefore, the gradient of ∥xt − x̂t∥2 with respect to W is

∇W∥xt − x̂t∥2 = 2(∇θ̂t
x̂t)

⊤(x̂t − xt)θ
⊤
t .

This can be verified using (24) for A = 2(∇θ̂t
x̂t)

⊤(x̂t−xt),
B = 1, and C = θ⊤, which shows that

vec(∇W∥xt − x̂t∥2) = ∇w∥xt − x̂t∥2.

Summing up the gradients of all ∥xt − x̂t∥2 across t and
dividing by 2T completes the proof of this lemma.

Proof of Lemma 3: If WBGL is a critical point, then

0 ∈ ∇Wf2(0P×P ) + λ2∂g(0P×P ). (25)

The gradient of f2 can be found from Lemma 2. For WBGL =
0, it holds θ̂t = WBGLθt = 0 for all t. We therefore have
that x̂t = x(0) and ∇θ̂t

x̂t = ∇θx(0) for all t. The rest of
the proof follows the proof of Lemma 1 and is omitted.
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