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Smart Inverter Grid Probing for Learning Loads:
Part II – Probing Injection Design
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Abstract—This two-part work puts forth the idea of engaging
power electronics to probe an electric grid to infer non-metered
loads. Probing can be accomplished by commanding inverters to
perturb their power injections and record the induced voltage re-
sponse. Once a probing setup is deemed topologically observable
by the tests of Part I, Part II provides a methodology for designing
probing injections abiding by inverter and network constraints
to improve load estimates. The task is challenging since system
estimates depend on both probing injections and unknown loads
in an implicit nonlinear fashion. The methodology first constructs
a library of candidate probing vectors by sampling over the
feasible set of inverter injections. Leveraging a linearized grid
model and a robust approach, the candidate probing vectors
violating voltage constraints for any anticipated load value
are subsequently rejected. Among the qualified candidates, the
design finally identifies the probing vectors yielding the most
diverse system states. The probing task under noisy phasor and
non-phasor data is tackled using a semidefinite-program (SDP)
relaxation. Numerical tests using synthetic and real-world data
on a benchmark feeder validate the conditions of Part I; the
SDP-based solver; the importance of probing design; and the
effects of probing duration and noise.

Index Terms—Smart inverters, power system state estimation,
Farka’s lemma, max-sum diversity, semi-definite relaxation.

I. INTRODUCTION

Part I of this work put forth the novel data acquisition
scheme of probing-to-learn (P2L). The P2L scheme leverages
smart inverters to probe an electric grid with the purpose of
finding the values of non-metered loads. It also provided con-
ditions under which a particular probing setup is successful.
In particular, it was shown that given the feeder graph G, the
locations of non-metered buses O and probing buses M, and
the number of probing actions T , a simple linear program
could tell whether non-metered loads could be recovered or
not. Assuming noiseless data, this test relied on the generic
rank of the Jacobian matrix J ({vt}) related to the P2L
equations. It is thus a topological rather than a numerical
observability guarantee [1, Ch. 4.6].

Even for the standard power flow (PF) and power system
state estimation (PSSE) setups, topological observability re-
lates to the sparsity structure of the associated Jacobian matrix.
This structure alone however cannot adequately capture the
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numerical column rank of the Jacobian matrix. There exist
specification or measurement sets whose Jacobian is full
column-rank in general, but becomes ill-conditioned or even
singular under specific state values (including the boundaries
for voltage collapse); see e.g., [1, Ch. 10], [2]. In addition,
once a probing setup is deemed topologically observable, the
power injections of probing inverters could be judiciously
selected to improve load or state estimates. This is challenging
since P2L is an implicit nonlinear identification task, and
probing injections should be comply to network constraints
without knowing the non-metered loads.

The contribution of Part II is on two practical aspects of
grid probing. First, a systematic approach to design probing
setpoints that conform to grid safety and improve numerical
accuracy is developed in Section II. Second, the proposed
P2L task is tackled through semidefinite program (SDP)-based
solvers presented in Section III. The conditions of Part I along
with the probing setpoint design and the solver of Part II, are
numerically validated using actual residential load data from
the Pecan Street project on the IEEE 34-bus benchmark feeder
in Section IV. Conclusions and current research efforts are
outlined in Section V.

Adding to the notational conventions of Part I, here the sym-
bol 1 denotes the all-one vector and ek is the k-th canonical
vector; their dimensions would be clear from the context. The
notation V � 0 means that V is a Hermitian (complex and
conjugate symmetric) positive semidefinite matrix; the matrix
trace is denoted by Tr(·); and ‖a‖2 is the `2-norm of vector
a. The notation k = 1 : K is a shorthand to k = 1, . . . ,K.

II. DESIGNING PROBING INJECTIONS

Suppose probing has been deemed successful for a particu-
lar (M,O) placement of probed and non-metered buses, i.e.,
the setup (M,O) has passed the test of Algorithm ?? or ??
of Part I. The next question is how to select probing setpoints
that are implementable by inverters; compliant to feeder con-
straints; and at the same time, improve estimation accuracy.
This section deals with the design of inverter setpoints during
probing interval T with slots t = 1, . . . , T , for a given T .

To facilitate the exposition, let us stack the power injections
at all probing buses {(pn, qn)}n∈M in vectors pM, qM,
and sM := [p>M q>M]>. Likewise, the injections at all non-
metered buses {(pn, qn)}n∈O are collected in pO, qO, and
sO := [p>O q>O]>. The injections at slot t will be denoted by
a superscript t.

In search of a meaningful metric to design the probing
injections {stM}Tt=1, one could consider the minimum mean
square estimation error for non-metered loads sO or states
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{vt}Tt=1. The former is hard to derive given the implicit
estimation task involved. The latter exhibits the Cramer-Rao
lower bound (CRLB) of [J> ({vt})J ({vt})]−1; a proof for
this CRLB can be obtained by adopting the result in [3]. Since
J ({vt}) depends linearly on {vt}Tt=1, the CRLB depends
inverse quadratically on the unknown states.

To arrive at a practical solution, we resort to selecting
probing setpoints so that the electric grid is driven to the most
diverse states {vt}Tt=1 while abiding by inverter and feeder
operational constraints. We conjecture that probing the grid
to effect larger state variations across T would yield smaller
condition numbers for J ({vt}) and J> ({vt})J ({vt}).

Hence, the goal is to design {stM}Tt=1 that yield the most
diverse system states {vt}Tt=1. Since the system states depend
on both {stM}Tt=1 and the unknown sO in a non-linear fashion,
our design adopts a linearized power flow model. The latter
can be obtained by taking the first-order Taylor’s series ap-
proximation of the PF equations with respect to nodal voltages
expressed in polar coordinates [4], [5]. Unless a reference
system state is available, the linearization occurs at the flat
voltage profile of ṽ = u01 + j0, and yields the so termed
linearized distribution flow (LDF) model [6], [5], which can
be rearranged for our analysis as

y :=

[
u− u01

θ

]
=

[
K L
M N

] [
sM
sO

]
. (1)

The vectors u and θ collect the voltage magnitudes and
angles at all buses excluding the substation; and matrices
(K,L,M,N) depend on the bus admittance matrix Y; see [5],
[7]. Armed with a linear mapping between power injections
and voltages, the design of setpoints {stM}Tt=1 is accomplished
next in three steps.

A. Build Library of Implementable Probing Setpoints

The first step of the setpoint design builds a library S of
K � T candidate injection vectors indexed by k

S := {skM}Kk=1. (2)

The entries of each skM should be implementable, in the sense
that each probing inverter should be able to inject the requested
value of complex power.

To characterize the allowable range of inverter injections
(pn, qn) with n ∈M, two inverter classes are identified. The
first class consists of inverters interfacing solar panels. When
inverter n interfaces a solar panel, its complex injection is
limited by its apparent power capacity s̄n as

p2n + q2n ≤ s̄2n. (3)

Moreover, if the maximum active power that can be generated
given the solar irradiance at the current probing period is p̄n,
then its active power injection is limited by

0 ≤ pn ≤ p̄n. (4)

The second class consists of inverters interfacing energy
storage units. The apparent power constraint of (3) should still

be enforced. If the power rate of energy storage unit n is p̄n,
the active injection from inverter n should lie within

− p̄n ≤ pn ≤ p̄n (5)

since the battery can be charged or discharged. Given the short
duration of probing, limits on the state of charge have been
ignored for simplicity.

Given the limitations for each inverter class, a candidate
probing injection skM ∈ S can be constructed by sampling
uniformly at random pkn within (4)–(5) for all n ∈ M. Upon
fixing active injections, the reactive injections can be sampled
again uniformly at random within |qkn| ≤

√
s̄2n − (pkn)2 to

comply with (3). Scenarios where a single bus hosts multiple
inverters belonging to the previous two or additional classes
can be incorporated in the sampling process.

As explained in Remark ?? of Part I, a probing bus n ∈
M may be hosting controllable inverters and non-controllable
assets (non-probing inverters and non-controllable loads). The
process of sampling implementable injections through (3)–(5)
can be repeated for all controllable inverters. The net injection
from non-controllable assets is assumed to be metered; that is
the case for the Pecan Street dataset [8]. The complex powers
injected into bus n are summed up and used in the P2L. To
keep the notation uncluttered, we will slightly abuse notation
and denote this net injection at bus n as pn + jqn.

The sampling process is repeated K times to construct
library S. Although each candidate probing vector skM ∈ S
can be implemented by inverters, the aggregate effect of
probing injections may be violating feeder constraints. To
handle this concern, we next reduce library S to only those
probing injections abiding by feeder constraints.

B. Maintaining only Network-Compliant Probing Setpoints

Even though a probing action lasts for one second or two,
the operator may still want to guarantee that it does not
violate any feeder constraints. For example, voltage regulation
standards dictate voltage magnitudes to remain within a pre-
specified range as u ≤ un ≤ u for all n ∈ N+. A probing
injection vector skM ∈ S is deemed network-compliant if
the incurred voltage deviations are maintained within the
allowable range u1 ≤ u − u01 ≤ u1 with the inequalities
applied entry-wise. Thanks to (1), these voltage constraints
can be expressed as linear inequality constraints on skM

u1 ≤ KskM + LsO ≤ u1. (6)

One cannot directly check whether skM is network-
compliant, since sO is unknown. To bypass this complication,
non-metered loads are assumed to lie within a known range

sO ≤ sO ≤ sO. (7)

The bounds (sO, sO) can be derived from historical data, the
confidence intervals of load forecasts, or the load estimates
obtained during the previous probing period.

Adopting a robust design, we would like to comply with
the voltage constraints in (6) for all possible values of non-
metered loads in (7). To do so, we leverage the next version
of Farka’s lemma on the containment of polytopes.
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Fig. 1. Percentage of candidate vectors skM ∈ S that violate (6) for varying
voltage bounds (u, u). The percentage of non-admissible vectors decreases
with smaller load uncertainty and/or looser voltage regulation bounds.

Lemma 1 ([9], [10], [11]). The non-empty polytope P1 :=
{x : Ax ≤ b} with A ∈ RM×N is contained within the
polytope P2 := {x : Cx ≤ d} with C ∈ RK×N if and only if
there exists matrix E ≥ 0 satisfying EA = C and Eb ≤ d.

Based on Lemma 1, to ensure that the polytope over sO
defined in (7) is contained within the polytope of (6), we need
to solve the feasibility problem

find E (8)
s.to E ≥ 0

E

[
−I2O
I2O

]
=

[
−L
L

]
E

[
−sO
sO

]
≤
[

KskM + (u0 − u)1
−KskM − (u0 − u)1

]
.

Given skM, if the linear program in (8) is feasible, the candidate
vector skM is deemed network-compliant and is copied to the
reduced library Sr. Otherwise, the candidate vector is not
copied to Sr since there exist load values within [sO, sO] that
violate the voltage constraints in (6). The test of (8) is repeated
for all skM ∈ S to get the reduced library Sr := {s`M}L`=1 of
L candidate injection vectors with L ≤ K.

To demonstrate the importance of this library reduction step,
we ran a numerical test on the IEEE 34-bus feeder for T = 4
and O = 10; see Fig. 1. Load uncertainty in (7) was confined
within sO = (1− 1

γ )sO and sO = (1 + 1
γ )sO for γ > 0. The

candidate inverter injections in S were randomly drawn from
±0.2 pu and tested against (8). For increasing γ, the uncer-
tainty bounds in (7) became tighter and progressively more
candidate vectors were rendered admissible. Even for loose
voltage regulation limits of ±10% and tight load uncertainty,
more than 20% of the candidates in S violated (6).

The reduction from S to Sr via (8) can be generalized.
For example, limits on line and transformer flows can be
expressed as linear functions of power injections and appended
to (6). Moreover, correlations in load forecasts across buses,
or power factor limitations applied on a per-bus basis, both
can be directly captured as linear inequalities and appended
to (7). Finally, if the library has been reduced significantly so

that L < T , the operator could broaden the voltage interval
[u, u] and/or tighten the load uncertainty range in (6) if grid
probing is still needed to recover non-metered loads.

C. Finding Probing Setpoints with Most Diverse States

Given the reduced library Sr = {s`M}L`=1 of implementable
and network-compliant candidates, the last step is to select the
T candidates yielding the most diverse states. Recall that the
system state v` related to probing injection s`M depends also
on the unknown loads sO. Moreover, the dependence on both
s`M and sO is non-linear and implicit. The approximate LDF
model of (1) can help us circumvent these technical challenges.

The Euclidean distance between the system states induced
by injections s`M, s

`′

M ∈ Sr will be surrogated by the Eu-
clidean distance between the approximate states of (1) as

‖v` − v`
′
‖2 ' ‖y` − y`′‖2

for all `, `′ = 1, . . . , L. The latter simplifies as

‖y` − y`′‖2 =

∥∥∥∥[K L
M N

]([
s`M
sO

]
−
[
s`

′

M
sO

])∥∥∥∥
2

=

∥∥∥∥[KM
](

s`M − s`
′

M

)∥∥∥∥
2

where we have exploited the linearity in (1) together with the
fact that non-metered loads remain roughly invariant during
probing. We define the distance between s`M, s

`′

M ∈ Sr as

d(`, `′) := ‖y` − y`′‖22
= (s`M − s`

′

M)>(K>K + M>M)(s`M − s`
′

M). (9)

Based on this metric, we would like to select a subset A
of T out of the L candidate vectors in Sr so that the sum of
their pairwise distances is maximized

max
A⊂Sr

∑
`∈A

∑
`′∈A

d(`, `′) (10)

s.to |A| = T.

The task in (10) is known as the max-sum diversity (MSD)
problem, and appears frequently in information retrieval, com-
putational geometry, and operations research [12]. In fact,
MSD can be reformulated as a binary quadratic program (QP)
after introducing the L × L distance matrix D with entries
D`,`′ := d(`, `′) as

f? := max
x∈{0,1}L

x>Dx (11a)

s.to x>1 = T. (11b)

Despite its simple form, the MSD task is NP-hard [12].
However, thanks to the properties of D, the problem in (11)
enjoys a polynomial-time approximate scheme (PTAS) [12].

Although D is indefinite, the objective in (11a) can be
shown to be concave under constraint (11b). To see this, define
the 2N × L matrix Ỹ := [y1 · · · yL] and use the definition
of d(`, `′) to rewrite the objective of (11) as

f(x) := x>Dx =

L∑
`=1

L∑
`′=1

x`x`′D`,`′
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=

L∑
`=1

L∑
`′=1

x`x`′
(
‖y`‖22 + ‖y`′‖22 − 2y>` y`′

)
=

L∑
`′=1

x`′‖y`′‖22

(
L∑
`=1

x`

)
+

L∑
`=1

x`‖y`‖22

(
L∑

`′=1

x`′

)

− 2

L∑
`=1

L∑
`′=1

x`x`′y
>
` y`′

= 2Tc>x− 2x>Ỹ>Ỹx.

where c :=
[
‖y1‖22 · · · ‖yL‖22

]>
. Since Ỹ>Ỹ � 0, the

objective f(x) equals a concave quadratic function.
For moderate L (a few hundreds), the task in (11) can be

handled by a mixed-integer QP solver. For T = 2, the MSD
solution can be found by an exhaustive search. For larger T ,
we will use a randomized rounding approach, as adopted from
[13] in [12, Remark 2]. The approach is briefly reviewed here
for completeness. Its first step solves the relaxed problem

x̂ := arg min
0≤x≤1

2x>Ỹ>Ỹx− 2Tc>x (12a)

s.to x>1 = T. (12b)

Since the binary constraints of (11) are related to box con-
straints in (12), it holds that f(x̂) ≥ f?. To construct a point
x̃ that is feasible for (11), draw L-dimensional vectors {x̃i}
whose entries are independent Bernoulli random variables with
mean (1 − β)x̂ for some β > 0, say β = 0.1. The so
constructed binary vectors x̃i’s satisfy E[x̃>i 1] = (1 − β)T
and E[x̃>i Dx̃i] = (1 − β)2x̂>Dx̂. The purpose of scaling x̂
by (1−β) is to ensure x̃i’s are both feasible for (11) and yield
relatively high cost with significant probability [12].

Let us now comment on the complexity for designing
probing setpoints. The first step described in Section II-A is
computationally inexpensive. The second step of Section II-B
involves solving the linear program in (8) K times, once for
each candidate setpoint vector. The third step of Section II-C
entails solving the linearly-constrained quadratic program of
(12), whose complexity is cubic in the number of variables L.
As detailed later in Section IV, running this design process
for the IEEE 34-bus feeder and K = 100 candidate setpoints
took 1−1.5 min depending on (M,O). The tests were run on
a laptop computer using generic off-the-shelf solvers.

To justify the need for this third step in probing design, we
conducted a test on the IEEE 34-bus feeder for T = 4 and
O = 6. For this test, load uncertainty was confined within
a factor of ±1 times the nominal loads. Given library S of
randomized injections drawn from ±0.2 pu and obeying (3)–
(5), we constructed the reduced library Sr based on (8) for
[u, u] = [0.90, 1.10]. We then solved (12) and followed the
randomized rounding process to construct 100 binary x̃i’s. We
evaluated the cost f(x̃i) for those x̃i’s satisfying x̃>i 1 = T ,
and returned the x̃i yielding the largest cost. The condition
number of the Jacobian matrix evaluated at the so obtained x̃i
was 3 · 106. We also calculated the condition number of the
Jacobian matrix evaluated at random candidate quadruplets in
Sr. The latter condition numbers ranged within 107−109; see
Fig. 2. Hence, albeit MSD adds computational complexity, it
is an important part of the probing design process.
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Fig. 2. Histogram of condition numbers for the Jacobian matrix J({vt}4t=1)
obtained by randomly sampling quadruplets of sM’s from Sr .
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Fig. 3. Probing setpoint design on the IEEE 34-bus grid for T = 2 and O =
6. The blue (red) lines correspond to the system states induced by the first
(second) probing setpoints {stM}2t=1. Solid lines depict voltage magnitudes,
and dashed lines voltage angles.

To show that this MSD step provides diverse system states,
we performed another test on the IEEE 34-bus feeder under
the same setup, but for T = 2. The states induced by the
designed probing and nominal loads are shown in Figure 3.

Upon solving (10) near optimally, we have obtained T
probing injection vectors {stM}Tt=1 that are: i) implementable
by inverters; ii) network-compliant; and iii) yield diverse
system states. In the process of probing design, the first step
(Section II-A) operates on the entries of stM’s; the second step
(Section II-B) considers each vector stM as a whole; and the
third step (Section II-C) accounts for the joint effect of probing
injections {stM}Tt=1.

III. SOLVING THE P2L TASKS

Recall that the P2L task with phasor data involves solving
the set of non-linear equations

un(vt) = utn ∀n ∈M, t ∈ T (13a)
θn(vt) = θtn ∀n ∈M, t ∈ T (13b)
pn(vt) = ptn ∀n ∈M, t ∈ T (13c)
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qn(vt) = qtn ∀n ∈M, t ∈ T (13d)
pn(vt) = pn(vt+1) ∀n ∈ O, t ∈ T ′ (13e)
qn(vt) = qn(vt+1) ∀n ∈ O, t ∈ T ′ (13f)

where vt’s are the system states across T = {1, . . . , T};
{(utn, θtn, ptn, qtn)}n∈M are the probing data collected at time
t; (13a)–(13d) are the 4MT metering equations; and (13e)–
(13f) are the 2O(T − 1) coupling equations with T ′ :=
{1, . . . , T − 1}. For the P2L task with non-phasor data, the
angle information in (13b) is unavailable.

Having characterized the local identifiability for the P2L
tasks in Part I, this section presents solvers for tackling P2L.
If grid specifications are noiseless and the power injections in
O remain unaltered during probing, the P2L tasks boil down
to solving the equations in (13). The latter can be tackled
by adopting the semidefinite program (SDP)-based solvers
developed in [14], [15], [16], [17]. Here we will skip the
details, which can be found in [18] for T = 2, and outline
the P2L solver for noisy data.

Probing data are inexact due to measurement noise and
modeling inaccuracies in the metering equations of (13a)–
(13d). To account for small fluctuations in non-metered loads
during probing, a noise term is added to the RHS of the
coupling equations in (13e)–(13f). To cope with noisy data,
we extend the penalized SDP-based state estimator of [17] to
the P2L setting as follows

min α

T∑
t=1

Tr(MVt) +

T∑
t=1

3M∑
k=1

fk(εtk) +

T−1∑
t=1

2O∑
l=1

fl(ξ
t
l )

(14a)

over Vt � 0, {εtk}3Mk=1, t ∈ T (14b)

{ξtl}2Ol=1, t ∈ T ′ (14c)
s.to Tr(MkVt) + εtk = ŝtk, k = 1 : 3M, t ∈ T (14d)

Tr(MlVt) = Tr(MlVt+1) + ξtl , l = 1 : 2O, t ∈ T ′
(14e)

where the given matrices Mk depend on Y; see [15], [16].
The matrix variables Vt � 0 have been obtained upon

relaxing the rank-one constraint Vt = ṽtṽ
H
t on the original

system states for t ∈ T . The measurements ŝtk relate to state vt
in (14d); and the constraints in (14e) couple the T states. The
auxiliary variables εtk can be substituted from (14d)–(14e) into
the objective of (14); they are introduced here only to simplify
notation. The data fitting penalties fk can be either a weighted
squared or absolute value, that is

fk(εtk) =

(
εtk
σ2
k

)2

=
(ŝtk − Tr(MkVt))

2

σ2
k

or

fk(εtk) =
|εtk|
σk

=
|ŝtk − Tr(MkVt)|

σk

with different σk’s depending on the uncertainty of the k-th
datum. Likewise, the auxiliary variables ξtl ’s capture variations
of non-metered loads and are penalized through fl’s, which are
defined as fk’s.

The first summand in (14a) corresponds to a regularizer
promoting rank-one minimizers for Vt; a practical choice sets
M = G as suggested in [16]. The second and third summands

in (14a) are data-fitting terms. The tuning parameter α > 0
governs the balance between the regularizer and the data-fitting
terms: For α = 0, the P2L cost involves only the data-fitting
terms; whereas for increasing α, more emphasis is placed on
the regularizer [17]. If one or more of the minimizers V?

t of
(14) is not rank-one, the heuristic for constructing a system
state v?t proposed in [17] is used.

Additional constraints can be added to strengthen the SDP
relaxation. For example, if non-metered buses are known to
host exclusively loads, the constraints Tr(MlVt) ≤ 0 for
l = 1 : 2O, and t ∈ T can be appended to (14). Additional
information on loads, such as the uncertainty range of (7), can
be readily incorporated. As in [17], if bus n is known to be a
zero-injection bus, then ĩn = e>nYṽ has to be zero. Therefore,
the constraint ṽĩ?n = VY?en = 0 can be added.

Given phasor data, the metering equations corresponding to
voltage magnitudes can be dropped. If the vectors of voltage
phasors {ṽt}Tt=1 are included as optimization variables, the
direct measurements on the voltage phasors of M can be
simply expressed as

ṽt,k + εtk = ŝtk, k = 1 : M, t ∈ T . (16)

To capture the dependence between ṽt and Ṽt, the non-convex
constraint

rank

([
Vt ṽt
ṽHt 1

])
= 1

can be surrogated by the next SDP constraint as in [14][
Vt ṽt
ṽHt 1

]
� 0, t ∈ T . (17)

Since the ṽt’s are optimization variables now, there is no need
to use the heuristic of [17] to recover the system states.

IV. NUMERICAL TESTS

The topological observability criteria for the P2L task and
the SDP-based solvers were numerically tested using the IEEE
34-bus feeder. The original multi-phase grid was converted
to an equivalent single-phase grid [19]. The numerical tests
were run on a 2.7 GHz Intel Core i5 laptop computer with
8 GB RAM using the Sedumi solver on YALMIP and MAT-
LAB [20], [21].

A. Numerical Observability

Since Theorems 1 and 2 of Part I rely on the sparsity pattern
rather than the exact values of J ({vt}), we evaluated J ({vt})
for 1,000 random state sequences {vt}Tt=1. The scenarios of
phasor and non-phasor data were tested under four probing
setups. For each setup, the placement of non-metered O and
probing busesM were fixed. We generated 1,000 random state
sequences by randomly drawing voltage magnitudes in the
range [0.90, 1.10] per unit and voltage angles in the range
[−1.5, 1.5]◦. Assuming non-phasor data first, the following
four setups were constructed according to the condition of
Th. 2 of Part I:
• Setup A meets the condition for O = 16 and T = 2.
• Setup B meets the condition for O = 6 and T = 2.



IEEE TRANSACTIONS ON POWER SYSTEMS (TO APPEAR) 6

10
5

10
10

10
15

10
20

Condition number

0

50

100

150

200

250

300

350

F
re

q
u

e
n

c
y

setup A
setup B
setup C
setup D

10
6

10
7

10
8

10
9

Condition number

0

20

40

60

80

100

120

F
re

q
u

e
n

c
y

setup A
setup B
setup C
setup D

Fig. 4. Histograms of the condition numbers for the P2L Jacobian matrices
with non-phasor data for T = 2 (top) and T = 4 (bottom) probing actions.

• Setup C does not meet the condition for O = 16 and
T = 2, but it does for T = 4.

• Setup D does not meet the condition for O = 6 and
T = 2, but it does for T = 4.

The same setups were considered for phasor data. As discussed
in Part I, setups A and B meet also the condition of Theorem 1.
Additionally, setups C and D were constructed such that they
meet the condition of Theorem 1 for T = 2.

Non-phasor data: Figure 4 depicts the condition number
histograms obtained under the four setups for T = 2 and 4.
Under setups A and B, although the dimensions of J ({vt})
increase with T , the condition numbers did not. In fact,
the condition number was sometimes reduced, especially in
networks with large O. For setups C and D, there was a
significant shift in the histograms from T = 2 to T = 4, which
validates Theorem 2. By and large, the condition number
improves for decreasing O and increasing T . Hence, when
more loads are to be recovered, longer probing periods should
be used. Of course, longer probing periods may violate the
stationarity assumption on loads.

Phasor data: Figure 5 displays the condition number his-
tograms of J ({vt}) again for T = 2 and 4. As expected,
due to the value added of phasor data, the condition numbers
decrease significantly. In addition, setups C and D that failed
for T = 2 with non-phasor data, become successful with
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Fig. 5. Histograms of the condition numbers for the P2L Jacobian matrices
with phasor data for T = 2 (top) and T = 4 (bottom) probing actions.
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Fig. 6. Histograms of the condition numbers for the Jacobian matrix J (v1)
with phasor and non-phasor data for single-slot probing (T = 1).

phasor probing data. The tests corroborate the criteria of
Th. ??. The bottom panel of Figure 5 displays the condition
number histograms under the following two setups that did
not satisfy the condition of Th. ??: i) for T = 4 and O = 6)
(yellow histogram); and ii) for T = 4 and O = 16 (green
histogram).

Single-slot probing scenario: We also tested the special case
of T = 1, where one fixes voltages and injections on a subset
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Fig. 7. Percentage error in active power injection estimates with phasor data
for T = 4 and O = 8 without MSD (top) and with MSD (bottom).

of buses M and tries to find the loads at the remaining buses
O. This setup is pertinent to learning ZIP loads as discussed in
Part I. We tested two fixed placements of non-metered buses
that met the conditions of Theorems ?? and ??, respectively.
We then evaluated J (v1) at 1, 000 random system states.
Figure 6 shows the histograms for the condition numbers of
J (v1). Bus placements that did not meet the criteria of Th. ??
and ?? exhibited condition numbers similar to those at the
bottom panel of Figure 5.

The condition number of the Jacobian matrices in PSSE
tasks for transmission systems is known to depend heavily on
the specification set [22], [23]: A larger number of voltage
magnitude and line flow measurements tends to yield a lower
condition number. It is thus expected that adding line flow
measurements would improve load and state estimation.

B. SDP-based P2L

Given noisy specifications, the P2L tasks were tackled using
actual data and the SDP-based solver of (14)–(17). The loads
on the IEEE 34-bus grid were taken from the Pecan Street
dataset [8], between 10:00 a.m. and 01:40 p.m. on January 1,
2013, and in 10-minute intervals. Load sequences were scaled
so that the peak active load over the tested period was 0.5 pu.
Lacking values for reactive loads, a lagging power factor of
0.9 was simulated for all loads.
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Fig. 8. Percentage error in active power injection estimates with non-phasor
data for T = 4 and O = 8.

To simulate probing injections at buses in M, we first
created a data library S of K = 100 randomized injection
vectors as described in Section II-A for p̄n = 0.2 pu. The
library S was then reduced to Sr to ensure that voltage
magnitudes lie within [0.90, 1.10] pu for non-metered loads
within [0, 2sO] as described in Section II-B. For all tests,
the regularization parameter was set to α = 20, 000, and the
functions fk and fl in (14) were selected as the WLS costs. To
simulate measurement noise, the probing data recorded for an
actual quantity x (e.g., voltage magnitude or power injection)
was modeled as x̂ = x(1+ε), where ε is a zero-mean Gaussian
random variable. The variance σ2 of ε was selected to yield
the desired value of signal-to-noise ratio (SNR)

10 · log10

x2

E[x2ε2]
= −20 · log10 σ. (18)

This variance is the same variance appearing in (14) as σ2
k.

Likewise, to capture small load variations, non-metered loads
were simulated by perturbing their nominal value pn as p̂tn =
(1 + εn)pn for t ∈ T , and similarly for qn’s.

To check whether the MSD step of Section II-C improves
estimation, we tested P2L with and without this step. The test
considered 100 Monte Carlo realizations for the loads at 10:00
a.m. The P2L task was run for T = 4, O = 8, and using phasor
data. The SNR values were set respectively to 80 and 60 dB
for metered and non-metered buses. PMUs are expected to
have such high accuracy [24]. The range of percentage errors
was reduced from [−50,+50]% to [−30,+40]% by selecting
the T most diversifying setpoints.

To verify the improvement of using phasor over non-phasor
probing data, we repeated the previous MSD setup but now for
non-phasor data. The obtained percentage errors are depicted
in Figure 8 and are of worse accuracy compared to those in
the bottom panel of Figure 7. We also tested the single-slot
probing scenario of T = 1 under slightly different probing
setups for (non)-phasor data. Figure 9 illustrates the statistics
of the obtained percentage errors.

Remark 1. Based on the numerical tests, we have observed
that load estimates generally improve when: a) the MSD step
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Fig. 9. Percentage error in active power injection estimates for T = 1 with
non-phasor data and O = 4 (top); and with phasor data and O = 6 (bottom).
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is implemented; b) phasor data are utilized; c) the duration
T is increased; and d) O is decreased.

We next evaluated how the estimation accuracy of system
states depends on the SNR. For this test, the SNRs for non-
metered loads and probing data were identical. The state
estimation accuracy was evaluated in terms of the root mean

square error (RMSE) defined as
√∑T

t=1 ‖vt − v̂t‖22/(NT )
averaged over 20 Monte Carlo tests. Figure 10 shows how the
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Fig. 11. Active power injection estimates using probing with phasor data for
T = 4 (top) and T = 6 (bottom).

RMSE decreases for increasing SNR.
To validate P2L over different loading conditions, we ran

numerical tests for the period of 10:00 a.m. and 01:40 p.m. and
every 10 min using phasor data. The SNRs for probing data
and non-metered loads were again fixed to 80 and 60dB, re-
spectively. Figures 11 and 12 present the actual and estimated
non-metered (re)active loads on buses {4, 6, 15, 20, 27, 31} for
T = 4 and T = 6, accordingly. The plots show the load
estimation improvement by increasing T .

Regarding the runtime of our algorithms, each P2L task
took between 95− 180 sec, which were allocated as follows:
• The linear programs of (8) took 70 sec overall, to check

the feeder compliance of K = 100 candidate probing
setpoints.

• The quadratic program of (12) needed to select the T
most diversifying setpoints was solved in less than 10 sec.

• The SDP formulation of (14) together with the heuristic
of [17] to obtain a rank-one solution took 25− 100 sec.

The load learning task for the single-slot probing setup (T =
1) was solved in less than 15 sec.

V. CONCLUSIONS

The novel data acquisition scheme of probing an electric
grid via smart inverters to infer non-metered loads has been
presented. Part I studied the topological observability of grid
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Fig. 12. Active (top) and reactive (bottom) power injection estimates using
probing with phasor data for T = 6 and O = 6.

probing using (non)-phasor data in potentially meshed net-
works. If a probing setup is deemed topologically observable,
Part II has presented a systematic methodology for designing
probing injections. The goal is improved estimation accuracy
and adherence to inverter and feeder constraints even without
knowing non-metered loads. The computational tasks involved
in grid probing have been cast as penalized SDP-based solvers
and account for noisy measurements and non-stationary loads.

Numerical tests using synthetic and real-world data on
benchmark feeders demonstrate the ensuing take-away simula-
tion findings: i) High-accuracy phasor data are better for load
recovery than non-phasor data; ii) Having the most diverse
system states during probing yields better load estimates; iii)
Probing seemed to yield better estimates under broad voltage
regulation range and tight load uncertainty iv) Although in-
creasing T improved the system state accuracy, the obtained
load estimates were not always better, especially for larger O.
Nevertheless, we were able to recover a reasonable number of
loads; and v) Including the extra constraints to strengthen the
SDP relaxation provided better numerical accuracy.

Several questions remain open. Developing scalable solvers
perhaps along the lines of [3]; incorporating measurement
from distribution lines and transformers [25]; and applying our
topological observability framework to detect data attacks in
distribution grids; all constitute pertinent research directions.
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