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Abstract—An investor has to carefully select the location and
size of new generation units it intends to build, since adding
capacity in a market affects the profit from units this investor
may already own. To capture this closed-loop characteristic,
strategic investment (SI) of generation can be posed as a bilevel
optimization. By analytically studying a small market, we first
show that its objective function can be non-convex and discontin-
uous. Realizing that existing mixed-integer problem formulations
become impractical for larger markets and number of instances,
this work put forth two SI solvers: a grid search to handle setups
where the candidate investment locations are few, and a stochastic
gradient descent approach for otherwise. Both solvers leverage
powerful results of multiparametric programming (MPP), each
in a unique way. The grid search entails finding the primal/dual
solutions for a large number of optimal power flow (OPF)
problems, which nonetheless can be efficiently computed several
at once thanks to the properties of MPP. The same properties
facilitate the rapid calculation of gradients in a mini-batch
fashion, thus accelerating the implementation of a stochastic
(sub)-gradient descent search. Tests on the IEEE 30- and 118-bus
systems using real-world data corroborate the advantages of the
novel solvers.

Index Terms—Mathematical programming with equilibrium
constraints; bilevel programming; locational marginal prices;
stochastic gradient descent; strategic investment; multiparamet-
ric programming.

I. INTRODUCTION

SUPPOSE an investor intends to build one or more power
plants to participate in an electricity market. The investor

may already own units bidding in the same market. The new
units to be built by the investor will add generation capacity
to the market, which depending on transmission congestion
and load demand, may alter electricity prices and generation
schedules in a way so that the investor’s total financial gain
from existing and new units is lowered. The goal of the
investor is to find the optimal location, size, and possibly
timing of the new generation units to maximize its total
profit. This task of strategic investment (SI) is challenging for
three reasons. First, the variables involved in SI, namely the
generation schedules and prices, are not known beforehand but
are computed as the solutions of an optimization problem, a
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linearized optimal power flow (OPF). Second, an investment
can change the market outcome (prices and generation sched-
ules), rendering SI a complex closed-loop problem. Third,
increasing uncertainties introduced by renewable generation,
loads, fuel prices, and bids from rival generators, call for
stochastic methods thus further increasing complexity for SI.

A promising method to handle the closed-loop complication
of the SI task is posing it as a bilevel optimization [1].
The inner level involves the OPF that clears the market
and decides generation schedules and prices given generation
capacities. The outer level aims to maximize the market profit
for dispatching new and existing units minus the investment
cost for the new units. Nonetheless, this bilevel formula-
tion calls for complex complementarity methods [2]; see [3]
for a comprehensive survey. In the case of market OPFs
with linear constraints, complementarity methods convert the
bilevel problem into a single-level optimization upon replac-
ing the inner problem with its Karush-Kuhn-Tucker (KKT)
conditions. While complementarity methods promise globally
optimal investment decisions, they entail computationally pro-
hibitive mixed-integer programs. Such models may not scale
gracefully in large power networks, and may not be able
to consider a sufficient number of scenarios. Alternatively,
works like [4], [5], [6] use scenario-based alternating direction
method of multipliers or progressive hedging to decompose
the related mixed-integer programs, at the expense of losing
global optimality.

Alternatively, the SI task could be dealt with by solving
the OPF clearing the market for each possible combination
of system scenarios and investment options. However, this
process is also challenging due to the sheer number of OPFs
that need to be solved, calling for efficient OPF solvers
for a large number of market scenarios. Interestingly, the
OPF problem under the linearized grid model, the so-called
DC-OPF, can be viewed as an instance of multiparametric
programming (MPP), where loads, generation capacities, and
bids are considered as its parameters. According to MPP and
as explained in Section III-B, the space of the parameter vector
can be partitioned into polytopes termed critical regions for
which the primal and dual solutions can be identified as affine
functions of the problem parameters [7], [8]. The boundaries of
these regions as well as the associated affine functions depend
on which constraints are active at optimality, and hence, the
DC-OPF needs to be solved only once per critical region. This
latter property facilitates solving a large number of DC-OPFs
with relatively small computational burden.

MPP has been utilized before in power systems operations.
The notion of congestion patterns in energy markets identified
by [9] pertains exactly to the critical regions of MPP. The
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same regions also give rise to the active sets learned in [10].
References [11] combined MPP with importance sampling
over critical regions to compute the probability distribution of
locational marginal prices (LMPs). The polytopic description
of critical regions allows [12] to train a support vector machine
classifier and estimate LMPs given loads. Reference [13]
utilizes MPP and proposes a critical region exploration algo-
rithm to solve a security-constrained economic dispatch. In the
context of distribution grids, references [14] and [15] leverage
MPP to handle efficiently a large number of distribution OPF
instances, and thus expedite probabilistic hosting capacity
analysis. However, none of the previous works engages MPP
to deal with the complex bilevel setup involved in SI.1

The contribution of this work is fourfold: c1) Study SI
analytically for a simple power network to demonstrate the
challenges involved; c2) Extend existing MPP claims to the
OPF problem used to clear electricity markets; c3) Develop
an algorithm to compute efficiently the primal/dual outcomes
of hundreds of OPF scenarios at a time. The algorithm can
accelerate by an order of magnitude a brute-force grid search
to cope with the SI task when the number of investment
locations and scenarios are relatively small; and c4) Devise a
stochastic gradient descent (SGD) scheme to address directly
the outer layer of the SI task, especially when multiple
investment locations are considered. By uniquely exploiting
MPP properties, this SGD scheme calculates gradients in a
highly scalable mini-batch fashion.

The rest of this work is organized as follows. Section II
models electricity markets, poses the SI problem, and show-
cases its difficulty via a simple example. Section III-A reviews
the solution to SI based on mathematical programming with
equilibrium constraints (MPEC) pursued in [2], while Sec-
tion III-B extends MPP to the problem at hand. Section IV
extends properties of MPP to develop an efficient grid search
and a stochastic gradient descent approach. The two algorithms
are numerically tested in Section V.

Regarding notation, column vectors (matrices) are denoted
by lowercase (uppercase) boldface letters; calligraphic sym-
bols are reserved for sets and/or mappings. The n-th element
of x is denoted by xn, and the (n,m)-th entry of X by Xnm.
Symbol 1 denotes the all-one vector. Inequalities between
vectors, such as x ≥ y, apply entry-wise.

II. STRATEGIC INVESTMENT IN ELECTRICITY MARKETS

A. Modeling Electricity Markets

Suppose the energy market operates over a system with
N buses and L transmission lines. In a wholesale electricity
market, the independent system operator (ISO) calculates the
generation schedule and electricity prices upon solving a linear
or quadratic program to minimize the total generation cost
subject to power balance and line flow constraints. From the
viewpoint of a strategic investor, one can identify three types of
generators [2]: existing units owned by rival entities; existing
units owned by the investor; and new units to be built by

1In fact, during the final review round and a year after the preprint version
of this work was publicized, a related work using MPP for dealing with a
tri-level transmission/distribution expansion planning task was published [16].

the investor. The power schedules corresponding to three unit
types are denoted respectively by (pr,pe,pn). For notational
brevity, suppose all unit types exist at all buses with possibly
zero capacities. The market is cleared by the DC-OPF:

min
pr,pe,pn

fr(pr) + fe(pe) + fn(pn) (1a)

s.to 1>(pr + pe + pn − `) = 0 : λ0 (1b)

− f ≤ S(pr + pe + pn − `) ≤ f : µ,µ (1c)

0 ≤ pr ≤ p̄r : γ
r
,γr (1d)

0 ≤ pe ≤ p̄e : γ
e
,γe (1e)

0 ≤ pn ≤ p̄n : γ
n
,γn (1f)

where S is the power transfer distribution factor matrix
(PTDF) [17]. Function fr(pr) := 1

2p>r Hrpr + c>r pr models
the generation cost for rival units. The diagonal matrix Hr

and vector cr contain positive values [18]. The generation
costs for existing and new units fe and fn are defined
similarly. Constraint (1b) ensures power balance with ` being
the vector of nodal load demands. Constraint (1c) enforces
given line flow limits f . Constraints (1e)–(1d) impose capacity
limits (p̄r, p̄e, p̄n) on generation schedules. Dual variables are
shown in the right-hand side of the constraints in (1).

To account for renewable generation, vector p̄r is the avail-
able capacity of rival units. It can be modeled as p̄r = αr�p̂r,
where p̂r is the vector of installed capacities, αr the vector
of capacity factors, and symbol � denotes entry-wise multi-
plication between two vectors. For non-renewable generators,
the corresponding entry of αr is unity, whereas for renewable
generators it changes with time to capture the available wind
energy as a percentage of the maximum capacity. We similarly
define vectors (αe, p̂e) for existing units, and (αn,x = p̂n)
for new units. We will be using x instead of p̂n to emphasize
that the capacity of new units is the ultimate optimization
variable for the SI task at hand. In other words, the investor
would eventually build new generation capacities x.

The ISO solves (1) every hour to find the optimal schedules
(pr,pe,pn) and computes the locational marginal prices
(LMPs) of electricity across buses as; see e.g., [17], [19] for
details

π = −λ01 + S>(µ− µ). (2)

We have slightly abused notation and used the same symbols
with (1) to denote the optimizers of the problem. We next
present SI adapting the formulation of [2].

It should be emphasized that the energy market model
adopted here is a simplification of the actual clearing process.
Energy markets are increasingly complex mechanisms. Under
the typical setup of two-stage markets (day-ahead and real-
time), the minimum generation capacity may not be zero
at times, unit commitment (UC) decisions can keep gener-
ators out of the economic dispatch, while ramping and UC
constraints call for multi-period dispatches that may dispatch
generators in an out-of-merit fashion and use complex make-
whole or convex-hull pricing and uplift payments. The sit-
uation becomes even more complicated with the option for
generators to engage into bilateral agreements, the simulta-
neous participation in energy and reserves markets, or even
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considering the security-constrained renditions of DC-OPF the
ISO will be solving to dispatch generators. In addition to the
complexity of the market clearing process per se, an investor
may oftentimes have to deal with only partial knowledge on
market parameters, such as the exact transmission network and
line maintenance schedules, as well as the bidding strategies
and new investments by competitors. Granted the complexity
and uncertainty involved, the proposed formulation serves as
a first-order approximation of the actual clearing process, as
pursued in prior literature too [2].

B. Problem Formulation

Strategic investment in electricity markets can be viewed
as a minimization problem where the objective is the cost for
investing in the new units minus the expected revenue obtained
from the market through the new units and the existing
own units. Investment costs are being normalized across the
expected lifetime of the new units. The strategic investment
study obviously relies on the market conditions anticipated
over the time period of interest. Such conditions may include
upgrades in transmission network and competitor’s portfolios,
as well as changes in operational costs. This investment cost
is generally modeled as a known linear function k>x of the
generation capacity. The revenue is made up by the payment
received from the ISO (generation schedule times LMP) minus
the true generation cost

f(x) := k>x− E
[
π> (pe + pn)− ge(pe)− gn(pn)

]
(3)

where the expectation E[·] applies over the involved uncertain-
ties. Note f involves the actual cost of generation ge(pe) +
gn(pn) rather than the bid fe(pe) + fn(pn) submitted to the
market. This is because the market bid can be sometimes larger
than the actual generation cost for some or all (pe,pn) [2].
The expectation in (3) is applied over all random quantities,
such as the demand vector `, the scaling factors (αr,αe,αn)
for renewable generation, and possible changes in bids.

The task of strategic investment can be now stated as

min
x∈X

f(x) (4a)

s.to {π,pe,pn} being solutions of (1). (4b)

In addition to constraint (4b), the investment variable x should
also belong to the set of investment options X := {x : x ≤
x ≤ x, ∆x ≤ δ}. Constraint ∆x ≤ δ could model an upper
bound on the total MW capacity installed or the total number
of wind turbines purchased. In this case, matrix ∆ degenerates
to the all-one vector ∆ = 1> and vector δ to a scalar xtotal,
where xtotal is the total capacity to be installed. Investments x
may also be restricted to take discrete values. As in [2], we
further postulate two assumptions on the problem setup.

Assumption 1. The transmission network topology captured
by (S, f) is known and remains constant.

Assumption 2. The problem parameters (`, p̄r, p̄e, f) are
such that the DC-OPF of (1) is feasible for all x ∈ X .

Assumption 3. Bidding and generation capacity parameters
for rival units (Hr, cr, p̄r) are known to the investor.

Fig. 1. A 3-bus power system showcasing the challenges in solving (4).

According to Assumption 2, the power system can be
dispatched without the new units. Even under these assump-
tions, problem (4) is challenging due to three reasons: i)
Constraint (4b) is expressed as an optimization problem itself;
ii) The products between primal and dual variables inside the
expectation in (3) are non-convex functions; and iii) Evaluating
the expectation in f(x) may be prohibitive. The investment
task of (4) will be termed the outer problem and the DC-OPF
of (1) given x as the inner problem of SI. We next elucidate
the difficulty of SI through a small example for which the
optimal SI decisions can be computed in closed form.

C. A 3-bus Example
Strategic generation investment can be challenging due to

non-convexity and discontinuities. To elucidate on that, con-
sider the 3-bus power system of Fig. 1. An investor considers
building a generator on bus 1. A rival generator is located at
bus 2 having capacity p̄2 = 10 pu. Bus 3 hosts a load `3 whose
value is modeled as a random variable uniformly distributed
within [0, 10]. The limit for line b = (2, 3) remains fixed at
f̄b = 10, whereas the limit f̄a for line a = (1, 3) is treated as
a parameter and by varying its value, we will study its effect
on SI. The investor does not own any existing generator, so
that fe(pe) = ge(pe) = 0. Let us assume quadratic bidding
functions fn(pn) = p2

1+p1 and fr(pr) = p2
2+3p2; investment

cost k1 = 1; and gn(pn) = fn(pn). We next compute the SI
objective in (4a) by evaluating the expectation involved in (3).

We would like to compute the revenue for the investor

f(x1) = k1x1 + E`3 [gn(p1)− π1p1]

= x1 + E`3
[
p2

1 + p1(1− π1)
]
.

Nonetheless, the optimal primal/dual solutions (p1, π1) of (1)
depend on the values of the problem parameters (x1, f̄a, `3).
As it will be explained later in more detail [cf. Figure 3],
we can identify four solution cases for (p1, π1) depending on
how x1 and fa compare. We present the detailed derivation
for f(x1) for only one of these four cases for which x1 ≤
f̄a ≤ 1. then the solution to inner problem can be expressed
parametrically in (`3, x1) as

(p1, π1) =

{
(`3, 2`3 + 1), `3 ≤ x1

(x1, 2`3 − 2x1 + 3), `3 > x1

.

Since `3 is uniformly distributed, we can compute the
investment cost under the case of x1 ≤ f̄a ≤ 1 as

f(x1) = x1 −
1

10

∫ x1

0

`23 d`3
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Fig. 2. The net investment cost for the system of Figure 1 over the capacity
range of x1 ∈ [0, 10] and for different capacities f̄a of line a = (1, 3).

+
1

10

∫ 10

x1

(3x2
1 − 2x1 − 2`3x1) d`3

= − 7

30
x3

1 + 3.2x2
1 − 11x1 (5)

The optimal solutions and the value of f(x1) can be
computed similarly for other combinations of the problem
parameters (x1, f̄a, `3). We next present the final outcome of
this analysis, which involves three major cases depending on
the value of f̄a with 2-3 subcases each. In particular, if f̄a ≤ 1

f(x1) =

{
− 7

30x
3
1 + 3.2x2

1 − 11x1, x1 ≤ f̄a
x1 − 19f̄2

a

20 −
1

240 , x1 > f̄a
.

If 1 < f̄a ≤ 5.5, the cost becomes

f(x1) =


− 7x3

1

30 + 3.2x2
1 − 11x1, x1 ≤ 1

−8x3
1+99x2

1−333x1+1
30 , 1 < x1 ≤ f̄a

x1 +
4f̄3

a−33f̄2
a+1

30 , x1 > f̄a

Finally, if f̄a > 5.5, the cost takes the form

f(x1) =


− 7x3

1

30 + 3.2x2
1 − 11x1, x1 ≤ 1

−8x3
1+99x2

1−333x1+1
30 , 1 < x1 ≤ 5.5

x1 − 1327
120 , x1 > 5.5

.

Figure 2 plots the investment cost f(x1) for different values
of f̄a. The key outcome of this analysis is that f(x1) is not
only non-convex, but also that depending on the value, it can
also be discontinuous. Specifically, our analysis has shown
that f(x1) becomes discontinuous when f̄a < 5.5 with the
discontinuity occurring at x1 = f̄a. Thus, the SI problem may
have a non-convex non-smooth objective function.

III. MPEC AND MPP

This sections extends results from mathematical program-
ming with equilibrium constraints (MPEC) and multiparamet-
ric programming (MPP) to the considered SI setup.

A. Mathematical Programming with Equilibrium Constraints

MPEC is used in economics, where decisions taken by an
investor affect the outcome of a market. MPEC provides a
means for tackling bilevel optimization programs, such as
the one in (4). Reference [2] posed (4) as an MPEC. For
later reference and building on [2], we present an MPEC
formulation for markets with quadratic bidding costs. Through
this process, we provide the MPEC alternative to the novel SI
solvers to be developed in Section IV. The MPEC model is
built in three steps.

First, the bilinear term π>(pe + pn) in (3) is replaced by
a quadratic function of the variables of the inner problem

π>(pe + pn) = −p>r Hrpr − c>r pr − (µ+ µ)>f − γ>r p̄r

− (µ− µ)>S`− λ01
>`. (6)

This follows from strong duality of the inner problem and
after some algebraic manipulations; the proof is deferred to
the appendix. For linear bidding functions, a similar result
can be obtained by setting Hr = 0 [2].

As a second step, the expectation in (3) is surrogated by a
sample average over T instances indexed by t as [2]

f̂(x) = k>x− 1

T

T∑
t=1

π>t (pe,t + pn,t)− ge(pe,t)− gn(pn,t)

so the SI problem can be approximated as

min
x∈X

f̂(x) (7)

s.to {πt,pe,t,pn,t} being solutions of (1) for t = 1 : T.

The third step replaces constraint (4b) by the KKT con-
ditions for the inner problem. Primal/dual feasibility and La-
grangian optimality yield a set of linear equality and inequality
constraints on the primal/dual variables of the inner problem.
Complementary slackness conditions entail non-convex prod-
ucts between primal and dual variables. These products can
be formulated via the big-M method [2]. For example, the
complementary slackness condition x · λ = 0 for a primal
constraint x ≥ 0 and the related Lagrange multiplier λ ≥ 0
can be written as

0 ≤ x ≤ φM 0 ≤ λ ≤ (1− φ)M (8)

where M is a large constant and φ is an auxiliary binary
variable. A set of constraints similar to (8) has to be enforced
for each constraint of the inner problem and every market
instance t. Following the aforesaid three steps, the bilevel
problem in (4) can be reformulated as a mixed-integer linear
or quadratic program (MILP/MIQP), depending on whether
functions {fr, fe, fn, ge, gn} are linear or quadratic.

The MPEC method of [2] finds the global minimum of
(4) upon approximating the ensemble average in (3) with the
sample average over the T instances in (7). Nonetheless, the
resultant mixed-integer model may not scale favorably for
large T or large networks. Moreover, finding proper values
for M is challenging, since it is hard to upper bound dual
variables a-priori. To avoid computationally taxing mixed-
integer models, we develop solvers of (4) leveraging neat
results from MPP, which are outlined next.
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B. Multiparametric Programming (MPP)

Multiparametric programming studies the solutions of an
optimization problem as a function of its parameters [7].
The main idea of using MPP for SI is to handle the inner
problem in (7) as a parametric problem. The inner problem
in (7) involves solving T DC-OPFs, one for each instance.
Each instance t could be dealing with different load demands,
renewable generation conditions, available unit capacities, and
generation costs. The inner problem also depends on the
investment x. For each instance [indexed by t in (7)] and a
particular investment value x, we arrive at a different scenario
of the DC-OPF indexed by s. Problem (1) has to be solved
over a scenario-dependent parameter vector θs; more details
on the entries of θs to be provided later in (15). Let us focus
on the DC-OPF for a particular θs. To unclutter notation, we
drop the subscript s. To cast (1) as a parametric problem,
consider a minimization dependent on θ as

min
p

1

2
p>Hp + (Cθ + d)

>
p (9a)

s.to Ap ≤ Eθ + b : λ (9b)
Bp = Fθ + y. : µ. (9c)

If H = 0, problem (9) is a multiparametric linear program
(MPLP). If H � 0, problem (9) is a multiparametric convex
quadratic program (MPQP). Different from existing results on
MPLP/MPQPs [7], [11], problem (9) has θ appearing not only
in the constraints, but also in the cost. We next reproduce MPP
analysis to accommodate this setup.

Let Θ be the set of all θ’s for which (9) is feasible.
According to MPP theory [7], set Θ can be partitioned into
distinct regions, termed critical regions, with three interesting
properties: p1) Each region is described as a polytope in Θ; p2)
Within each region, the same subset of inequality constraints
become active, i.e., are satisfied with equality; and p3) Within
each region, the primal/dual solutions of (9) can be expressed
as affine functions of θ. These affine functions have been
derived in [14]. They are reviewed next for completeness and
to introduce the needed quantities.

Assume (9) is solved for θo ∈ Θ and let (po;λo,µo)
be the obtained optimal primal/dual solutions. Let also Ã
be the submatrix obtained from A upon selecting the rows
corresponding to the active constraints in (9b). The remaining
rows of A related to inactive constraints (constraints satisfied
with strict inequality) constitute matrix Āo. Similar partitions
yield (Ẽ, b̃, λ̃) and (Ē, b̄, λ̄). It is further assumed that matrix

K := [Ã> B>]> (10)

is full row-rank. This condition is known as linear indepen-
dence constraint qualification (LICQ). Although LICQ cannot
be guaranteed before solving (9) for a θ, it occurs in the
majority of our tests in Section V. We next consider separately
the cases of H � 0 and H = 0 in (9).

For H � 0 (strictly convex MPQP) and under LICQ, the
primal/dual solutions of (9) can be obtained as [14]po

λ̃o
µo

 = Mθo + r =

M1

M2

M3

θo +

r1

r2

r3

 (11)

where

M =

M1

M2

M3

 :=

H Ã> B>

Ã 0 0
B 0 0

−1 −C

Ẽ
F

 (12a)

r =

r1

r2

r3

 :=

H Ã> B>

Ã 0 0
B 0 0

−1 d

b̃
y

 . (12b)

The matrix inverse in (12) exists, since its determinant equals
det(H) det(−KH−1K>) < 0 from Schur’s complement.

For H = 0 (for which (9) is an MPLP), suppose further that
K is square. This holds if in addition to LICQ, the number of
active constraints equals the number of optimization variables.
Then, the primal/dual solutions of (9) take again the closed-
form expression of (11), but with [14]

M1 := K−1

[
Ẽ
F

]
and r1 := K−1

[
b̃
y

]
(13a)[

M2

M3

]
:= K−>C and

[
r2

r3

]
:= K−>d. (13b)

One of the interesting claims of MPLP/MPQPs is that for
any other θ ∈ Θ yielding rise to the same set of active
constraints, the primal/dual solutions are expressed through
(11); see e.g., [7], [8]. Contrarily, given a set of constraints,
the subset of θ’s activating those constraints can be identified
as a polytope C ⊆ Θ described as (see [8] for details)

C :=
{
θ ∈ Θ|

(
ĀM1 − Ē

)
θ ≤ b̄− Ār1,M2θ ≥ r2

}
.
(14)

The quantities (M1,M2, r1, r2) are provided by (12) or (13)
for MPQP and MPLP, accordingly. The set C is termed a
critical region of Θ. We next leverage these MPP properties
to cope with (4) in two different ways.

IV. STRATEGIC INVESTMENT VIA MPP

To derive efficient SI solvers, the key idea is to cast the
inner problem as an MPP and exploit the rich properties for
its solutions. If the bidding functions in (1) are quadratic
or (piecewise) affine, then (1) is an instance of (9). The
optimization variable p stacks the variables (pr,pe,pn). The
parametric inequalities of (9b) capture the line flow constraints
of (1c) and the generation limits of (1d)–(1e). The parametric
equalities (9c) relate to the power balance constraint of (1b).

The parameter θ appearing in (9) consists of three parts. The
first part relates to varying generation cost coefficients (bids).
Under the assumption that the quadratic component 1

2p>Hp
remains invariant across scenarios, these changing costs are
modeled by Cθ + d in (9a) with C = [I 0 0] and d = 0.
The second part of θ captures the uncertain demand vector
`. The third part captures varying capacities of generation
units that are due to scheduled outages or due to variable
renewable resources. Moreover, the capacity for new units will
be changing while solving SI as solvers will be evaluating (1)
for different values of x seeking the optimal investment. In
summary, each parameter vector θs (θ for simplicity) can be
expressed as

θ := [c> `> p̄>]> (15)
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where c := [c>r c>e c>r ]>; p̄ := [p̄>r p̄>e (α � x)>]>; and
α := [α>r α

>
e α

>
r ]>. Apart from x, all quantities appearing

in (15) should be noted with the instance index t as subscript;
we avoided that to simplify notation. Collect all uncertain
components of θ in ω := {cr, ce, cr, `, p̄r, p̄e,α}. Evidently
from (15), the parameter vector of (9) can be expressed
as a mapping θ = P(ω,x) of the uncertain variables ω
and the optimization variable of the outer problem x. Heed
that the mapping P(ω,x) is not linear in (ω,x) due to the
products α�x in p̄. Nonetheless, the objective and constraint
functions of the parametric QP in (9) depend linearly on
θ = P(ω,x). The matrices (A,E,B,F) and vectors (b,y)
in (9) are straightforward to compute and are not presented
here. Having posed (1) as an instance of (9), we next present
two methods that leverage the affine mappings of (11)–(13)
and the partitioning of (14) to solve (7).

A. An MPP-aided Grid Search (MPP-GS) Scheme

This section exploits the MPP results of Section III-B to
solve (1) for a large number of (ω,x) instances. We can thus
evaluate f̂(x) over a grid of x values efficiently. This grid
search approach is preferred when an investor is presented
with a single or few possible investment locations. To design
our search grid, note that the investment xm at bus m can be
bounded as

xm =
∑
k∼m

fm,k + max
t
{`m,t} (16)

by the maximum load at bus m plus the sum of capacities for
all transmission lines incident to bus m. Symbol fm,k denotes
the capacity of the line connecting buses m and k, if such line
exists. The quantity xm is the maximum power that can be
produced at bus m without violating any physical limits. The
discretization step over [0, x̄m] can be chosen based on the
type of the power plant. For example, a typical wind turbine
is about 2-3 MW, so that multiples of this value are reasonable
options for the grid step. When investing at M locations with
Km search values per location m, we get a search grid X̂ ⊆ X
of K =

∏M
m=1Km points. Since K grows exponentially with

M , this approach makes sense only for M = 1− 3 locations.
Given the search grid X̂ and the uncertain parameter set

Ω := {ωt}Tt=1, one can readily form the parameter set Θ̂
using the mapping P : X̂ × Ω → Θ̂ and |Θ̂| = KT . Here
Θ̂ is a finite subset of Θ, over which (9) has to be solved.
This slightly abuses notation since in Section III-B symbol Θ
denoted the convex set of θ’s rendering (9) feasible. A solution
to (7) can be found by solving (1) in its parameterized form
of (9) for all KT members of Θ̂, and then evaluating f̂(x)
over X̂ . For f̂(x) to be a reasonable estimate of f(x) though,
a large number T of instances ωt needs to be considered,
yielding a computationally formidable task even for small K.

Thanks to MPP however, problem (9) needs to be solved
for just as many times as the critical regions appearing in Θ̂.
To see this, suppose that for a critical region Co ⊆ Θ, we have
already computed its polytopic description in (14) and the pair
(M, r) parameterizing its primal/dual solutions. Then, for any
other θs ∈ Θ̂ belonging to Co, we can directly compute its
primal/dual solutions from (11) without having to solve (9).

Algorithm 1 MPP-aided Grid Search (MPP-GS)

Input: Set of OPF scenarios Θ̂ = {θs}KTs=1

Output: OPF solutions {πs,pe,s,pn,s}KTs=1 to (1) via (9) for
all θs ∈ Θ̂

1: while Θ̂ 6= ∅ do
2: Randomly select θo ∈ Θ̂ and Θ̂← Θ̂ \ θo
3: Solve (9) for θo to find its primal/dual solutions and

active constraints
4: Record (pe,o,pn,o,πo)
5: if matrix K of (10) is full row-rank, then
6: Compute region’s parameters (M, r) from (11)
7: Compute region’s polytope C from (14)
8: for all θs ∈ Θ̂ do
9: if θs ∈ C [satisfying (14)], then

10: Compute OPF solution as ps = M1θs + r1,
λs = M2θs + r2, and µs = M3θs + r3 and
compute πs using (2)

11: Record (pe,s,pn,s,πs)
12: Θ̂← Θ̂ \ θs
13: end if
14: end for
15: end if
16: end while
17: Evaluate f̂(x) over X̂ and find the minimizing x

This procedure, termed MPP-based Grid Search (MPP-GS),
is formalized as Algorithm 1 and its steps are explained next.

MPP-GS selects a θo from Θ̂ at step 2. At step 3, it solves
(9) for θo. If the related K is of full row rank, the algorithm
constructs a description for the visited critical region (steps
6-7). It further scans the remaining dataset Θ̂ to find other
θs’s belonging to this region (step 8); computes their solution
in closed form (steps 10-11); and removes these θs’s from Θ̂
(step 12). The process continues until Θ̂ becomes empty.

MPP-GS explores a critical region only when K is of full
row rank (step 5). Albeit such cases could be handled [7],
[8], they involve methods of high complexity. Instead, when
we come across such an instance of (9), we only record its
primal/dual solutions. During the tests of Section V, these
instances appear infrequently. Vectors θs are visited in an
arbitrary rather than sequential fashion, by randomly sampling
from Θ̂ (step 2). In this way, we increase the chances of
exploring more popular critical regions early on. It is hence
more likely to handle a larger number of θs’s earlier, so that
Θ̂ shrinks faster and step 9 is run on progressively much fewer
θs’s. To cope with (7) for larger K or T , we next pursue an
MPP-aided stochastic gradient descent approach.

B. MPP-aided Stochastic Gradient Descent (MPP-SGD)

The objective f̂(x) of (7) involves a summation over a
large number T of instances ωt. Rather than finding the
costly gradient of f̂(x), we adopt stochastic approximation
and update x by taking each time a descent step over the
gradient for only one of the summands of f̂(x). Define the
summand of f̂(x) related to instance ωt as

ft(x) := k>x−π>t (pe,t+pn,t)+ge(pe,t)+gn(pn,t). (17)
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Fig. 3. The critical regions of the inner problem in Figure 2 for f̄a = 4.
The dark gray region corresponds to p2 at its lower limit (p2 = 0); the black
region to p1 at its upper limit p1 = x1; the light gray region to line (1, 3)
being congested; and the white region to no active constraints.

Recall that the dispatches (pe,t,pn,t) and prices πt are all
functions of x, since they are outcomes of (1) given x.

Apparently ∇x(k>x) = k. To study the differentiability of
the remaining terms of ft, assume for now that θ = P(ωt,x)
is strictly inside a critical region Co ⊆ Θ. According to (11),
the optimal dispatch vectors pe,t and pn,t are affine in θ and
hence, affine in x for a particular ωt. to (2), optimal prices
πt are affine in (λ,µ). Since (λ,µ) are affine functions of θ
from (11), the prices πt are affine in θ as well. Consequently,
the revenue term π>t (pe,t + pn,t) is quadratic in x and its
gradient takes the form

∇x

[
π>t (pe,t + pn,t)

]
= Qoθ + qo. (18)

The parameters (Qo,qo) can be computed using (11). Heed
these parameters remain constant within each critical region of
Θ, that is for all pairs (ωt,x) for which θ = P(ωt,x) ∈ Co.
As in Section IV-A, the uncertain parameters ωt are drawn
from a finite set of instances. On the contrary, the investment
variable x is drawn now from a continuous set.

Regarding the term ge(pe,t) + gn(pn,t), its gradient with
respect to x can be computed using the chain rule, since func-
tions (ge, gn) are known (quadratic or affine) and (pe,t,pn,t)
are affine functions of θ and consequently x. Consider now
the case where θ = P(ωt,x) is on a boundary between
critical regions. Then, functions π>t (pe,t + pn,t), ge(pe,t),
and gn(pn,t) may not be differentiable or even continuous with
respect to x. Take for example the 3-bus example of Figure 2:
Figure 3 shows its critical regions over θ. It also displays
the functional form of ft(x1) per region. Evidently, function
ft(x1) is differentiable within each region, but not on their
boundaries. Nonetheless, these boundaries are zero-probability
events over Θ. Being a stochastic algorithm, the probability
of coming across such θ’s during the SGD iterations is zero.

Instead of updating x for one ωt at a time, we exploit
results from MPP and derive a mini-batch rendition to get
improved algorithmic convergence at a minimal increase in
computational complexity. The novel idea is to exploit MPP
regions and efficiently compute gradients with respect to x not

Algorithm 2 MPP-Stochastic Gradient Descent (MPP-SGD)
Input: Ω, initialization xo, tolerance τ , and step size η
Output: Optimal investment x∗

1: Set x0 = xo, ε > τ , k = 0
2: while ε ≥ τ do
3: Define Θk ← {θk1 , . . . ,θ

k
T } where θkt = P(ωt,x

k)
4: Randomly select θo from Θk

5: Solve (9) for θo to find its primal/dual solutions and
active constraints

6: Set gk ← 0 and ck ← 0
7: if matrix K is full row-rank, then
8: Compute region’s parameters (M, r) from (11) and

gradient coefficients (Qo,qo)
9: Compute region’s polytope C from (14)

10: for all θkt ∈ Θk do
11: if θkt ∈ C, then
12: compute the gradient gt and set gk ← gk + gt
13: set ck ← ck + 1
14: end if
15: end for
16: end if
17: Set xk+1 ←

[
xk − η

ck
√
k
gk
]
X

18: Compute the moving average x̄k ←
∑k

i=dk/2e(x
(i)/
√
i)∑k

i=dk/2e
√
i

19: Set ε← ‖x̄k−x̄(k−1)‖
‖x̄k‖ and k ← k + 1

20: end while
21: Set x∗ = x̄k

only for a single, but multiple ωt’s at a time. To elaborate,
notice that for a particular xo, all θt = P(ωt,xo) that belong
to the same critical region share the same gradient coefficients
(Qo,qo) in (18). Hence, all these gradients can be readily
computed once this critical region, its parameters (M, r), and
its polytopic description of (14) have been identified.

Our MPP-aided stochastic gradient descent algorithm is
tabulated as Algorithm 2. Step 3 constructs a parameter set
Θk based on the current estimate of the investment vector xk

and all instances ωt’s. In steps 4-8, a random θo is drawn
from Θk and we identify the region it belongs to. Steps 9-14
compute the gradient with respect to x for all θ ∈ Θk and sum
them up in gk. Step 12 counts the members of the said region,
so that the average gradient can be computed in step 16. The
updates of step 17 are guaranteed to converge to a stationary
point [20]. The random draw of step 4 ensures an unbiased
exploration of regions in Θ, hence the average gradient per
region is an unbiased estimate of the gradient of f̂(x) in (7).

V. NUMERICAL TESTS

Algorithms 1 and 2 were contrasted against the MPEC
method of [2] on three systems: the 3-bus system of Figure 2;
the IEEE 30-bus system; and the IEEE 118-bus system with
line limits estimated from surge impedances per [21]. The
investing bus were chosen as {1}, {3, 20}, and {29, 95} for the
three networks, respectively. For the 30- and 118-bus systems,
we chose the investor to already own the generator at bus 1.
We used hourly bidding and load data from the day-ahead PJM
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TABLE I
RESULTS FOR ALGORITHM 1

system T ×K # critical regions optimal cost time [s]

3-bus 876, 000 4 −11.31 67

30-bus 876, 000 229 −422 203

118-bus 876, 000 23, 695 −5, 290 62, 720

TABLE II
OPTIMAL COST ATTAINED BY ALGORITHM 2 [$/H]

initialization
system 1 2 3 4 5

3-bus −11.28 −11.28 −11.28 −11.28 −11.28

30-bus −422 −419 −417 −421 −420

118-bus −5, 280 −5, 274 −5, 296 −5, 256 −5, 275

market for 2018 [22]. Since load profiles correspond to areas
and there are only 21 of them, profiles were randomly assigned
to buses. Each bus load profile was perturbed by adding a
uniformly distributed deviation of ±5% independently over
time and buses. Load profiles were finally scaled so their
annual peak matched the benchmark load. For thermal units,
we assumed fe(pe,t) = ge(pe,t), whereas for wind ones we
set fe(pe,t) = ge(pe,t) = 0. For wind units, we assumed
a cost of 3 · 106 $/MW for purchase and installation, plus
1 · 106 $/MW for operation and maintenance over 25 years.
Converting that cost to dollars per hour per unit of active
power for a base of 100 MVA yielded k = 1, 826.5 in (3).
All tests were performed on an Intel Core i7 @ 3.4 GHz
(16 GB RAM) computer, using MATLAB on a single CPU
without any parallelization. Problem (9) was solved using the
ECOS solver in YALMIP [23], [24]. All times reported are
wall-clock times.

The first test explores the effect of the network size and
the number of instances T on the scalability and optimality
of MPEC. MPEC was implemented in Gurobi v.9.0 [25].
To prevent the MPEC method from stalling for small im-
provements, the solver’s optimality gap was set to 5%. We
observed that for smaller optimality gaps the solver took
much longer computational times. We also set M = 104

in (8). Because MPEC could not consider all 8, 760 instances,
we ran MPEC for T ∈ {10, 25, 50} instances per network.
Figure 4 shows the box plots of f̂(x) achieved by the MPEC
solutions, while Figure 5 shows the box plots for the related
running times. For the 3- and 30-bus systems, the MPEC
solutions seem to be achieving the optimal cost using only
25-50 instances and within reasonable time. For the 118-bus
system however, the investment cost varies widely even for 50
instances. This observation suggests that finding a meaningful
optimizer requires considering T > 50 instances. However,
Figure 5 indicates that the running time grows fast with T .
It is also worth reporting that running MPEC for the 118-bus
system and T = 100 took approximately four days.

The second test evaluates the optimality and scalability of
our Alg. 1 for the MPP-GS method. For the 3-bus system,
we considered a 1-D grid of 100 uniformly-spaced values

TABLE III
RUNNING TIME OF ALGORITHM 2 [S]

initialization
system 1 2 3 4 5

3-bus 363 323 260 362 483

30-bus 2, 246 4, 240 4, 266 2, 000 2, 178

118-bus 14, 100 9, 747 10, 743 9, 495 9, 507

TABLE IV
STATISTICS OF ALGORITHM 2 FOR 30-BUS SYSTEM

µ σ

investment cost [$/H] −419.876 10.839

computation time [s] 2, 231 275.7

optimal solution [100 MW] [0.5686, 0.2095] [0.0120, 0.0144]

for x1 ∈ [0, 10] and T = 8, 760 instances drawn from
` ∈ U(0, 10). For the 30-bus and 118-bus systems, we
considered 10 uniformly-spaced values for each investment in
the range of [0, 1] and [0, 10] for each location, respectively,
resulting in a 2-D grid with 100 points. With T = 8, 760
instances, this gave a total of 876, 000 DC-OPFs to be solved
as reported in Table I. This table also shows the number of
critical regions identified; the optimal cost found; and the
running times. Figure 7 shows the investment cost achieved by
Alg. 1. The MPP-GS was successful in finding an investment
cost lower than that of MPEC indicating the advantage of
considering the complete scenario set. For the 3- and 30-bus
systems, there is also significant computational advantage. The
relatively longer time needed for the 118-bus system can be
attributed to the large number of critical regions identified that
are due to the wider range of x and larger system.

To analyze the running times of Alg. 1 further, we classified
the running time into 3 main components: the YALMIP build-
ing time; the solver’s time for dealing with each DC-OPF; and
the time needed for Steps 5-13 of Alg. 1 that mainly consist
of evaluating region membership through equation (14). We
also evaluated these times on the 118-bus system for the same
number of total scenarios (KT = 876, 000), but for different
grid volumes of x. If x ∈ [x1, x1] × [x2, x2] · · · × [xM , xM ],
then we define the grid volume as

∏M
m=1(xm−xm). Table V

shows these running times as well as the number of critical
regions identified. Since Steps 5-15 of the MPP-GS algorithm
seem to be the bottleneck, the computation time can be
further reduced by using a parallel implementations of Alg. 1
especially for evaluating (14). For example, just by replacing
the for-loop of Step 10 with matrix operations, the checking
time can be reduced from 12, 217 [s] to 4, 292 [s] for grid
volume of 1. Table V also shows that the larger the volume
of the x-grid, the larger the volume of Θ and so more critical
regions are identified.

The third test evaluated Alg. 2 and our MPP-SGD method.
Figure 8 shows the convergence of the investment decisions
for 5 randomly initialized trials. Tables II and III show the
optimal cost and running times, respectively. We observe that
for all trials, the optimal cost is much lower than that attained
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Fig. 4. Optimal investment cost attained by the MPEC method of [2] for the three systems. Although the investment decision x has been computed using
only T ∈ {10, 25, 50} instances due to computational limitations, the cost shown here is computed over all 8, 760 market instances. Box plots are computed
over 100 Monte Carlo runs by randomly selecting T instances each time. Left: For the 3-bus system, the MPEC solutions attained the true optimal cost of
−11.28 using 25-50 instances in 1-5 seconds – the true optimal cost can be found as the stationary point of f(x1) in Fig. 2 for f̄a. For the two other systems,
the true optimal cost is not known. Center: For the 30-bus system, the MPEC solution reaches a seemingly minimal cost using 25 instances, even though the
maximum value over the Monte Carlo runs varies widely. Right: For the 118-bus system, the sample mean costs lie significantly above the sample minimum
ones, and using 50 instances is not sufficient to reduce the cost variability.
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Fig. 5. Box plots of running times for the MPEC method of [2] over 100
Monte Carlo runs by randomly selecting T instances each time.

TABLE V
RUNNING TIMES OF ALGORITHM 1 FOR THE 118-BUS SYSTEM

grid volume # critical regions YALMIP [s] solver [s] check [s]

0.01 2, 636 259 440 10, 329

1 4, 153 376 640 12, 217

100 23, 695 2, 184 3, 681 56, 855

by MPEC for T = 50 instances, which was −230 for the
30-bus system and −4, 2208 for the 118-bus one. Compared
to Algorithm 1, Algorithm 2 achieves similar optimal costs.
The running times of Alg. 2 are longer for the 3- and 30-bus
systems, but much lower for the 118-bus system. Even though
the MPP-SGD iterates do not converge to the same decisions
for all trials, they attain relatively similar investment costs.
This agrees with the findings of Fig. 7, where the cost function
seems to be relatively flat at the optimum.

To study the variability in the execution time of Algorithm 2,
we conducted 100 random initializations of MPP-SGD algo-
rithm for the 30 bus system. Table IV shows the mean and
standard deviation of the optimal cost, computation time, and
optimal solution of the MPP-SGD algorithm across the 100
tests performed. These results show that MPP-SGD exhibits
relatively small standard deviation in all three quantities.

To recapitulate, MPEC can find a globally optimal solution
within reasonable time for smaller systems. For larger systems,
the complexity involved confines MPEC to relatively few
instances T , which may result in subpar investment solutions
if those solutions are to be evaluated on realistic scenario sets.
Algorithm 1 is able to achieve much lower average costs over

Fig. 6. Cardinalities of critical regions for the test cases of Table V. To show
the distribution of cardinalities across critical regions, regions were sorted by
decreasing cardinality. We then computed the running of those cardinalities.
The vertical axis here shows this running sum as a percentage across all critical
regions. For the grid volumes of 0.01 and 1, there were a total of roughly
5,000 critical regions, whereas for the grid volume of 100, there were 24,000
regions.

a year-long complete dataset, yet is limited by the number of
investment locations and the granularity of the search grid.
The latter issues are alleviated by Algorithm 2, which seems
to be finding near-optimal decisions by handling the complete
dataset in running times that improved relatively with the
network size.

VI. CONCLUSIONS

This work has exploited MPP to devise two SI solvers. The
grid search algorithm can handle cases where the number of
investment locations is small. Although the needed function
evaluations constitute an enormous dataset of DC-OPF in-
stances, their exact primal/dual solutions can be computed
upon solving only a limited number of these OPFs, thus
accelerating the search by 8-12 times. For larger numbers of
investment locations, we have devised a stochastic gradient
search scheme, which computes the gradient of the SI ob-
jective over entire critical regions in an extremely efficient
manner. The developed tools facilitate faster and more edu-
cated energy market decisions, while the ideas put forth can
be proved fruitful for coping more efficiently with transmission
expansion planning and contingency analysis.
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Fig. 7. The value of the investment cost f̂(x) for the 3-bus (left); 30-bus (middle); and 118-bus systems (right).

Fig. 8. Convergence of Alg. 2 for 5 random initializations for the 3-bus system (left); the 30-bus system (center); and the 118-bus system (right). For the
3-bus system, the minimizer is unique and the MPP-SGD algorithm converges to the same point for all initializations.

APPENDIX A
MPEC WITH QUADRATIC COST

This adopts the results from [2] to replace the inner
quadratic program of (1) by its KKT conditions and the
bilinear terms of (3) with linear and quadratic ones. It is
presented here since [2] considered the case where (9) is a
linear rather than a quadratic program.

Lagrangian optimality conditions imply that

Hrpr + cr + λ01 + S>(µ− µ) + (γr − γr) = 0 (19a)

Hepe + ce + λ01 + S>(µ− µ) + (γe − γe) = 0 (19b)

Hnpn + cn + λ01 + S>(µ− µ) + (γn − γn) = 0. (19c)

Since (Hr,He,Hn) are invertible, the primal solutions can
be expressed as

pr = −H−1
r zr, pe = −H−1

e ze, pn = −H−1
n zn (20)

where zr := cr + λ01 + S>(µ − µ) + (γr − γr), while ze
and zn are defined accordingly.

Evaluating the Lagrangian function at the optimal primal
solutions of (20) provides the dual function

−1

2

[
z>r H−1

r zr + z>e H−1
e ze + z>nH−1

n zn
]
+y−γ>e p̄e−γ>n p̄n

where y := −
[
λ01 + S>(µ− µ)

]>
`− γ>r p̄r − (µ+ µ)>f .

Due to strong duality, the optimal value of the dual function
equals the optimal value of the primal objective

1

2
p>r Hrpr + c>r pr +

1

2
p>e Hepe + c>e pe +

1

2
p>nHnpn.

Equating the optimal primal and dual functions provides

γ>e p̄e + γ>n p̄n = −1

2

[
z>r H−1

r zr + z>e H−1
e ze + z>nH−1

n zn
]

− 1

2

[
p>r Hrpr + p>e Hepe + p>nHnpn

]
− c>r pr − c>e pe − c>npn + y. (21)

From (20), it follows that p>r Hrpr = z>r H−1
r zr and similarly

for the subscripts e and n. Then, (21) simplifies as

γ>e p̄e + γ>n p̄n = −p>r Hrpr − p>e Hepe − p>nHnpn

− c>r pr − c>e pe − c>npn + y. (22)

Combining the definition of electricity prices in (2) with
(19) provides

π = Hepe + ce + (γe − γe) (23a)

= Hnpn + cn + (γn − γn) (23b)

Pre-multiplying (23a) by p>e and (23b) by p>n , and summing
up gives

π>(pe + pn) = p>e Hepe + c>e pe + γ>e pe − γ>e pe

+ p>nHnpn + c>npn + γ>npn − γ>npn. (24)

Thanks to complementary slackness γ>
n

pn = γ>
e

pe = 0.
Then, from (22), we finally get that

π>(pe + pn) = −p>r Hrpr − c>r pr + y. (25)
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